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Abstract 

The analysis of time series is essential for building mathematical models to generate synthetic 
hydrologic records, to forecast hydrologic events, to detect intrinsic stochastic characteristics of 
hydrologic variables as well to fill missing and extend records. To this end, this paper examined 
the stochastic characteristics of the monthly rainfall series of Ilorin, Nigeria vis-à-vis modelling of 
same using four modelling schemes. The Decomposition, Square root transformation-deseasonali- 
sation, Composite, and Periodic Autoregressive (T-F) modelling schemes were adopted. Results of 
basic analysis of the stochastic characteristics revealed that the monthly series does not show any 
discernible presence of long-term trend, though there is a seeming inter-decadal annual variation. 
The series exhibits strong seasonality throughout its length, both in the moments and autocorre-
lation and significantly intermittent. Based on assessment of the respective models, the perform-
ance of the different modelling schemes can be expressed in this order: T-F > Composite > Square 
root transformation-Deseasonalised > Decomposition. Considering the results obtained, model-
ling of monthly rainfall series in the presence of serial correlation between months should be 
based on the establishment of conditional probability framework. On the other hand, in view of 
the inadequacy of these modelling schemes, because of the autoregressive model components in 
the coupling protocol, nonlinear deterministic methods such as Artificial Neural Network, Wavelet 
models could be viable complements to the linear stochastic framework. 
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1. Introduction 

The assessment of the dynamics and regime of a particular hydrologic phenomenon is imperative; especially the 
time-based characteristics. Time-based characteristics of hydrological data are of great significance in the plan-
ning, designing and operation of water systems. This significance is informed more largely due to the variability 
and oscillatory behaviour of hydrological sequences. Against this backdrop therefore, as noted by Kottegoda [1], 
the lack of complete understanding of the physical processes involved and the consequent uncertainties in the 
magnitudes and frequencies of future events highlight the importance of time series analysis. Thus, the main ob-
jective of any time series analysis is to understand the mechanism that generates the data and also, but not nec-
essarily, to produce likely future sequences over a short period of time. This is usually not without taking cog-
nisance of the appurtenant uncertainty resulting from spatio-temporal variability of hydrologic processes. This 
fact becomes increasingly important considering that rainfall is a complex atmospheric process, which is space 
and time dependent and basically not easily predictable [2]. 

Like any other aspect of science and engineering developments, there has been a tremendous introduction of 
new concepts and ideas in rainfall cum precipitation study in general. Notable of such are researches in various 
directions including space-time structure and variability of rainfall. In this regard, there has been a significant 
shift from point process models to models based on concepts of scale invariance [3]. This is so because point 
process models suffer from the inability to describe the statistical structure of rainfall over a wide range of scales 
as well as from difficulty in parameter estimation; whereas scaling models provide parsimonious representations 
over a wide range of scales. These are supported by theoretical arguments and empirical evidence that rainfall 
exhibits a scale-invariant symmetry (e.g., [3] [4]). In this regard, the trend in scale-invariant rainfall models 
evolved around multiplicative cascades which have their origin in the statistical theory of turbulence [3]. How-
ever, it is important to note that despite the good attributes, the estimation of parameters is not a simple issue [3]. 
As noted by Holley and Waymire [5], the independent and identically distributed “bounded generators” give rise 
to non-ergodic cascades. Recent developments in stochastic rainfall analysis in this direction deal with the in-
troduction of wavelet transforms and importantly, the use of Artificial Neural Network, diffusion model (e.g., 
[6]), Markovian type models (e.g., [7] [8]) and Disaggregation models (e.g., [9]). 

