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ABSTRACT Community Detection has gained a lot of attention in recent years due to its 

applications in studying human behaviour in various spheres of life and most especially in 

the analysis of criminal networks. In this era of Big Data Analytics, community detection 

has been made easier by the availability of huge sources of data such as the Call Detail Rec-

ords (CDR) of the telephone networks. Recently, focus in community detection is gradually 

drifting from unweighted networks to weighted networks, where the strength of the link 

between each pair of connected nodes is considered rather than just the existence of a link. 

However, existing algorithms for community detection have focused only on direct links 

between pairs of nodes in a network. In this work, an Enhanced Conductance-based Algo-

rithm (ECBA) was develop to detect communities in a network. This was done by synthesiz-

ing the direct and indirect relationship strengths between all pairs of nodes on a weighted 

undirected graph. The algorithm was tested with CDR data using belonging degree and con-

ductance as the decision metrics for community partitioning. Comparison with the original 

conductance-based algorithm shows significant improvement in quality of detection for 

communities of large sizes in terms of average shortest path distances, density, and how 

closely knit the connections are. Test results further show that using indirect relationships 

between pairs of nodes significantly reveals more information about community member-

ship in large networks 

 
Keywords: community detection; social network graphs; binary networks; weighted net-

works; conductance; belonging degree. 

1. Introduction 

 

The massive improvement in technology over the years, especially the technical 

and commercial success of the mobile phones and other handheld devices, has 

made the study of human behaviour or interaction patterns via this medium in-

creasingly useful. Users of mobile phones, either for voice/SMS communication or 

for online social networks, leave digital traces that can be used to understand their 

behaviour and connections over time. Even criminal activities and criminal net-

works can be more easily understood and detected by analysing such data. Among 

the prominent ways this has been done is community detection. 

A network is a group of nodes (or vertices) connected through edges or links. A 

community in a network is a group of nodes having more internal connections with 
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each other than external connections with the rest of the network (Fortunato, 2010). 

They are also called Clusters, Cliques or Cohesive groups (Borgatti, 2009) (Palla et 

al., 2005). Detecting communities of users on a network has gained significant 

growth due to applications such as warm containment in Online Social Networks 

(OSN), data forwarding in delay tolerant networks, routing strategies for MA-

NETS, coding, automatic allocation of small LANs (Lu et al., 2013), detecting 

terrorist or criminal groups, Link prediction, information diffusion, and in biologi-

cal or medical systems (Ahuja et al., 2016). This is commonly done on social net-

work graphs which are made of nodes (users on the network), and edges which 

represent links between the users.  Social Network graphs may be directed or undi-

rected, weighted or unweighted. In a directed graph, the direction of communica-

tion between two nodes is considered, while Undirected graphs are made up of 

unordered pairs of vertices, i.e., direction of communication is not used in carrying 

out analyses. An undirected graph is unweighted (or binary) if a single edge con-

nects each pair of vertices. An unweighted graph (or an unweighted version of a 

graph) is used for analyses when the goal is to simply know which nodes have 

communication links to each other. In this case there is no interest in the extent of 

communication in those links. However, for weighted graphs, there can be multiple 

edges connecting a pair of vertices, highlighting the extent of communication and 

hence, the relative strengths of the links (Lu et al., 2013). 

In this paper, we approach the problem of community detected on weighted and 

undirected networks. Our main contribution is the development of an Enhanced 

Conductance-based Algorithm (ECBA) which not only uses direct relationship 

strengths but also indirect relationship strengths to improve the quality of commu-

nity detection. 

 

2. Related Works  

 

The goal of community detection is to partition a network into dense regions of the 

graph. Each region represents a group of nodes that are closely related, and hence 

are in the same community. Most of the earlier algorithms for community detection 

were based on binary networks. Very prominent among them is one proposed in 

(Girvan and Newman, 2002) which focused on the boundaries of communities 

rather than their core. It is said to be the first algorithm in modern age community 

detection (Fortunato and Lancichinetti, 2009). In their approach edges are removed 

from the network based on Betweeness centrality values. The edges with the high-

est Betweeness centrality are removed, Betweeness is calculated again for the edg-

es affected by this removal, and the process is repeated until no edges remain. 

