
ORIGINAL ARTICLE

Fault tolerance aware scheduling technique for cloud computing
environment using dynamic clustering algorithm

Shafi’i Muhammad Abdulhamid1,3 • Muhammad Shafie Abd Latiff1 •

Syed Hamid Hussain Madni1 • Mohammed Abdullahi1,2

Received: 17 September 2015 / Accepted: 1 July 2016

� The Natural Computing Applications Forum 2016

Abstract In cloud computing, resources are dynamically

provisioned and delivered to users in a transparent manner

automatically on-demand. Task execution failure is no

longer accidental but a common characteristic of cloud

computing environment. In recent times, a number of

intelligent scheduling techniques have been used to

address task scheduling issues in cloud without much

attention to fault tolerance. In this research article, we

proposed a dynamic clustering league championship

algorithm (DCLCA) scheduling technique for fault toler-

ance awareness to address cloud task execution which

would reflect on the current available resources and

reduce the untimely failure of autonomous tasks. Exper-

imental results show that our proposed technique pro-

duces remarkable fault reduction in task failure as

measured in terms of failure rate. It also shows that the

DCLCA outperformed the MTCT, MAXMIN, ant colony

optimization and genetic algorithm-based NSGA-II by

producing lower makespan with improvement of 57.8,

53.6, 24.3 and 13.4 % in the first scenario and 60.0, 38.9,

31.5 and 31.2 % in the second scenario, respectively.

Considering the experimental results, DCLCA provides

better quality fault tolerance aware scheduling that will

help to improve the overall performance of the cloud

environment.

Keywords Dynamic clustering � Cloud scheduling � Fault
tolerance � Task scheduling � League championship

algorithm

1 Introduction

Failures are to be expected in cloud computing environ-

ment. Cloud resources are known to experience fluxes in

their performance delivery [1]. Thus, fault-tolerant

scheduling technique that takes care of performance

variations, resource fluctuations and failures in the envi-

ronment is important [2]. As task applications increase to

utilize cloud resources for a long time, the task will

unavoidably come upon growing amount of component

failures [3]. Once task failures occur, it has an effect on

the execution of the tasks scheduled to the failed com-

ponents. Hence, a fault-tolerant mechanism is essential in

clouds. Fault tolerance is the capability of the cloud

scheduler to safeguard and protect the delivery of pro-

jected tasks even with the occurrence of failures in the

clouds system [4]. Providing fault tolerance in a cloud

computing system, while optimizing resource scheduling

and task execution is a demanding task especially for

cloud developers. Cloud scheduling mechanisms are

expected to have fault-tolerant components that identify

failures and resolve them within the shortest possible

time. These supportive components allow tasks to be

& Shafi’i Muhammad Abdulhamid

shafii.abdulhamid@futminna.edu.ng

Muhammad Shafie Abd Latiff

shafie@utm.my

Syed Hamid Hussain Madni

madni4all@yahoo.com

Mohammed Abdullahi

abdullahilwafu@abu.edu.ng

1 Faculty of Computing, Universiti Teknologi Malaysia,

Johor Bahru, Malaysia

2 Department of Mathematics, Ahmadu Bello University,

Zaria, Kaduna State, Nigeria

3 Department of Cyber Security Science, Federal University of

Technology Minna, Niger State, Nigeria

123

Neural Comput & Applic

DOI 10.1007/s00521-016-2448-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-016-2448-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-016-2448-8&domain=pdf

scheduled on the cloud resources even in case of com-

ponent breakdown without stopping the applications. In

this NP-hard problem, exact solution techniques are at

least exponential and a cloud provider has to depend on

fairly estimated results obtained in a suitable period based

on intelligent algorithms [5].

Fault tolerance awareness has been identified as one

of the main issues to ensure reliability, robustness and

availability of important services as well as running of

applications in the cloud computing system. Task failure

may be as a result of many factors such as overloaded

RAM, bandwidth shortage or power failure to mention

but a few. Fault tolerance depends on either time or

hardware redundancy so as to mask task or component

failures. Time redundancy involves the re-execution of

failed task after the malfunction has been identified. It

can be optimized through the application of checkpoint

techniques but even with that it still enforces a consid-

erable delay. In various task critical systems, hardware

redundancy has been frequently deployed in the outline

of task replication to provide fault tolerance, evading

delay and sustaining fixed targets. Both methods present

downside and negative aspects, re-execution needs extra

time and replication needs extra resources, particularly

energy. This compels a trade-off between time and

hardware redundancy, in IaaS cloud computing systems

replication is mostly preferred because response time is

normally very vital [6].

The league championship algorithm (LCA) is an

intelligent algorithm that is first proposed by Kashan [7].

To form a synthetic championship setting, some idealized

rules need to be followed and then introduce the

promising computational intelligence algorithm that is

modeled based on a number of fascinating results relative

to sports championship round robin timetable. To evaluate

the performance of the LCA, Kashan and Karimi [8] use

five different benchmark test functions that include: the

Sphere, Rastrigin, Rosenbrock, Ackley and Schwefel

functions. In comparison with other state-of-the-art intel-

ligent algorithms like the particle swarm optimization,

simulation results show that the LCA is a reliable opti-

mization algorithm that can converge speedily to the

global optimal. This feature and its reliability in avoiding

local trappings make it a prepared choice for fault toler-

ance scheduling in the cloud environment. Consequently,

Abdulhamid et al. [9] present LCA-based scheduling

technique for global optimization of tasks scheduling in

the cloud system. Also, Abdulhamid et al. [10] present a

survey of the LCA optimization method detailing the real-

world areas that the algorithms have been effectively

applied and also explored the prospects and challenges of

the technique.

Algorithmic complexity is concerned about how fast a

certain algorithm performs taking into cognizance the

total operations, input parameters, the resources and time

[11, 12]. The LCA has relatively low complexity in terms

of the number of iterations and total operations to be

performed as compared to other state-of-the-art intelli-

gence techniques. This makes it very easy to implement.

The introduction of the DCLCA technique became

important as an alternative to the existing approaches

because of its strong local search and faster convergence

rate. It is versatile in reducing trappings into local optima

when solving complex multimodal problems. Addition-

ally, it has few input parameter settings which reduce the

uncertainty in choosing the correct values that will lead to

fast convergence and accurate results. Furthermore, many

of the existing intelligent approaches did not consider

fault tolerance strategies and parameters in designing their

task scheduling algorithms in the cloud computing

system.

The aim of this work is to designing a dynamic clus-

tering league championship algorithm (DCLCA) for task

scheduling problem with fault tolerance awareness in cloud

computing services. The remaining parts of the article are

organized as follows. Section 2 presents the related works,

which is divided into dynamic intelligent algorithms used

in the cloud environment and fault tolerance aware intel-

ligent algorithms in cloud. Section 3 describes the fitness

function of the DCLCA. Section 4 details the fault toler-

ance scheduling components, task migration and the per-

formance metric. Section 5 shows the design of the

proposed DCLCA optimization technique. Section 6

chronicles the experimental setup, while Sect. 7 explains

the results and discussion from two different scenarios.

Then lastly, Sect. 8 presents the summary and conclusions

of our findings.

2 Related works

Fault tolerance awareness in cloud has to do with the

mechanisms required to allow a technique to endure

system of task execution faults lingering in the system.