Though generally, hydrologic processes such as precipitation and runoff evolve on a continuous time scale 
and their estimation correspondingly unduly difficult, in particular, rainfall modelling and its quantitative esti-
mation or forecasting are important considering the fact that it is a critical weather parameter in the estimation of 
crop water requirement, and development of long lead time flood and flash-flood warning systems. However, it 
suffices to note that despite substantial progress, several modelling issues still remained unresolved [3]. For in-
stance, “what are the limits of predictability at various temporal and spatial scales” and “the properties of the 
rainfall field to be preserved by the model”? The modelling of rainfall is motivated by the desire to obtain 
real-time statistical forecasts of rainfall but as noted by Lovejoy and Schertzer [10], due to nonlinear interactions 
that take place at a wide range of scales, several details of the rainfall dynamics are unimportant and too, the re-
sulting fields fall within a universality of multifractals characterised by three parameters. Thus, the objective of 
this paper like any modelling exercise is to obtain synthetic sequences of rainfall with the same statistical prop-
erties as the historical ones. To this end, stochastic characteristics of the rainfall fields like moments (first and 
second order) and dependence structure shall be analysed while different stochastic models will also be devel-
oped for short-term forecasts. 

2. Materials and Methods 

2.1. Materials 

Study Location and Data Assembly 
The study location is Ilorin (North central Nigeria) at longitude 4˚35' and latitude 8˚30'. It has elevation of be-
tween 273 to 333 m and a mean annual temperature of about 27˚C and is characterised by a distinct bi-seasonal 
weather pattern; i.e., wet and dry. The wet season starts in April and ends in October, while the dry season starts 
in November and ends in March. The mean annual rainfall is 1150mm, while the relative humidity ranges from 
65% - 80%. Figure 1 shows the map of Nigeria with the study location indicated as inset. For this study, histor-
ical rainfall time series of Ilorin was used. To this end, mean monthly rain gauge rainfall values (i.e., point rain-
fall) for approximately 43 years’ time period (1967-2009) were collected. Preliminary analysis of stochastic  
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                       Figure 1. Map of Nigeria showing the study location.             
 
characteristics like moments and dependence structure of the data series was done to be able to evaluate ran-
domness and trend pattern. In this regard, the time series plot was examined to establish whether it does exhibit 
intermittency or otherwise as well as seasonal characteristics like trend and moments. The objective here is to 
evaluate seasonality in the moments. Analysis of dependence structure was done in time and frequency domains; 
basically through autocorrelation and spectral density, respectively. 

2.2. Methodology 

2.2.1. Modelling Framework 
In this study, four (4) different modelling schemes were employed; these are a) decomposition, b) square root 
transformation-deseasonalisation strategy, c) composite modelling and d) Periodic modelling (Thomas-Fier- 
ing). 

1) Decomposition strategy 
Here, the data series was de-trended, deseasonalised and further smoothen with a moving average (MA) of 

order 6 based on the autocorrelation structure of the original raw data. To this end, an additive model of the form 
in Equation (1) was employed. 

t t t tλ α β ε= + +                                     (1) 

where, tλ  is the rainfall series, tα  the long-term trend, tβ  the periodic fluctuations and tε , the stochastic 
component. The fitted trend equation is: 

97.4704 0.000394247t tα = −                               (2) 

This procedure requires that the data series be decomposed into seasonal components; the deseasonalisation 
after the removal of the long-term trend was done by using the seasonal adjustment factors (SAF). These values 
(SAF) indicate the effect of each period on the level of the series. Table 1 shows the respective seasonal ad-
justment factors or indices whereas Figure 2 details the entire decomposition process. 

After the decomposition process and smoothening, an ARIMA model was fitted into the random or stochastic 
component left. Based on the analysis of the autocorrelation functions of the random component, a multiplica-
tive ARIMA model was fitted; in this regard, ( ) ( )121,0,0 1,0,1ARIMA ×  was adjudged to be the better candidate 
model (see Appendix); this derives from the fact that ordinary integrated moving average scheme may not nec-
essarily account for the non-seasonal autoregressive behaviour of hydrologic processes [11]. Figure 3 shows the 
correlogram of the model residuals. 