However, the run time of the algorithm as the number of nodes increase makes it 

unsuitable for large graphs. Cfinder was developed to uncover the structure of 

complex networks by analysing the statistical features of overlapping networks 

(Palla et al., 2005).  A community (a k-clique community) was defined as a union 

of all k-cliques (complete subgraphs of size k) that can be reached from each other 

through a series of adjacent k-cliques (where adjacency means sharing  
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nodes) . It was based on the fact that members can be reached through well 

connected subsets of nodes. This approach allowed overlapping in community 

membership. The community detection was done by setting a threshold weight for 

the links and ignoring links that were below this threshold weight making the net-

work essentially a binary network.  The RAK algorithm which is based on label 

propagation was also proposed in (Raghavan et al., 2007). In this approach, each 

node is first initialized to a unique label which represents the community it belongs 

to, and these labels then propagate through the network. A node would determine 

its community based on the labels of its neighbours. Each node joins a community 

which has the most of its neighbours as members and the labels of the nodes are 

updated at each iteration. As the propagation continues, dense connected groups of 

nodes finally settle for a unique label, and in the end, all nodes with the same labels 

are placed in the same community.  This continues until each node in the network 

has the label to which the maximum number of its neighbours belong to. It is how-

ever possible for the iteration to end with two disconnected groups of nodes having 

the same label. It will require a breadth-first search on the subnetwork of each indi-

vidual group to separate the disjointed communities thus increasing the computa-

tion time and complexity of the technique. 

All of the methods briefly discussed earlier focused on binary networks. In 

such methods, attributes of nodes are emphasized instead of the edge content 

which represent the actual link between the nodes. Even though more challenging, 

edges provide a richer characterization of community behaviour (Qi et al., 2012). 

Most networks are weighted, so community detection is more reliable when the 

actual extent of interaction between nodes is considered (Ovelgönne et al., 2010). 

A notable algorithm for detection of communities in weighted networks is the 

COPRA algorithm (Gregory, 2010). This algorithm is based on the label propaga-

tion algorithm (RAK) discussed earlier. Label propagation is done just like in the 

RAK algorithm only that, in this case, a node can be a member of more than one 

community because of the use of community identifiers. A node is allowed to keep 

more than one community identifier in each label without retaining all of them. 

This algorithm can be used on weighted networks. However, it has the same con-

vergence problem that the RAK algorithm had. In (Tiantian Zhang and Bin Wu, 

2012) a method for finding communities of users by first identifying core nodes 

and finding cliques around those core nodes was proposed. It was argued that hav-

ing global knowledge of the graph required by most algorithms is unrealistic for 

very large graphs. The Strength algorithm proposed in (Chen et al., 2010) used this 

strategy. It consists of finding an initial partial community (the node with the high-

est node strength). The community is expanded by adding tight nodes to the partial 

community until detection is complete for that particular community based on a set 

threshold for belonging degree of the neighbours of that community. The algorithm 

however, degrades in its performance when the overlapping increases. In (Lu et al., 

2013), a conductance-based algorithm was developed. The algorithm is just like 

the Strength algorithm only that a new objective function, Conductance, is used in 

addition to the belonging degree, and here the initial community is a community of 

two nodes in the network with the highest edge weight between the two of them. 
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This algorithm had a dynamic threshold and could perform well on large networks, 

unlike the Strength algorithm. However, like all the previous algorithms discussed, 

indirect links between nodes were not considered. 