One of the merits of developing fault tolerance techniques

in cloud computing is failure avoidance, healing, cost

efficiency and superior performance metrics. As soon as

various instances of cloud tasks begin to execute on

numerous VMs, and then, some of the servers fail that

means there is a fault and it is normally taken care of

using fault tolerance mechanism [13]. A number of fac-

tors may lead to the failure of a server instance and

consequently tasks failure. Many at times, one failure

events stimulate another. These factors may include:

Neural Comput & Applic

123

hardware malfunction, operating system crashes, network

partitions, power outage and unforeseen software perfor-

mance can all lead to the failure of a server request. Some

fault tolerance mechanisms have been presently in har-

mony with cloud computing scheduling [14, 15]. These

include: retry, healing, resubmission, replication, rejuve-

nation of software, masking and migration to mention but

a few, however, most of them are prone to heavy over-

head and sometime leads to local trappings. In this sec-

tion, we review some related literatures that applied

intelligent optimization techniques for solving the

dynamic task scheduling problem in the cloud computing

environment. We also surveyed related works that try to

address the issues of fault tolerance using the intelligent

algorithms in this environment.

2.1 Dynamic intelligent algorithms in cloud

scheduling

Dynamic scheduling techniques are designed to produce

a group of independent tasks into a set of suitable com-

putational size or task clusters/partitions using tasks

characteristics focusing on priority or a partition

[16–18]. It is used to organize the scheduling of clus-

tered tasks over limited heterogeneous cloud resources.

A heuristic is applied to categorize the task clusters, with

knowledge of the current limited resource states in the

cloud environment [16, 19–22]. It also efficiently com-

bines task clustering and mapping into a joint resource

allocation technique to improve computing accessibility

of the resources.

Gangeshwari et al. [23] introduce a dynamic hyper

cubic peer-to-peer cloud (HPCLOUD) which is a struc-

tured peer-to-peer framework implemented on a cloud

computing system on which MapReduce method is used

for tasks scheduling. In addition, fault tolerance can be

attained on the HPCLOUD architecture. Experimental

outcome shows that the proposed HPCLOUD method

has demonstrated superior feat in terms of response time

with respect to increase the number of files. However,

the dynamicity of HPCLOUD is only at initial level of

scheduling and not integrated to cover all levels. In

addition, the response time is considered in measuring

the fault tolerance parameter, while other important

parameters are not taken into account. An intelligent

technique based on GA is also presented to decipher the

global tasks scheduling problem [24]. The technique is

based on the Pareto dominance relationship called

NSGA-II, giving no distinct optimal result, but a set of

results that are not subjugated on one another. The

related outcomes show the efficiency of the presented

technique and GA for small- and medium-sized

scheduling problems. However, the experimental results

did not demonstrate the performance with large and

massive cloud-based scheduling problems, the hetero-

geneity, dynamicity and likely local trappings are not

considered.

Using active replication technique, a dynamic and

reliability-driven real-time fault-tolerant scheduling algo-

rithm (DRFACS) and greedy algorithm in case of enor-

mous resource failures is put forward by Ling et al. [25].

It aims at increasing reliability by dynamically assign

reliant, non-preemptive, non-periodic instantaneous tasks,

trying to advance the QoS throughout scheduling process.

The experimental result shows that when the computing

and communication rate (CCR) value is microscopic,

DRFACS scheduling capability is better than FTSA and

FTBAR. When value of CCR is increased, DRFACS

performance is steadily minimized and FTSA and FTBAR

schemes do better than DRFACS trend. This shows that

the CCR has a strong impact on DRFACS, FTSA and

FTBAR reliability. As the CCR amplifies, DRFACS also

steadily progresses the reliability, and it shows that

increase in CCR will also increase the reliability of the

system. However, the dynamicity of DRFACS technique

is prioritized to only critical task. Tawfeek et al. [26] put

forward a dynamic cloud job scheduling technique using

ant colony optimization (ACO) intelligent optimization

method. Random optimization search method is adopted

for this approach that is utilized for managing the

incoming jobs mapping to the resources. The experi-

mental results indicate that the proposed ACO method

outperformed FCFS and RR algorithms. However, the

dynamic scheduling in this technique is not a priority in

achieving the goal of fault tolerance. Therefore, because

of the constant changes in the state of the heterogeneous

cloud resources, there is an urgent need for a dynamic

clustering scheduling technique to reflect these changes.

The dynamic clustering technique will also helps in

managing time redundancy, which may also lead to tasks

failure at runtime.

2.2 Some recent tasks migration strategies in cloud

A task replication technique is put forward called hetero-

geneous earliest finish time (HEFT) for task fault tolerance

execution in cloud. The proposed HEFT heuristic makes

thorough use of further resources for the duration of task

replication; it attains good fault tolerance compares to the

common replication. HEFT finishes with the small work-

flows within the short makespan [27]. However, the

dynamicity of available cloud resources is not considered

when making scheduling decisions.

Neural Comput & Applic

123

Bala and Chana [28] put forward hybrid heuristic

scheduling approach (HHSA) to schedule scientific

workflows tasks on the IaaS cloud. Then, a fault-tolerant

method is developed based on VM migration method

that transfers the VM routinely in case of job failure

occurrences as a result of the overutilization of resour-

ces. The simulation outcome indicates that the HHSA

performs better than Min–Min, Max–Min, MCT, PSO

and GA by tumbling the average makespan for massive

scientific workflows such as Cybershake and epigenome.

The simulation results demonstrate the efficiency of the

proposed method to advance the feat of scientific

workflows by significantly tumbling total mean execu-

tion time, standard deviation time and makespan. How-

ever, the simulation results did not use any fault

tolerance parameter for the analysis to arrive at such

conclusions. Existing rescheduling techniques for fault

tolerance in MapReduce failed to totally reflect on the

position of distributed data and the calculation and

storage overhead of rescheduling failure jobs [29].

Consequently, a single VM failure will amplify the

completion time considerably.

A performance, power and failure–aware relaxed time

task execution (PPF-RTTE) algorithm is presented as a

performance imposing system, made up of a slowdown

estimator and a scheduling technique [30]. The slow-

down estimator finds out based on noisy slowdown data

models acquired from modern slowdown meters, if jobs

will execute within the time limits, invoking the

scheduling technique if desired. Experimental outcome

show that the proposed approach can be resourcefully

incorporated with modern slowdown meters to accom-

plish tight SLAs in real-world environments, while

tumbling set expenditure in just 21 %. However, the

PPF-RTTE algorithm is more of a trade-off between

fault tolerance and scheduling performance. Also, there

is no clear fault tolerance parameter considered in the

analysis.

2.3 Fault tolerance aware intelligent algorithms

in cloud

Fault tolerance intelligent algorithm-based task

scheduling techniques in cloud computing environment

are important in order to avoid tasks failure due to

heterogeneity and dynamicity of available cloud resour-

ces [31, 32]. Min–min based time and cost trade-off

(MTCT) is presented for multi-objective workflow

scheduling to aid fault recovery in cloud [33]. The

MTCT technique was evaluated using simulations with

four different real-world scientific workflows scenarios

to test the strength of the technique. The outcomes

indicate that fault recovery has considerable influence on

the two performance criteria, and the MTCT algorithm is

valuable for real-life workflow systems when both of the

two optimization objectives are taking into account.