2) Square root transformation-deseasonalisation scheme 
Based on the suggestion of Delleur and Kavvas [12], the square root transformation of the data was used to 

obtain a series which is approximately normally distributed. The series of the monthly rainfall square roots were  
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Table 1. Seasonal indices (factors).                                                                          

Month April May June July Aug Sept Oct Nov Dec Jan Feb Mar 
SAF 0.99 64.42 85.80 37.32 35.76 145.77 43.26 −88.68 −91.22 −94.95 −88.34 −50.13 

 

 
(a) 

 
(b) 

Figure 2. Seasonal analysis of the original mean rainfall series (RF) before (a) and after (b) 
detrending.                                                                    

 
rescaled (deseasonalised) by subtracting from each term of the series by the corresponding seasonal mean and 
dividing same by the corresponding standard deviation. The deseasonalisation process is according as: 

,
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i j j
i j
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−

=                                    (3a) 

where, ,i jα  is the deseasonalised series, ,i jβ  the square root transformed series, jβ  the seasonal means and  
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Figure 3. Correlogram of ARIMA (1, 0, 0) × (1, 0, 1)12 model residuals fitted to the stochastic 
component.                                                                    

 
jσ  the seasonal standard deviations. 
Using the autocorrelation functions of the square root transformed and deseasonalised series, a seasonal  

ARIMA model of the form: ( )121,0,1ARIMA  was fitted (as shown in Appendix). To retrieve the square root  
transformed series with its seasonal component, a reversed rescaling procedure was done; that is, 

, ,i j j j i jη β σ λ= +                                     (3b) 

where, j is the month in a 12-month annual cycle and ,i jη  is the forecasted square root transformed periodic  
monthly rainfall series. 

3) Composite modelling 
The composite modelling entails decomposing the original data series into its various components; i.e., de-

terministic and a stochastic component which accounts for the random effects (dependent and independent parts) 
[13]. In this regard, the time series rf(t), was represented by a decomposition model of the additive type accord-
ing as Equation (4). 

( ) ( ) ( ) ( )rf t T t P t tε= + +                                  (4) 

where, T(t) is the trend component, P(t) the periodic component and ε(t), the stochastic component. 
For the identification of trend, annual rainfall series was used. The annual series was obtained by aggregating 

the 43 years annual series. In the actual trend detection procedure, a hypothesis of no trend was made and the 
value of the test statistic (Z) was calculated by using 1) Turning Point Test, 2) Kendall’s Rank Correlation Test 
and 3) Mann-Kendall Trend Test. The computed values of the test statistic in all instances were −0.852, −0.429, 
and 0.195, respectively. Considering the values of the computed test statistic (Z), at 5% level of significance, the 
Z values do not provide reason to suspect the presence of any discernible long-term trend. Thus, the observed 
rainfall series may be treated as trend free. Hence the composite model, i.e., equation (4) reduces to: 

( ) ( ) ( )rf t P t tε= +                                    (5) 

To confirm the presence of periodic component in the monthly rainfall series, a correlogram of the series was 
drawn. Figure 4 shows the periodic, oscillating nature of the time series. 

The parameters of the periodic component of the composite model were evaluated by using the classical har-
monic analysis method. To this end, the Cumulative Periodogram (CP) approach was adopted. In this case, the 
point of intersection of the fast increase in the Periodogram (CPi) and the slow increase is considered and the 
corresponding harmonics taken as significant and the remaining treated as errors and passed on to the random 
component; i.e., insignificant. From Figure 5, the first four harmonics are considered significant. The periodic 
component can be expressed as in Equation (6a). 

( ) 0 1 1

2π 2πSin Cosk k
j jj j

jt jtP t
p p

λ α β
= =

   
= + +   

   
∑ ∑                       (6a) 
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Figure 4. Autocorrelation function of the original rainfall series based on water year regime.   

 

 
Figure 5. Cumulative periodogram of the mean monthly rainfall series.                     

 
where, k is the maximum harmonics, 0λ  the mean and p, the base period; here, it is equal to 12. 

Based on Figure 5, the resulting periodic component can be expressed according as Equation (6b). 