Sometimes, friends (and also criminals like fraudsters) live in close proximity 

to each other. This reduces the amount of communication data available to study 

their relationships since most of their communication happen offline (Blackburn et 

al., 2014). Considering indirect connections can help to reveal more information 

about such relationships. According to Granovetter (1973), “The degree of overlap 

of two individual's friendship networks varies directly with the strength of their tie 

to one another." Thus, nodes with stronger ties to each other are more likely to 

have stronger indirect links or friends-of-friends. In an attempt to determine the 

distance in a communication network beyond which two nodes are no longer likely 

to be aware of each other’s activities in (Friedkin, 1983), it was observed that two 

persons who were more than two steps away from each other in a network were 

unlikely to be aware of each other’s work. Work by Christakis and Fowler, (2009) 

also led to a theory that social influence does not end with two people who are di-

rectly connected to each other but continues up to two or three hop relationships, 

though with diminishing returns. Work carried out by Blackburn et al., (2014) fur-

ther verified this. 

 
3. Community Detention with Synthesised Relationship Strengths 

 

Here, we present a method for detecting communities using a synthesised relation-

ship strength (direct and indirect) between pairs of directly connected nodes in a 

network.  

 

A. Synthesised Relationship Strengths 

 

In (XLin et al., 2014), a simple expression for calculating synthesized relationship 

strengths between pairs of nodes in a network was derived. The synthesized rela-

tionship strength is the weight of the link between any two nodes, it is derived from 

the combination of the weights of the direct the indirect paths between the two 

nodes. The synthesized relationship strength RS(vi, vj) between nodes vi and vj  is 

written as  

                                         

                                        (1)      

 

Where  and  a re we ighting coefficients for the direct and the indi-

rect paths respectively. Selecting the experimental values for the attenuation coeffi-

cient and weight coefficient as used in (XLin et al., 2014), The synthesized rela-

tionship strength RS(vi, vj) between nodes vi and vj  
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                                                 (2) 

where  repres ents the direct weight between the two nodes, and d is the 

length of their relationship strength along a given path (number of hops in be-

tween) 

For c two-hop indirect paths with intermediary node , where   is a n

eighbour of both  and , the s um of weights,  across  all 

such indirect paths was calculated as: 

                                                    

                                                                 (3) 

 

For m three-hop indirect paths with intermediary nodes  and , where

  is a n eighbour of ,  is a  n eighbour of , and i

s in a  neighbour of ; the s um of weights,  across  all such 

indirect paths was calculated as: 

                

                                                              
(4) 

Therefore, 

                                                

                                                              (5) 

Hence, 



P��������	
 �� B�	 D��� A�������
 � I��������� (P���-R�������) 

 115 

       

                     
(6) 

This was then used in place of  in the  conductance-based algorithm. 

 

B. Metrics Used to Detect Communities 
 

The following metrics were used as objective functions in our algorithm for detect-

ing communities. 

1) Conductance: It measures the fraction of total edge volume that point out-

side the cluster. That is, it measures how well knit a graph is. The lower 

the conductance value, the more connected the nodes are. This can be 

mathematically expressed as: 

                                                      

                    (7) 

 

where  repres ents the number of cut edges in 

the community (which means all edges leaving the community), and  

is the  total weight of edges in the community.  

2) Belonging Degree: Assuming C is a community in a network; for a node 

; , , a re  n ode degrees and neighbour 

sets respectively. And let  be the  weight of the link between 

nodes u and v (where v is already in the community).  can th en 

be written as: 

                             

        (8) 
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For the community C, and node u, the belonging degree  betwee

n node u and community C is defined as 

                                                         

                    (9) 

C. The ECB Algorithm 

 

The algorithm is made up of two stages: selecting the initial temporary community 

and expansion. It is basically the Conductance-based Algorithm (CBA) in (Lu et 

al., 2013), with synthesized relationship strengths used in place of direct weights 

between all links in the entire process.  The algorithm is as follows 

(a) Input Graph  

(b) Ca lculate synthesized relationship strength between every pair of 

nodes in the network 

(c) If edge set is not empty, select two nodes  and  w ith t he 

highest synthesized relationship strength 

(d) Calculate the Conductance  of the  community   forme

d by  and  

( e) Fi nd all the neighbours (N) of  

(f) Pi ck the neighbour with the highest belonging degree B(w, C) to  

(g) Ad d to  and fo rm a new temporary community  

(h) Ca lculate conductance  of  

(i ) If    , the n , go 

to  (e) 

(j) If , then community  is det ec-

ted 

(k) Remove edge - , go t o  (c) 

(l) End 
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4. Performance Evaluation of the ECBA  
 

The algorithm was tested on two datasets—i.e. the nodobo dataset and ground truth 

data from Zachary Karate Club. 

