Please use this identifier to cite or link to this item: http://irepo.futminna.edu.ng:8080/jspui/handle/123456789/29235
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAudu, Khadeejah James-
dc.contributor.authorAbubakar, Tunde Adekunle-
dc.contributor.authorYahaya, Yusuph Amuda-
dc.contributor.authorEssien, James Nkereuwem-
dc.date.accessioned2025-05-06T13:13:23Z-
dc.date.available2025-05-06T13:13:23Z-
dc.date.issued2025-12-05-
dc.identifier.citationKhadeejah James Audu, Tunde Adekunle Abubakar, Yahaya Yusuph Amuda & James Essien Nkereuwem. (2025). Comparative Numerical Evaluation of Some Runge-Kutta Methods for Solving First Order Systems of ODEs. Toros University Journal of Engineering and Basic Sciences, 3, 20 -28.en_US
dc.identifier.uridoi:https://doi.org/10.54709/joebs.1556269-
dc.identifier.urihttp://irepo.futminna.edu.ng:8080/jspui/handle/123456789/29235-
dc.descriptionA journal publicationen_US
dc.description.abstractn this study, a comparative analysis of two Runge-Kutta methods; fourth-order Runge-Kutta method and Butcher’s Fifth Order Runge-Kutta method are presented and used to solve systems of first-order linear Ordinary Differential Equations (ODEs). The main interest of this work is to test the accuracy, convergence rate and computational efficiency of these methods by using different numerical problems of ODEs. Empirical conclusions are drawn after close observation of the results presented by the two methods, which further highlights their limitations and enabling researchers to make informed decisions in choosing the appropriate technique for specific systems of ODEs problems.en_US
dc.description.sponsorshipSelf-Fundingen_US
dc.language.isoenen_US
dc.publisherToros University, Turkeyen_US
dc.subjectRunge-Kutta Methods, First Order ODEs, Numerical Methods,en_US
dc.subjectConvergence rate, Numerical Analysisen_US
dc.titleComparative Numerical Evaluation of Some Runge-Kutta Methods for Solving First Order Systems of ODEsen_US
dc.typeArticleen_US
Appears in Collections:Mathematics

Files in This Item:
File Description SizeFormat 
JOEBS Publication.pdf840.66 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.