However, being a multi-objective algorithm, the MTCT

is inherently likely to diversify attention into other

parameters. Kumar and Aramudhan [34] introduce a task

scheduling technique in cloud computing using a

hybridization of BA technique with gravitational

scheduling algorithm taking into account deadline con-

trols and trust model. The tasks are mapped to resources

on the basis of trust level. The hybridized algorithm is

experimented and proficiently minimizes the makespan

and also the amount of failed tasks in comparison with

GVSA. However, the BA is also known for weak local

search when dealing with complex problems. An intel-

ligent technique called NSGA-II is also presented to

decipher the fault tolerance problem [24]. The NSGA-II

technique is based on the Pareto dominance relationship,

giving no distinct optimal result, but a set of results that

are not subject on one another. The feat of the technique

integrated with GA is demonstrated by a number

experimental result. The average response time outcomes

are highly interrelated with the makespan outcomes; still

the general tendency is more complex to explain.

Overall, the best outcomes are given by strategies

favoring reliability. The related outcomes show the

efficiency of the presented technique and GA for small-

and medium-sized scheduling problems. However, the

experimental results did not demonstrate the perfor-

mance with large and massive cloud-based scheduling

problems.

A fault tolerance and QoS scheduling based on content

addressable network (CAN) in mobile social cloud com-

puting (MSCC) is presented by [35]. CAN as the basic

MSCC to carefully control the positions of mobile devi-

ces. An experimental simulation of the scheduling of both

with and without CAN is presented. The simulation

results show that the CAN fault tolerance scheduling

algorithm enhances cloud service execution time, finish

time and reliability to minimizes the cloud service error

rate. However, the CAN technique is only tested in

mobile cloud computing service and also there are no

comparative results with any state-of-the-art intelligent

algorithms. Tawfeek et al. [26] presents a dynamic cloud

task scheduling policy based on ACO intelligent opti-

mization technique. It is random optimization search

approach that will be used for allocating the incoming

tasks to the VMs. Simulation outcome shows that cloud

task scheduling based on ACO surpasses FCFS and RR

Neural Comput & Applic

123

algorithms. However, the dynamic scheduling in this

technique is not a priority in achieving the goal of fault

tolerance. Particle swarm optimization (PSO) schemes are

also nature-inspired population-based intelligence tech-

niques. The algorithms imitate the social characteristics of

birds flocking and fishes schooling. By initiating a ran-

domly dispersed set of particles which are called potential

solutions, the scheme tries to develop solutions according

to a quality measure which is called fitness function [36].

Yuan et al. [37] put forward a virtual machines schedul-

ing scheme that takes into account the computing power

of processing rudiments and also considers the computa-

tional density of the system. An improved PSO to address

the VM scheduling problem in the cloud computing

environment is presented. Verma and Kaushal [38] also

present a bi-criteria priority-based particle swarm opti-

mization (BPSO) to schedule workflow jobs in a given

cloud computing environment for resources that reduced

the execution cost and the execution time under a given

deadline and capital. Similarly, the PSO have been

adapted in grid and cloud scheduling to solve the problem

of load balancing [39], service selection in grid [40],

tunable workflow in cloud [41] and energy-aware tasks

scheduling [42]. An energy-aware fault-tolerant schedul-

ing (EAFTS) is put forward for public, multiuser cloud

systems and investigates the three-way trade-off among

reliability, performance and energy [43]. The technique

consists of a static scheduling segment that runs on task

graph using workload inputs before implementation, and a

insubstantial dynamic scheduler that migrates processes

for the duration of the implementation in case of undue

re-executions. Experimental results show that compared to

current VM or task replication methods, the proposed

technique is capable of minimizing the overall application

failure rates by over 50 % with about 76 % total energy

overhead. However, the replication strategy used in this

technique may affect the over system performance as well

as the dynamic scheduling policy.

The current available resources in the cloud need to be

applied at every scheduling point to avoid tasks failure due

to VM failure or overloading. Current dynamic scheduling

techniques did not either take fault tolerance parameters

into account or are partially applied at different scheduling

levels.

3 DCLCA fitness function

To derive the fitness function, consider that in cloud

scheduling, the main goal of the providers is to reduce the

completion time, while the aim of the clients is to reduce

the price of accessing cloud resources by reducing the

makespan time. Therefore, the fitness value of the

DCLCA can be computed using the fitness function in

Eq. 1

f ðCÞ ¼ max
[m

i¼1

Ci

()
ð1Þ

where C0
i is the completion of task i. The lesser the

makespan the better the efficiency of the algorithm,

meaning less time is taken to execute the algorithm.

The expected time of completion (ETC) is defined as

the execution time for each task to compute on a cer-

tain VM obtained using the ETC matrix as shown in

Eq. 2. Amount of tasks multiply by the amount of

resources gives the dimension of the matrix, and its

elements are represented as ETC(Ti, Vk). An ETC

matrix related to this problem with n tasks T = {T1,

T2,…,Tn} and m VMs represented as V = {V1,

V2,…,Vm} resources

ETC ¼ T � V ¼

T1V1 T1V2 � � � T1Vm

T2V1 � � � � �
� � � � � �
� � � � � �
� � � � � �
TnV1 � � � � TnVm

2
6666664

3
7777775

ð2Þ

Also, Pf(ji, rk) is defined as the failure probability of

running a task with security demand (SD) and a trust level

(TL). The SD stands for the security demand for the

application as at the time of submitting tasks. The superior

is the SD value, the advance the security constraint for the

application. The trust model appraises the VM site’s reli-

ability, to be precise, the TL. A task failure model is

described as a function of the difference between the task’s

demand and machine’s security. Equation 3 states the

failure probability regarding a scheduling of a task T with a

specific SDj value, to the VMi with trust value TLi. TL

stand for the security guarantee for the resources VM, the

more is the TL value the more advanced the VM reliability

[24, 44]

Pf ðTi;VkÞ ¼
0; if SDi �TLk

1� e�aðSDi�TLkÞ; if SDi [TLk

�
ð3Þ

where a is the failure coefficient which is a fraction

number.

4 Fault tolerance scheduling components

Figure 1 shows the scheduling components for the fault

tolerance aware technique. We describe in detail func-

tionalities and synchronous workings of each of the com-

ponents in this section.

Neural Comput & Applic

123

4.1 Fault detector

Fault detector is a necessity in designing fault tolerance

mechanism. Many detection algorithms have diverse area

of emphasis on specific parameters, for instance fault

coverage, complexity and performance, etc. Previous fault

detection techniques are taxonomized by system level

pecking order which is also used in this proposed fault

tolerance LCA scheduling technique for the failure dis-

covery on the operating system level, VM level and also at

the application level. In addition, VM introduced new

facilities for fault detection [45].

The tasks execution running on a VM can be scruti-

nized from remote site and the tasks failure can be

detected by the abnormal internal implementation infor-

mation, like the abnormal cycles of system execution calls

[46, 47]. VM detection can be achieved by executing a

detection component located in virtual machine managers

(VMMs) that intermittently judge the fault status of VM.

One of the functions of the fault detector we present here

traces the failed task or VM and then schedules healing

sub-module in succession with a healing or recovery LCA

scheduling algorithm. The healing module is to direct the

resultant healing sub-modules to recover the faults

according to fault intensity and category. The fault’s

healing is accomplished one after the other until the task

is fully recovered.