 

1) Test with Nodobo Dataset 

The Nodobo dataset (McDiarmid et al., 2013) is publicly available. This data was 

retrieved from mobile phones of 27 High School students over a period of 5 

months using a software. It consists of 13035 call records, 83542 SMS records and 

5.2 million proximity records. The part of the dataset used for this research is the 

call records.  Based on the scope of this work, only the source and the target phone 

numbers and call durations were needed. These were extracted and duplicate edges 

(source-destination pairs) were merged. Since this work focuses on undirected 

graphs node pairs were considered as duplicates if they existed as a source-

destination pair, however they were permutated, multiple times. Weights were cal-

culated using call durations for each edge. 

 
 

This pre-processing resulted in 575 nodes with 642 edges.  

The result of the communities detected are shown as compared to that of the origi-

nal Conductance-based Algorithm as shown in Table 1. 

 

Table 1: Detected communities 

 

From the results, it is clear our algorithm generally detected more small-sized com-

munities than the existing algorithm. It showed more details of splits among mem-

bers. Also the largest community detected by our algorithm had 105 nodes. The 

same community (with the same initial node pair), was detected with only 68 nodes 

using the CBA algorithm. Thus, with our algorithm, it was possible to identify 

           Number of members                 Detected by ECBA                    Detected by CBA 

> 5 
>10 
>20 
>30 
>40 
>50 
>60 
>70 

23 communities 
16 communities 
11 communities 
8 communities 
6 communities 
2 communities 
1 community 
1 community 

23 communities 
18 communities 
12 communities 
9 communities 
7 communities 
3 communities 
1 community 
0 communities 
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members of that community which were not detected by the CBA. Other metrics 

used for evaluation include: 

 

a) Conductance 

The performance of the Enhanced Conductance-based Algorithm (ECBA) was 

compared with the Conductance-based Algorithm (CBA) by plotting the graphs of 

their conductance versus community size. The result shows a scatter plot with 

Least Squares lines in Fig 1a. As seen from the least-square lines, the ECBA had 

lower conductance values as community sizes increased from about 20 members 

and above. By definition, the smaller the conductance, the tighter the connection 

(that is, the stronger the relationships) between members in the community. This 

means that the ECBA formed tighter clusters for communities with larger sizes 

(greater than 20) while the CBA formed tighter clusters for smaller community 

sizes. The last two scatter points to the right show that the community detected by 

the ECBA with 105 nodes is much tighter (conductance = 0.02456) than that of the 

same community which was detected as having only 68 nodes by the CBA 

(conductance = 0.2112). Hence, the hidden nodes ignored by the CBA were very 

important members of the community. 

 

b) Average Distances 

The distance between two nodes in a network is the length of the shortest path be-

tween them. For this network, the distances used were inverse of the weights as 

discussed earlier. The average distance is the sum of the shortest path distances 

between all pairs of nodes in the community divided by the community size. Fig 1b 

shows a plot of the average distances for each of the communities formed using the 

ECBA and the CBA against community sizes. The ECBA finds communities with 

lower average distances as the sizes of the communities are increasing, while the 

CBA shows lower average distances for smaller communities (<20).  This can be 

interpreted as the ECBA clustering nodes with a stronger connection with one an-

other (smaller shortest path lengths) than the CBA for larger communities. 

