Please use this identifier to cite or link to this item:
                
    
    http://irepo.futminna.edu.ng:8080/jspui/handle/123456789/13952Full metadata record
| DC Field | Value | Language | 
|---|---|---|
| dc.contributor.author | Peter, O. J. | - | 
| dc.contributor.author | Akinduko, O. B. | - | 
| dc.contributor.author | Oguntolu, F. A. | - | 
| dc.contributor.author | Ishola, C. Y. | - | 
| dc.date.accessioned | 2021-11-02T13:24:53Z | - | 
| dc.date.available | 2021-11-02T13:24:53Z | - | 
| dc.date.issued | 2018-05 | - | 
| dc.identifier.citation | Peter, O. J., Akinduko, O. B., Oguntolu, F. A., & Ishola, C. Y. (2018). Mathematical model for the control of infectious disease. Journal of Applied Sciences and Environmental Management, 22(4), 447-451. | en_US | 
| dc.identifier.issn | 2659-1502 | - | 
| dc.identifier.uri | https://www.ajol.info/index.php/jasem/article/view/170456 | - | 
| dc.identifier.uri | http://repository.futminna.edu.ng:8080/jspui/handle/123456789/13952 | - | 
| dc.description.abstract | We proposed a mathematical model of infectious disease dynamics. The model is a system of first order ordinary differential equations. The population is partitioned into three compartments of Susceptible S(t) , Infected I(t) and Recovered R(t). Two equilibria states exist: the disease-free equilibrium which is locally asymptotically stable if Ro < 1 and unstable if Ro > 1. Numerical simulation of the model shows that an increase in vaccination leads to low disease prevalence in a population. | en_US | 
| dc.language.iso | en | en_US | 
| dc.publisher | African Journals Online | en_US | 
| dc.subject | Infectious Disease | en_US | 
| dc.subject | Equilibrium States | en_US | 
| dc.subject | Basic Reproduction Number | en_US | 
| dc.title | Mathematical model for the control of infectious disease | en_US | 
| dc.type | Article | en_US | 
| Appears in Collections: | Mathematics | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Mathematical model for the control of infectious disease.pdf | 219.54 kB | Adobe PDF | View/Open | 
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.