( ) 4 4
0 1 1

2π 2πSin Cos
12 12j jj j

jt jtP t λ α β
= =

   = + +   
   

∑ ∑                     (6b) 

Table 2 shows the values of the harmonic coefficients. 
The stochastic component ( ( )tε ), was represented by an autoregressive model of the form: 

( ) ,1
p

i p t i titε ε η−=
= ∅ +∑                                           (6c) 

Based on the autocorrelation of the residual series left after the periodic component was removed from the  
original series, ( )123,1,1ARIMA  model was fitted to it (see Appendix). Resulting from this, the final composite  
model of the monthly rainfall series, i.e., Equation (5) then becomes 

( ) 4 4
0 1 1

1,12 12 2,12 24 3,12 36 1,12 12

2π 2πSin Cos
12 12j j tj j

t t t t t

jt jtrf t λ α β ε

ε ε ε η θ η

= =

− − − −

   = + + +   
   

−∅ −∅ −∅ − −

∑ ∑                        (6d) 

4) Periodic Autoregressive modelling Scheme  
Modelling of the monthly rainfall series using periodic autoregressive model was done by adopting the Tho-

mas-Fiering (T-F) model. The T-F model is a linear stochastic model for stimulating synthetic series of seasonal 
hydrologic process. The schema for the rainfall modelling using this framework takes the form 

( ) 2
1 1 1 1t j j t j t j jrf rf b rf rf Z rσ+ + += + − + −                          (7) 
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Table 2. Harmonic coefficients.                                                                            

Harmonics Coefficients 
j 𝜶𝜶 𝜷𝜷 
1 −0.630724 4.410554 
2 0.512422 0.773266 
3 4.514855 6.113874 
4 −2.476685 −3.618778 

 
This model uses a linear regression relationship to relate the storm rft+1 in the (t+1) month to storm rft in the 

t(th) month. Here, 1jrf +  and jrf  are seasonal means during months j+1 and j, respectively while bj is the re-
gression coefficient and tZ , a normal deviate with zero mean and unit variance. In the simulation process, neg-
ative rainfall values generated were retained and used to derive subsequent values in the sequence and later re-
placed by zero when the generated sequence was completed. 

2.2.2. Model Validation and Forecast Functions 
In all the instances, for the respective modelling strategy, split sampling procedure was adopted; i.e., one seg-
ment of the monthly rainfall series (40 years’ time period) was used for modelling while the remaining three 
years data was used for model validation. For model validation/forecasting, forecast functions corresponding to 
the respective ARIMA modelling scheme was adopted using the difference equation form. In this regard, recal-
ling that Zt(L) = [Zt+L], using square brackets to signify conditional expectations and noting that 

[ ] ( )
( )

1

1 1

0,1, 2,

ˆ 1, 2,

ˆ 1 0,1,2,

0 1,2,

t j t j

t t

t j t t j t j

t j

z z j

z z j j

a a z z j

a j

− −

+

− − − − −

+

  = = 
= =

  = = − = 
  = = 









                         (8) 

the following forecast functions were employed, viz:- 
a) Decomposition modelling scheme: 

1 1 1,12 12 1 1,12 13 1,12 12t l t l t l t l t l t lz z z zθ θ η ϕ η+ + − + − + − + + −= +∅ + ∅ + −  

b) Square root transformation-deseasonalisation strategy: 

1,12 12 1,12 12t l t l t l t lz z η ϕ η+ + − + + −= ∅ + −  

c) Composite modelling scheme (i.e., the stochastic component): 

1,12 12 2,12 24 3,12 36 1,12 12t l t l t l t l t l t lz z z z η ϕ η+ + − + − + − + + −= ∅ +∅ +∅ + −  

3. Results and Discussion 

3.1. Assessment of Stochastic Characteristics and Findings 

Hydrologic processes such as precipitation and runoff evolve on a continuous time scale. The implication(s) of 
this is simple; as shown by Figure 6, the rainfall time series plot exhibits typical characteristic movement with 
seasonality, cyclical or sinusoidal and random components. This phenomenon translates into statistical characte-
ristics which vary within an annual cycle. Figure 6 shows clearly a discernible seasonal or periodic pattern; it is 
a periodic-stochastic series since, in addition to the periodic pattern, a random pattern is also evident. In the light 
of this, it suffices to note that even though, monthly and annual rainfalls are usually non-intermittent, in semiarid 
and arid regions, monthly and annual precipitation may be intermittent [14]. Also, as noted by Chebaane et al. 
[14], this is imperative considering the fact that hydrologic time series are intermittent when the variable under 
consideration takes on nonzero and zero values throughout the length of record. Interesting too, is the seasonal 
autocorrelation. Seasonal autocorrelations for monthly precipitation are generally not significantly different 
from zero; Figure 7 attests to this fact. The fall out of this is that the rainfall time series are uncorrelated, de-
picting strong homogeneity. This phenomenon connotes intermittency of the series, most especially considering  
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Figure 6. Monthly rainfall time series plot.                                          