4.2 Task migration

Task migration process involves the reassigning of jobs

from the queues of faulty resources to the heads of queues

of idle resources when those are accessible. It also solves

the tasks fragmentation problem. Task migration algorithm

reschedules abortive or failed tasks (Tn) to another avail-

able or under-loaded virtual machine VMj known as its

backup site. In case, some jobs did not complete execution

on a particular VM due to some reasons (like job over-

loading or VMi failure), the aborted or suspended jobs (Tn)

can be instantly migrated to another VMj for execution. Job

migration increases resource utilization and also provides

alternative resources in case of VM failure or overloading

as shown in Fig. 2.

According to Rathore and Chana [48], task migration

algorithms can be very helpful in solving the following

issues during scheduling.

• Task migration algorithms are helpful in providing fault

tolerance awareness when executing a long-running

Fig. 1 Fault tolerance

scheduling components

Neural Comput & Applic

123

tasks, VM failure, VM overload or system

maintenance.

• Task migration algorithms can be very useful in

handling the problem of load balancing in an over-

loaded system. If a VM in a pool suddenly becomes

overloaded, the whole tasks on that VM can be

migrated to an under-loaded VM.

• Task migration can be motivated by resource request.

For instance, tasks may require the use of massive

databases, accessible on a devoted VM of the cloud.

5 Dynamic clustering league championship
algorithm

The proposed dynamic clustering league championship

algorithm (DCLCA) task scheduling technique is also

designed by improving the LCA intelligent algorithm

inspired by the analogy of sporting contests. The dynamic

clustering algorithm is utilized to update and reflect the

current status of the cloud VM resources as shown in

Fig. 3.

5.1 Task clustering

The main purpose of task clustering is to allocate

any cluster of task, to be executed on any accessible

VMs dynamically. Figure 3 shows the dynamic task

clustering steps designed to achieve DCLCA. Consider

a subset of tasks jn [J, where Pn represents a parti-

tion Pn = {j1, j2, j3,…,jn} of J into n clusters.

Therefore,

1. ji 6¼ ; i ¼ 1; 2; 3; . . .; n

2. ji \ jj ¼ ; i; j ¼ 1; 2; 3; . . .; n i 6¼ j

3.
Tn

i¼1 ji ¼ J

Fig. 2 Flowchart of task

migration

Neural Comput & Applic

123

This clustering step basically is meant to categorize the

finest task-cluster to VM mapping using the cloud infor-

mation system (CIS) to dynamically obtain the number of

available virtual machines (nVM), anticipated execution

time of cluster and capacity of the selected VM. Con-

versely, as a result of the dynamic characteristic of both

tasks and resources, the volume of cluster is tentative for

more resourceful usage. At each point of the scheduling,

the current CIS information is used to determine the current

number of available VM in order to dynamically partition

the tasks in accordance with the current number of avail-

able resources. Algorithm 1 shows the dynamic clustering

pseudo-code.

Algorithm 1. Dynamic Clustering

1. Initialization
2. Get n from the CIS
3. = { 1, 2, 3, … . , };
4. = { } = 1, 2, 3, … , ;
5. = 0

6. Let = /()
7. Current step:
8. While (< 1) and (≠ ∅) Do
9. select
10. = ()/()
11. k = k + 1
12. Get current n from CIS
13. EndWhile

Fig. 3 Dynamic task clustering

Table 1 Parameters matching
LCA EA Remark

League L Population Generate from dataset

Week t Iteration Number of runs

Team i ith member of the population ith task to be executed

Formation Xi
t Solution Present best solution

Playing strength f(Xi
t) Fitness function Based on an objective function

Number of seasons S Maximum iterations Maximum schedules

Neural Comput & Applic

123

5.2 Parameters matching

In order to achieve optimization with the proposed algo-

rithm DCLCA in scheduling cloud tasks, we must first

have to match the corresponding variables or parameters

of the two systems. To achieve this, a simple comparison

is made with the variables of a known evolutionary

algorithm (EA) and the following matching is achieved

(Table 1).

5.3 Winner/loser determination

One of the most important features of the LCA is the

winner/loser determination technique [49]. In this research

work, we utilized this feature in determining which cluster

of tasks is scheduled on which VM in the IaaS cloud. In a

cloud computing system, tasks sent by users are contest to

get access to resources for effective scheduling and their

best fitness value is evaluated on the basis of win/loss/tie

for each of the tasks. For instance, in football league, each

club is to get three points for a victory, zero for defeat and

one for draw. By ignoring irregular abnormalities which

may ensure even outstanding clubs in a variety of unsuc-

cessful outcomes, it is probable that a more dominant club

having a superior playing pattern defeats the lesser team. In

an ideal league situation that is free from uncertainty

effects, an assumption can be easily made for a linear

correlation between the playing pattern of a club and the

result of its matches. Utilizing the fitness function condi-

tion, the winner/loser decision in LCA is determined in a

stochastic approach using criteria that the probability of

winning or optimally scheduling tasks is relative to its

degree of fitness value. Given cloud tasks i and j which are

send to access cloud resources (VM) at a given time t, with

the formations xi
t and xj

t and fitness functions (strength) f(xi
t)

and f(xj
t), correspondingly. Let Pi

t represents the probability

of tasks i to access the VM resources instead of task j at

time t (Pi
t is defined, respectively). Given f be an ideal

value.

f xti
� �

� f̂

f xtj

� �
� f̂

¼ pti
ptj

ð4Þ

From the LCA idealized rule, we deduce that

pti þ ptj ¼ 1 ð5Þ

From Eqs. 4 and 5 above, we solve for Pi
t

pti ¼
f xtj

� �
� f̂

f xtj

� �
þ f xtið Þ � 2f̂

ð6Þ

In order to find the winner or loser, a random number in

between 0 to1 is generated; if the generated number is BPi
t,

it means task i won and task j lost, else j won and i lost.

This method of finding the winner or loser is in line with

the idealized rules. If by chance f(xi
t) approaches f(xj

t), then

Pi
t can be arbitrarily approaching �. But, if f(xj

t) becomes

far[f(xi
t), also written as f(xj

t) � f(xi
t), then Pi

t tends to one.

Then, the value of f may be unobtainable in the feature, we

use from the best function value found so far (that is,

f̂ t ¼ mini¼1;...;Lff ðBt
iÞg.