 

c) Average Distances 

The values of the scaled densities for each of the communities detected by both 

algorithms were plotted against community sizes in Fig 1c. The ECBA has a higher 

scaled density up to point 40 on the community size axis and CBA has a higher 

scaled density from point 80 upwards. However, the scatter points show only EC-

BA having a community at all up to 80 nodes in size. Hence we can best compare 

the two algorithms with earlier values than 80. This shows that the ECBA commu-

nities have averagely slightly higher density of clusters than the CBA.  
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(a)                                                       (b) 

 
       (c) 

Fig 1: Graphs comparing performance of the ECBA and CBA 

 

2) Test with Zachary Dataset 

Our algorithm was also tested with the Zachary Karate club dataset. This data is 

from an already known community structure of 34 members of a Karate club ob-

served for three years - from 1970 to 1972. After a conflict between the club’s 

president and a part-time instructor over lesson fees, members of the club were 

split into two main groups (Zachary, 1977). In this work, a weighted version of the 

karate network was used to test the Enhanced Conductance-based Algorithm. The 

results of the detection were compared with the real life communities observed by 

Zachary. The original communities formed by Zachary are shown in Table 2. 

 

Table 2: Community Structure as observed by Zachary 

 

Commu-

nity 

Members 

1 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 17, 18, 20, 22 

2 9, 10, 15, 16, 19, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 
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The detection done with our algorithm shows four communities instead of the two 

observed by Zachary as seen in Table 3. However, it was observed that members of 

community 2 and community 4, except for node 9, 29 and 32, were both subsets of 

the community 1 in Zachary’s original detection. Also, community 1 and commu-

nity 3 in Table 2, except for node 2 and 3, are subsets of community 2 in Zachary’s 

detection. 

 

Table 3: Community Structure Observed by the ECBA 

 
 

When the pairs of subsets are merged we have the communities as shown in Table 

4. It can be seen from comparing Table 2 and Table 4 that every member of the 

community 1 in the Zachary dataset is also in the first community we have after 

merging the community pairs as shown in Table 4. Also, every single member of 

community 2 in the Zachary dataset is also placed in the second community in Ta-

ble 4. The extra nodes in each of these communities, that is: 2, 3, 9, 14, 20 and 29, 

are overlapping nodes.  

 

Table 4: Merged Communities 

 

 
 

Communi-

ty 

Members 

1 25, 26, 29, 32 

2 1, 2, 3, 4, 8, 12, 13, 14, 18, 20, 22, 29 

3 2, 3, 9, 10, 14, 15, 16, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 

32, 33, 34 

4 6, 7, 17, 1, 9, 32, 5, 11 

Com-

munity 

Members 

2 & 4 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 20, 22, 29, 32 

1 & 3 2, 3, 9, 10, 14, 15, 16, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 

32, 33, 34 
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Fig 2: (a) Communities as observed Zachary (b) Communities as detected by ECBA 

 

The result of this test shows that the proposed algorithm did not only detect com-

munities but also sub-communities within these communities, showing more de-

tailed clustering of nodes. 

5. Discussion  

 

The results from the detection and evaluation discussed in the previous section 

shows that more community members not seen by the CBA can be detected by the 

ECBA. The results point to the fact that using indirect relationship strength com-

pensates for some of the closely connected nodes that have very little online com-

munication and could hence be mistaken for weak ties. Apart from showing the 

true nature of such links, communities formed showed a great improvement in 

compactness. This also suggests that a higher amount of mutual information is 

shared across the links between members of communities formed via synthesising 

both direct and indirect paths. The test with Zachary karate club dataset also shows 

that the introduction of indirect relationships across the links gave rise to overlap-

ping. Though every member was detected in its correct community, overlaps be-

came very visible and sub-communities could be formed to show greater detail of 

how members related. 

6. Conclusions 

 

In this work, an Enhanced Conductance-based Algorithm (ECBA) for community 

detection in weighted networks with undirected graphs was presented. It was tested 

on a mobile phone dataset and a dataset from a social club with already known 

community structure. Results show that The Enhanced Conductance-based Algo-

rithm outperforms the existing Conductance-based Algorithm in detecting commu-

nities of larger sizes (up to about 20 nodes or more). This work has also revealed 

that detecting communities with both direct and indirect relationship strengths 
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gives more details of node relationships than what is obtained by using only direct 

relationship strengths. 
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