 

 
Figure 7. Seasonal correlogram showing periodic stochasticity/intermittency.               

 
the fact the series takes on nonzero and zero values throughout the entire length of the record (Figure 6). 

In the same context, Figure 8 shows inter-annual decadal variation in the rainfall series; long-term trend pat-
tern is seemingly not evident. However, there is large variability among the monthly values of rainfall of differ-
ent years, with the period 1995-2009 showing slight increases in the storm event during the peak seasons. On the 
other hand, Figure 9, Figure 10 shows the presence of seasonality in the moments, meaning that monthly statis-
tics for dry season are significantly different from those of the wet season period. Unlike intermittent stream 
flow process, the seasonal means have higher values than the seasonal deviations throughout the year. As noted 
in Figure 10, the coefficient of variation varies from 0.3234 in the month of June to 3.4227 in December (i.e., 
period of incipient rains, moderate-peak to late rains). The variance is maximum during the period of late rains 
and incipient dry season; more or less the interfacing period. This indicates atmospheric instability during this 
watershed period; i.e., the fringes of the raining season going to full harmattan period. Similarly, as shown in 
Table 3, values of the skewness coefficient (g) for the periods of incipient dry season (late rains) to full dry 
season are generally larger than the corresponding periods for the wet season over an annual cycle. This indi-
cates that the data in the former seasons depart more from normality than those in the later (early to full wet 
season period). The variability in the time series regime leads to model structural uncertainty; especially if the 
hydrologic evolution of the generating mechanism is not appropriately understood and captured in the model 
formulation. 

To assess this, analysis of dependence structure in time series via spectral density is critical; Figure 11 shows 
the dependence structure of the monthly rainfall in a frequency domain. The spectral density exhibits a discrete 
spectral component at the frequency of 1/12 cycle per month. This periodicity is seen in Figure 11(a). Similarly, 
the periodogram exhibits quite a corresponding pattern in terms of the periodicity. However, as noted by Kotte-
goda [1], interpretation is difficult as it provides unexpected peaks. From Figure 11(b), the sample spectra from 
the different sections of the rainfall data may resemble each other in their overall aspects. 
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Figure 8. Inter-annual mean monthly rainfall variation pattern.                           

 

 
Figure 9. Variation in seasonal moments.                                            

 

 
Figure 10. Seasonal pattern in coefficient of variation.                                  

3.2. Modelling and Forecasting of the Rainfall Regime 

Figure 12 shows the behaviour of the different model forecast functions; the forecasts are quite at variance with 
the expected. Baring data quality problems, stationarity issues, and model over fitting, forecasts in the distant 
future for a trend-free series should be the unconditional estimates of the means. From Figure 12, it’s obvious 
that the performance of the different modelling schemes can be expressed in this order: T-F > Composite > 
Square root transformation-Deseasonalised > Decomposition. Table 4 and Figure 13, respectively show the 
performance of the modelling scheme with respect to the ability to represent the seasonal statistics of the ob-
served rainfall series. It is apparent from Figure 13 that for the entire lag time considered, models T-F, Square 
root transformation-deseasonalisation and Composite were able to replicate the measured rainfall pattern, though  
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Table 3. Seasonal coefficients of skewness (g).                                                                

S/No. Months (Seasons) Coefficients of Skewness (g) 
1 April 0.8960 
2 May 0.5088 
3 June −0.0808 
4 July 0.6821 
5 August 0.9659 
6 September −0.2462 
7 October 0.2905 
8 November 1.7530 
9 December 4.8412 

10 January 3.5736 
11 February 3.0213 
12 March 0.5701 

 

 
(a)                                                           (b) 

Figure 11. Spectral density based on Tukey lag window (a) and the periodogram (b) of the raw monthly rainfall series.       
 