Using the strengths and weaknesses of each cluster of

tasks, we created a good fitness value by taking different

constraint into consideration. Likewise, a process is also

carried out using artificial analysis method, which is

SWOT (i.e., strengths, weaknesses, opportunities and

threats) to generate an appropriate focus strategy. Consid-

ering that as a rule, cluster of tasks with their recent best

fitness value, while planning the necessary changes sug-

gested from the artificial analysis; the fresh solution xtþ1
i ¼

ðxtþ1
i1 ; xtþ1

i2 ; . . .; xtþ1
in Þ for a cluster of tasks i where ranges

from i = 1,…, L at a time t ? 1 could be evaluated based

on [50] as presented in Eq. 7

xtþ1
id ¼

btid þ ytid w1r1id xtid � xtkd
� �

þ w1r2id xtid � xtjd

� �� �
if f xti

� �
[f xtj

� �
\ f xti

� �
[f xtk

� �

btid þ ytid w2r1id xtkd � xtid
� �

þ w1r2id xtid � xtjd

� �� �
if f xti

� �
[f xtj

� �
\ f xtk

� �
[f xtl

� �

btid þ ytid w1r1id xtid � xtkd
� �

þ w2r1id xtjd � xtid

� �� �
if f xtj

� �
[f xti

� �
\ f xtl

� �
[f xtk

� �

btid þ ytid w2r1id xtkd � xtid
� �

þ w2r2id xtjd � xtid

� �� �
if f xtj

� �
[f xti

� �
\ f xtk

� �
[f xtl

� �

8
>>>>>><

>>>>>>:

ð7Þ

Neural Comput & Applic

123

The pseudo-code above shows that d is the dimension

index. r1id and r2id are uniform random values between

zero and one. w1 and w2 are coefficients that are used to

measure the inputs of ‘‘retreat’’ or ‘‘approach’’ mecha-

nisms, in that order. It is also important to note the distinct

sign in parenthesis outcomes increase in the direction of the

winner or retreat away from the loser. To generate a new

schedule, a random number of changes made in Bi
t can be

calculated using Eq. 8

qti ¼
ln 1� 1� 1� pcð Þn�q0þ1

� �
r

� �

ln 1� pcð Þ

2
4

3
5þ q0 � 1;

qti 2 q0; q0 þ 1; . . .; nf g ð8Þ

where r represents the random number generated between

zero to one and pc\1; pc 6¼ 0 donating a controlling

variable.

6 Experimental setup

To evaluate the proposed DCLCA fault-tolerant aware task

scheduling technique, a cloud simulator has been used. The

implementation and evaluation is done using the CloudSim

3.0.3 toolkit [51] on the Eclipse IDE Luna release 4.4.0.

The simulation is done using two different scenarios. Task

traces in the first scenario are generated from the Parallel

Workload Archive [52] which contains 73,496 tasks. This

workload archive is made available by San Diego Super-

computer Center (SDSC) and is in the standard workload

format (SWF) recognized by the CloudSim. While the

tasks traces in the second scenario are generated from the

CloudSim’s Workload PlanetLab. The DCLCA parameters

are set at w1 = w2 = 0.5 and pc ¼ 0:01 which the selection

of these values are based on [7].

Algorithm 2. Dynamic Clustering League Championship Algorithm (DCLCA)
1. Start
2. Obtain information about the list of task to be scheduled
3. Initialize population size L, number of initial maximum iterations S and set t=1
4. Obtain the number of available VMs from the CIS
5. Generate a present best solution for L-1 with initial iteration through each task formation
6. Generate the tasks cluster dynamically using Call (Algorithm 1)
7. Set task cluster formations and establish the fitness values for each cluster of task
8. Let the initialization be the tasks’ present best solution
9. While
10. Using the task cluster schedule at t, find the winner/loser among

each pair of tasks by utilizing the probability function defined in equation 3
11. t=t+1
12. For i = 1 to L
13. Formulate a new optimal solution for the next task using SWOT analysis in

equation 7, while taking into consideration the task’s new optimal solution
14. Compute fitness values for the new system using equation 1
15. If is fitter than Then replace as new optimal solution
16. End For
17. If mod (t, L-1) = 0
18. Check fault
19. If fault = True Then Call (Task Migration) //**Task Migration**//
20. Output a task with best fitness value as final optimal solution
21. Output the smallest makespan using equation 1
22. Output task failure ratio using equation 4
23. Output task failure slowdown using equation 5
24. End if
25. EndWhile
26. End

Neural Comput & Applic

123

Five different scheduling algorithms are used to com-

pare the performance and effectiveness of our new pro-

posed fault-tolerant scheduling technique based on the

DCLCA. The techniques include: MTCT [33] and MAX-

MIN [53], ACO [26] and the NSGA-II [24]. The ACO

parametric values are set according to [26]; number of ants

in colony = 10, evaporation factor q = 0.4, pheromone

tracking weight a = 0.3, heuristic information weight

b = 1 and pheromone updating constant Q = 100. While

the NSGA-II parameters are set according to [24]; popu-

lation size = 1000, maximal iteration = 1000, the cross-

over rate = 0.5 and mutation rate = 0.1. The experiments

are repeated ten times for each of the techniques and the

averages of makespan time, failure ratio, failure slowdown

and the performance improvement rate (in percentage) are

observed. The two scenarios of the experiments are repe-

ated with the same parametric values for all the chosen

scheduling techniques.

6.1 Performance metric

To measure and compare the performance of the fault

tolerance task scheduling mechanism in IaaS cloud com-

puting environment, a number of performance parameters

are considered. These includes the failure ratio, the failure

slowdown and the performance improvement rate [54].

6.1.1 Makespan time

The makespan is the maximum completion time or the time

when IaaS cloud system complete the latest task. So, if Cij

define the time that resource Vi needs to complete task Tj.

Therefore, RCi is the total time that resource Vi completes

all the tasks submitted to it. Equation 1 defines the make-

span in cloud environment mathematically.

6.1.2 Failure ratio

The failure ratio (FR) is the ratio of sum total of failed

tasks in the proposed technique to the sum total of failed

tasks in the other scheduling technique. The proposed LCA

technique will be improved if the value of FR becomes less

than one and is calculated using Eq. 12

FR ¼
Pn

0 no: of failures DCLCAð ÞPn
0 no: of failures other schemeð Þ : ð12Þ

6.1.3 Failure slowdown

Failure slowdown (FD) is described as the ratio of time

delay or interruption as a result of failure-to-failure-free

task execution time, mean over the sum total other tasks.

The FD of the proposed DCLCA fault-tolerant task

scheduling technique should be smaller than that of other

scheduling techniques used for the comparison and is cal-

culated using Eq. 13

FD ¼ Time delay by failure to failure free task execution time

Average total number of tasks
:

ð13Þ

6.1.4 Performance improvement rate

Performance improvement rate (PIR) is defined as the

percentage of performance improvement (or reduction in

makespan) for the proposed DCLCA technique with regard

to the other techniques and is calculated using Eq. 14

PIR %ð Þ ¼ makespan other schemeð Þ �makespan DCLCAð Þð Þ

� 100

makespan DCLCAð Þ :

ð14Þ

7 Results and discussion

This section presents and discusses the results of the

experiments in the two formulated scenarios, so as to

evaluate the efficiency of the proposed DCLCA technique.

7.1 First scenario

In the first scenario, five cloud users are created with five

brokers and two data centers. The first data center con-

tains three hosts, while the second data center contains

two hosts. Ten VMs are also created using the Time_-

Shared policy, each with 512 BM, image size of

10,000 BM, one CPU each, managed by Xen as the vir-

tual machine manager (VMM) on Linux operating system.

The host memory is 2048 MB, with storage capacity of

1,000,000 and a bandwidth of 10,000. Also, the number

of tasks (cloudlets) submitted ranges between 10 and 100

each with a length of 800,000 and a file size of 600.

Figures 4, 5 and 6 and Table 2 present the results

obtained from this scenario.

From Fig. 4, it shows that makespan (completion time

of the last task to be executed) increases as we increase the

number of cloudlets in all the six techniques under con-

sideration. When small number of tasks is sent for execu-

tion, all the algorithms return relatively similar makespan

time with the DCLCA showing only slight improvement.

As we continue to increase the number of tasks from 10 to

100, the makespan time of the algorithms keeps widening

with the DCLCA returning less time. This means that,

Neural Comput & Applic

123

DCLCA takes less time to execute the cloud tasks than the

remaining algorithms under consideration. Table 2 shows

that the DCLCA present a PIR % of 57.8, 53.6, 24.3 and

13.4 % over the MTCT, MINMAX, ACO and NSGA-II,

respectively.

Figures 5 and 6 present the failure ratio and the failure

slowdown, while Table 2 presents the performance

improvement rate (in percentage), respectively. The failure

ratio as compared to the nearest intelligent algorithms

decreases as we increase the number of tasks for all the

techniques. The lesser is the failure ratio, the better success

of task execution rate. The DCLCA also shows improve-

ment in the failure ratio as it returns lesser ration with

increase in tasks and compared to the other techniques. The

result obtained shows that failure slowdown of our pro-

posed DCLCA technique is less than the other intelligent

algorithms. It also shows that the PIR % of our proposed

technique improved better and faster than the other algo-

rithms as it relates to minimum makespan time and relia-

bility. This means that the proposed DCLCA scheduling

technique is more fault-tolerant and reliable than the other

algorithms under consideration. The likely reason the

DCLCA outperforms existing approaches under consider-

ation is due to its dynamic nature to immediately reflect the

current state of the resources in the heterogeneous envi-

ronment. It can as well likely be as a result of its efficient

performance in both local and global search as compared to

other meta-heuristics.

7.2 Second scenario

The second scenario, we set 10 cloud users with 10 brokers

and five data centers. Each of the data centers contains

three hosts, making a total of 15 hosts. A total of 25 VMs

are also created using the Space_Shared policy, each with

512 BM, image size of 20,000 BM, one CPU each, man-

aged by Xen as the VMM on Linux operating system. The

host memory is 2048 MB, with storage capacity of

1,000,000 and a bandwidth of 10,000. Also, the number of

tasks (cloudlets) submitted ranges between 50 and 500

each with a length of 900,000 and a file size of 1000.

Figures 7, 8 and 9 and also Table 3 present the results

obtained from this scenario.

Similarly, in Fig. 7 it shows that when small number of

tasks is sent for execution, all the algorithms return rela-

tively similarly makespan time with the GA and DCLCA

showing only slight improvement with lesser makespan

0

500

1000

1500

2000

2500

3000

3500

10 20 30 40 50 60 70 80 90 100

M
ak

es
pa

n

Number of Tasks

MTCT
MAXMIN
ACO
NSGA-II
DCLCA

Fig. 4 Makespan time of first scenario

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 20 30 40 50 60 70 80 90 100

Fa
ilu

re
 R

a�
o

Number of Tasks

MTCT
MAXMIN
ACO
NSGA-II
DCLCA

Fig. 5 Failure ratio of first scenario

0

1

2

3

4

5

6

7

10 20 30 40 50 60 70 80 90 100

Fa
ilu

re
 S

lo
w

do
w

n

Number of Tasks

MTCT
MAXMIN
ACO
NSGA-II

Fig. 6 Failure slowdown of first scenario

Table 2 DCLCA performance

improvement rate (%) on

makespan

MTCT MAXMIN ACO NSGA-II DCLCA

Total makespan 14,042.7 13,671.9 11,057.4 10,099.5 8898.8

PIR % over MTCT 2.7 27.0 39.0 57.8

PIR % over MAXMIN 23.6 35.4 53.6

PIR % over ACO 9.5 24.3

PIR % over NSGA-II 13.5

Neural Comput & Applic

123

time. When the number of tasks increase from 50 to as

much as 500, the makespan time of the algorithms keeps

widening with the DCLCA returning lesser time. Table 3

shows that the DCLCA present a PIR % of 60, 38.9, 31.5

and 31.2 % over the MTCT, MINMAX, ACO and NSGA-

II, respectively. This shows that the DCLCA use lesser

time to implement the cloud tasks than the remaining

algorithms under consideration.

In Figs. 7, 8 and 9 and Table 3, the DCLCA shows

improvement in terms of failure ration as it returns lesser

ration with increase in tasks in comparison to the other

algorithms. The result obtained implies that failure slow-

down of our proposed DCLCA technique is less than the

other intelligent algorithms. Simulation evaluation also

shows that the performance improvement rate of our pro-

posed technique improved better and more speedily than

the other algorithms as relates to minimum makespan time

and reliability. This shows that the proposed fault-tolerant

aware DCLCA scheduling technique performance and

reliable than the other algorithms under consideration.

The proposed DCLCA approach is valuable for the

management dynamic and responsive faults by predicting

tasks failures along with scheduling. By implication, it

explores the prospects for failure projection and handling

in cloud applications so as to minimize the depletion of

resources by tasks that fail in the process of execution. This

study is also important because of the performance varia-

tions experienced among cloud resources and the imminent

occurrence of failure during application scheduling, envi-

ronment and the network. The contributions of this study

help in making the execution of tasks faultless on cloud

computing systems.

8 Summary and conclusion

We proposed a DCLCA technique for dynamic clustering

fault tolerance aware intelligent scheduling using the LCA

optimization algorithm. Task migration and fault detector

strategies are also implemented as additional fault reduc-

tion components with an efficient method of scheduling in

order to minimize makespan time. In order to evaluate the

proposed technique, the CloudSim simulation toolkit is

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

50 100 150 200 250 300 350 400 450 500

M
ak

es
pa

n

Number of Tasks

MTCT
MAXMIN
ACO
NSGA-II
DCLCA

Fig. 7 Makespan time of second scenario

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

50 100 150 200 250 300 350 400 450 500

Fa
ul

t R
a�

o

Number of Tasks

MTCT
MAXMIN
ACO
NSGA-II
DCLCA

Fig. 8 Failure ratio of second scenario

0

2

4

6

8

10

12

50 100 150 200 250 300 350 400 450 500

Fa
ul

t S
lo

w
 D

ow
n

Number of Tasks

MTCT
MAXMIN
ACO
NSGA-II
DCLCA

Fig. 9 Failure slowdown of second scenario

Table 3 DCLCA Performance

improvement rate (%) on

makespan

MTCT MAXMIN ACO NSGA-II DCLCA

Total makespan 59,411.3 51,571.4 48,821.0 48,714.5 37,131.4

PIR % over MTCT 15.2 21.7 22.0 60.0

PIR % over MAXMIN 5.6 5.9 38.9

PIR % over ACO 0.29 31.5

PIR % over NSGA-II 31.2

Neural Comput & Applic

123

used to create two different scenarios in IaaS cloud envi-

ronment using two different datasets.

The result of our experiment shows that the proposed

DCLCA intelligent technique returned a significant fault

reduction in task failure as measured in terms of failure

ratio, failure slowdown and PIR parameters. It also proves

that the proposed DCLCA technique performs better than

the MTCT, MAXMIN, ACO and NSGA-II by returning

reduced makespan time in addition to the above mentioned

fault tolerance parameters in the two different simulated

scenarios. In view of these experimental results, it shows

that our proposed DCLCA fault aware technique provides

better quality scheduling results than the other intelligent

techniques. This indicates that the technique is very

appropriate for task execution in the cloud computing

environment. Therefore, the authors would wish to rec-

ommend hybridization of the LCA with other effective

intelligent scheduling techniques in other to produce more

performance in terms of fault tolerance. We also wish to

recommend testing the technique in a real cloud

environment.

Acknowledgments The authors would like to acknowledge and

appreciate the support of Universiti Teknologi Malaysia (UTM),

Research University Grant Q. J130000.2528.05H87 and the Nigerian

Tertiary Education Trust Fund (TetFund) for their support.

References

1. Gital AY, Ismail AS, Chen M, Chiroma H (2014) A framework

for the design of cloud based collaborative virtual environment

architecture. In: Proceedings of the international multi conference

of engineers and computer scientists

2. Lu K, Yahyapour R, Wieder P, Yaqub E, Abdullah M, Schloer B,

Kotsokalis C (2016) Fault-tolerant service level agreement life-

cycle management in clouds using actor system. Future Gener

Comput Syst 54:247–259

3. Moon Y-H, Youn C-H (2015) Multihybrid job scheduling for

fault-tolerant distributed computing in policy-constrained

resource networks. Comput Netw 82:81–95

4. He J, Dong M, Ota K, Fan M, Wang G (2014) NetSecCC: a

scalable and fault-tolerant architecture for cloud computing

security. Peer-to-Peer Netw Appl 9(1):67–81

5. Nawi NM, Khan A, Rehman MZ, Chiroma H, Herawan T (2015)

Weight optimization in recurrent neural networks with hybrid

metaheuristic Cuckoo search techniques for data classification.

Math Probl Eng. doi:10.1155/2015/868375

6. Mills B, Znati T, Melhem R (2014) Shadow computing: an

energy-aware fault tolerant computing model. In: 2014 Interna-

tional conference on computing, networking and communications

(ICNC), IEEE, pp 73–77

7. Kashan HA (2009) League championship algorithm: a new

algorithm for numerical function optimization. In: International

conference of soft computing and pattern recognition, 2009.

SOCPAR’09, IEEE, pp 43–48

8. Kashan HA, Karimi B (2012) A new algorithm for constrained

optimization inspired by the sport league championships. In:

2010 IEEE congress on evolutionary computation (CEC), IEEE,

pp 1–8

9. Abdulhamid SM, Latiff MSA, Ismaila I (2014) Tasks scheduling

technique using league championship algorithm for makespan

minimization in IAAS cloud. ARPN J Eng Appl Sci

9(12):2528–2533

10. Abdulhamid SM, Latiff MSA, Madni SHH, Oluwafemi O (2015)

A survey of league championship algorithm: prospects and

challenges. Indian Jo Sci Technol 8(S3):101–110

11. Yang Y-G, Tian J, Lei H, Zhou Y-H, Shi W-M (2016) Novel

quantum image encryption using one-dimensional quantum cel-

lular automata. Inf Sci 345:257–270

12. Dondi R, El-Mabrouk N, Swenson KM (2014) Gene tree cor-

rection for reconciliation and species tree inference: complexity

and algorithms. J Discrete Algorithms 25:51–65

13. Abdulhamid SM, Latiff MSA, Bashir MB (2014) On-demand

grid provisioning using cloud infrastructures and related virtual-

ization tools: a survey and taxonomy. Int J Adv Stud Comput Sci

Eng IJASCSE 3(1):49–59

14. Kushwah VS, Goyal SK, Narwariya P (2014) A survey on various

fault tolerant approaches for cloud environment during load

balancing. Int J Comput Netw Wirel Mobile Commun 4(6):25–34

15. Yang W, Zhang C, Shao Y, Shi Y, Li H, Khan M, Hussain F,

Khan I, Cui L-J, He H (2014) A hybrid particle swarm opti-

mization algorithm for service selection problem in the cloud. Int

J Grid Distrib Comput 7(4):1–10

16. Hussin M, Lee YC, Zomaya AY (2010) Dynamic job-clustering

with different computing priorities for computational resource

allocation. In: Proceedings of the 2010 10th IEEE/ACM inter-

national conference on cluster, cloud and grid computing, IEEE

Computer Society, pp 589–590

17. Vidhate D, Patil A, Guleria D (2010) Dynamic cluster resource

allocations for jobs with known memory demands. In: Proceed-

ings of the international conference and workshop on emerging

trends in technology, ACM, pp 64–69

18. SiM Abdulhamid, Latiff SMA, Bashir MB (2014) Scheduling

techniques in on-demand grid as a service cloud: a review.

J Theor Appl Inf Technol 63(1):10–19

19. Abdullahi M, Ngadi MA (2016) Symbiotic organism search

optimization based task scheduling in cloud computing environ-

ment. Future Gener Comput Syst 56:640–650

20. Madni SHH, Latiff MSA, Coulibaly Y (2016) An appraisal of

meta-heuristic resource allocation techniques for IaaS cloud.

Indian J Sci Technol 9(4):1–14. doi:10.17485/ijst/2016/v9i4/

80561

21. Chiroma H, Shuib NLM, Muaz SA, Abubakar AI, Ila LB, Mai-

tama JZ (2015) A review of the applications of bio-inspired

flower pollination algorithm. Procedia Comput Sci 62:435–441

22. Boru D, Kliazovich D, Granelli F, Bouvry P, Zomaya AY (2015)

Energy-efficient data replication in cloud computing datacenters.

Clust Comput 18(1):385–402. doi:10.1007/s10586-014-0404-x

23. Gangeshwari R, Subbiah J, Malathy K, Miriam D (2012)

HPCLOUD: a novel fault tolerant architectural model for

hierarchical MapReduce. In: 2012 international conference on

recent trends in information technology (ICRTIT), IEEE,

pp 179–184

24. G¸asior J, Seredyński F (2013) Multi-objective parallel machines

scheduling for fault-tolerant cloud systems. In: Joanna K, Di

Martino B, Talia D, Xiong K (eds) Algorithms and architectures

for parallel processing. Springer, Switzerland, pp 247–256.

doi:10.1007/978-3-319-03859-9_21

25. Ling Y, Ouyang Y, Luo Z (2012) A novel fault-tolerant

scheduling algorithm with high reliability in cloud computing

systems. J Converg Inf Technol 7(15):107–115. doi:10.4156/jcit.

vol7.issue15.13

26. Tawfeek M, El-Sisi A, Keshk A, Torkey F (2015) Cloud task

scheduling based on ant colony optimization. Int Arab J Inf

Technol (IAJIT) 12(2):129–137

Neural Comput & Applic

123

http://dx.doi.org/10.1155/2015/868375
http://dx.doi.org/10.17485/ijst/2016/v9i4/80561
http://dx.doi.org/10.17485/ijst/2016/v9i4/80561
http://dx.doi.org/10.1007/s10586-014-0404-x
http://dx.doi.org/10.1007/978-3-319-03859-9_21
http://dx.doi.org/10.4156/jcit.vol7.issue15.13
http://dx.doi.org/10.4156/jcit.vol7.issue15.13

27. Ganga K, Karthik S (2013) A fault tolerent approach in scientific

workflow systems based on cloud computing. In: 2013 interna-

tional conference on pattern recognition, informatics and mobile

engineering (PRIME), IEEE, pp 387–390

28. Bala A, Chana I (2015) Autonomic fault tolerant scheduling

approach for scientific workflows in Cloud computing. Concurr

Eng 23(1):27–39. doi:10.1177/1063293X14567783

29. Bonvin N, Papaioannou TG, Aberer K (2010) A self-organized,

fault-tolerant and scalable replication scheme for cloud storage.

In: Proceedings of the 1st ACM symposium on cloud computing,

ACM, pp 205–216

30. Sampaio AM, Barbosa JG (2015) A performance enforcing

mechanism for energy-and failure-aware cloud systems. In: 2014

international green computing conference, IGCC 2014. doi:10.

1109/IGCC.2014.7039151

31. Patra PK, Singh H, Singh G (2013) Fault tolerance techniques

and comparative implementation in cloud computing. Int J

Comput Appl 64(14):37–41

32. Nawi NM, Khan A, Rehman M, Chiroma H, Herawan T (2015)

Weight optimization in recurrent neural networks with hybrid

metaheuristic Cuckoo search techniques for data classification.

Math Probl Eng 501:868375

33. Xu H, Yang B, Qi W, Ahene E (2016) A multi-objective opti-

mization approach to workflow scheduling in clouds considering

fault recovery. KSII Trans Internet Inf Syst 10(3):976–995.

doi:10.3837/tiis.2016.03.002

34. Kumar VS, Aramudhan M (2014) Hybrid optimized list

scheduling and trust based resource selection in cloud computing.

J Theor Appl Inf Technol 69(3):434–442

35. Choi S, Chung K, Yu H (2014) Fault tolerance and QoS

scheduling using CAN in mobile social cloud computing. Clust

Comput 17(3):911–926

36. Kaveh A (2014) Particle swarm optimization. In: Advances in

metaheuristic algorithms for optimal design of structures.

Springer, Switzerland, pp 9–40. doi:10.1007/978-3-319-05549-7

37. Yuan H, Li C, Du M (2014) Optimal virtual machine resources

scheduling based on improved particle swarm optimization in

cloud computing. J Softw 9(3):705–708

38. Verma A, Kaushal S (2014) Bi-criteria priority based particle

swarm optimization workflow scheduling algorithm for cloud. In:

2014 recent advances in engineering and computational sciences

(RAECS), IEEE, pp 1–6

39. Ramezani F, Lu J, Hussain FK (2014) Task-based system load

balancing in cloud computing using particle swarm optimization.

Int J Parallel Program 42(5):739–754

40. Yang W, Zhang C, Shao Y, Shi Y, Li H, Khan M, Hussain F,

Khan I, Cui L-J, He H (2014) A hybrid particle swarm opti-

mization algorithm for service selection problem in the cloud. Int

J Grid Distrib Comput 7(4):1–10. doi:10.14257/ijgdc.2014.7.4.01

41. Wu K (2014) A tunable workflow scheduling algorithm based on

particle swarm optimization for cloud computing. Master’s Pro-

jects, Paper 358. San José State University, USA

42. Zhang W, Xie H, Cao B, Cheng AM (2014) Energy-aware real-

time task scheduling for heterogeneous multiprocessors with

particle swarm optimization algorithm. Math Probl Eng 2014:

1–9. doi:10.1155/2014/287475

43. Gao Y, Gupta SK, Wang Y, Pedram M (2014) An energy-aware

fault tolerant scheduling framework for soft error resilient cloud

computing systems. In: Design, automation and test in Europe

conference and exhibition (DATE), 2014, IEEE, pp 1–6

44. Hu Y, Gong B, Wang F (2010) Cloud model-based security-

aware and fault-tolerant job scheduling for computing grid. In:

ChinaGrid conference (ChinaGrid), 2010 fifth annual, IEEE,

pp 25–30

45. Qiang W, Jiang C, Ran L, Zou D, Jin H (2015) CDMCR: multi-

level fault-tolerant system for distributed applications in cloud.

Secur Commun Netw 2015:SCN-SI-077. doi:10.1002/sec.1187

46. Urgaonkar R, Wang SQ, He T, Zafer M, Chan K, Leung KK

(2015) Dynamic service migration and workload scheduling in

edge-clouds. Perform Eval 91:205–228. doi:10.1016/j.peva.2015.

06.013

47. Vobugari S, Somayajulu D, Subaraya BM (2015) Dynamic

replication algorithm for data replication to improve system

availability: a performance engineering approach. IETE J Res

61(2):132–141. doi:10.1080/03772063.2014.988757

48. Rathore N, Chana I (2014) Load balancing and job migration

techniques in grid: a survey of recent trends. Wirel Pers Commun

79(3):2089–2125

49. Yadav S, Nanda SJ (2015) League championship algorithm for

clustering. In: 2015 IEEE power, communication and information

technology conference (PCITC), IEEE, pp 321–326

50. Xu W, Wang R, Yang J (2015) An improved league champi-

onship algorithm with free search and its application on pro-

duction scheduling. J Intell Manuf 1–10. doi:10.1007/s10845-

015-1099-4

51. Buyya R, Ranjan R, Calheiros RN (2009) Modeling and simu-

lation of scalable cloud computing environments and the

CloudSim toolkit: challenges and opportunities. In: International

conference on high performance computing & simulation, 2009.

HPCS’09, IEEE, pp 1–11

52. Parallel Workload Archive - SDSC-SP2-1998-4.swf (2015).

http://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.

html. Accessed 30 Jan 2015

53. Ramakrishnan L, Reed DA (2008) Performability modeling for

scheduling and fault tolerance strategies for scientific workflows.

In: Proceedings of the 17th international symposium on High

performance distributed computing, ACM, pp 23–34

54. Garg R, Singh AK (2014) Fault tolerant task scheduling on

computational grid using checkpointing under transient faults.

Arabian J Sci Eng 39(12):8775–8791

Neural Comput & Applic

123

http://dx.doi.org/10.1177/1063293X14567783
http://dx.doi.org/10.1109/IGCC.2014.7039151
http://dx.doi.org/10.1109/IGCC.2014.7039151
http://dx.doi.org/10.3837/tiis.2016.03.002
http://dx.doi.org/10.1007/978-3-319-05549-7
http://dx.doi.org/10.14257/ijgdc.2014.7.4.01
http://dx.doi.org/10.1155/2014/287475
http://dx.doi.org/10.1002/sec.1187
http://dx.doi.org/10.1016/j.peva.2015.06.013
http://dx.doi.org/10.1016/j.peva.2015.06.013
http://dx.doi.org/10.1080/03772063.2014.988757
http://dx.doi.org/10.1007/s10845-015-1099-4
http://dx.doi.org/10.1007/s10845-015-1099-4
http://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html
http://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html

	Fault tolerance aware scheduling technique for cloud computing environment using dynamic clustering algorithm
	Abstract
	Introduction
	Related works
	Dynamic intelligent algorithms in cloud scheduling
	Some recent tasks migration strategies in cloud
	Fault tolerance aware intelligent algorithms in cloud

	DCLCA fitness function
	Fault tolerance scheduling components
	Fault detector
	Task migration

	Dynamic clustering league championship algorithm
	Task clustering
	Parameters matching
	Winner/loser determination

	Experimental setup
	Performance metric
	Makespan time
	Failure ratio
	Failure slowdown
	Performance improvement rate

	Results and discussion
	First scenario
	Second scenario

	Summary and conclusion
	Acknowledgments
	References