 
Figure 12. Summary chart of the different models’ behaviour in forecsat mode vis-à-vis the 
observed mean monthly series.                                                     

 
to varying degrees of accuracy whereas the decomposition strategy failed completely. In above, the positive 
attribute of the T-F model ahead of others reinforces its suitability for adoption in rainfall modelling. 
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Table 4. Seasonal moments for both the observed series and the models in the simulation phase.                         

Months 
Observed data Decomposition Sqrt-deseasonlised Composite T-F 

Mean Std. dev Mean Std. dev Mean Std.dev Mean Std.dev Mean Std.dev 
April 131.84 35.01 93.61 0.67 102.34 2.01 94.39 4.19 71.45 49.02 
May 152.43 115.29 94.10 0.08 146.51 0.63 147.30 8.66 159.95 84.11 
June 177.01 20.52 92.72 0.06 174.59 0.21 185.62 3.56 174.21 86.32 
July 191.46 8.70 108.53 0.07 155.32 2.36 140.53 1.74 147.60 60.72 
Aug 155.99 21.41 99.58 0.07 134.72 1.08 145.54 5.13 96.01 33.33 
Sept 203.93 33.83 89.96 0.06 206.15 3.31 235.12 2.33 193.85 106.50 
Oct 168.46 64.67 96.97 0.06 137.54 1.17 125.88 3.62 114.12 39.18 
Nov 19.50 16.63 97.78 0.06 6.51 0.33 13.58 0.83 7.38 6.77 
Dec 2.20 3.81 96.12 0.06 1.23 0.01 6.44 0.38 3.55 4.42 
Jan 5.36 9.29 98.56 0.06 1.86 0.12 6.54 0.59 8.91 15.43 
Feb 0.00 0.00 96.46 0.06 5.12 0.10 10.32 0.61 0.53 0.91 

March 25.93 23.62 94.68 0.06 34.72 0.28 43.65 2.26 43.79 28.16 

 

 
Figure 13. Monthly standard deviations of the rainfall series and forecast errors of the 
ARIMA models for the respective modelling schemes.                                  

 
Considering the performance of the models adopted, it is imperative to look at the implications of the data 

pre-processing strategy. In all the models, except the Thomas-Fiering (T-F) model, ARIMA models were used 
to model the supposedly stationary stochastic component. To achieve stationarity, seasonal differencing (12-lag) 
and seasonal standardisation (deseasonalisation) were respectively applied but not without its associated prob-
lems. For instance, the deseasonalisation process is a misnomer since it implies that the deseasonalised series is 
free of seasonality; however, other seasonality may still be present [12] [15]. Seasonal differencing on the other 
hand, removes the periodic contribution but the spectral density obtained thereof has a sinusoidal shape, also the 
covariance of the stationary part is distorted. In the same context, the multiplicative ARIMA model assumes 
there is a serial correlation structure within the months of the same year but it does not preserve the monthly 
standard deviations just like the others as seen in Figure 13. Thus within this context, the overall poor perfor-
mance of all the models with the exception of T-F could be understood.  

4. Conclusions 

For purposes of identifying a more realistic modelling scheme for the rainfall series, assessment of the stochastic 
characteristics was done to be able to understand the dynamics of the monthly series. Sequel to this, four differ-
ent modelling schemes: Decomposition, Square root transformation-deseasonalisation, Composite, and Periodic 
autoregressive modelling (T-F), were adopted. Results of basic analysis of the stochastic characteristics revealed 
that the monthly series does not show any discernible presence of long-term trend, though there is a seeming in-
ter-decadal annual variation. It is evident that the series exhibits strong seasonality throughout its length, both in 
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the moments and autocorrelation. This gives rise to significant correlation which is attributable to the serial de-
pendence of the same month on several years; this serial dependence is same for all 12 months. The strong sea-
sonal autocorrelation structure connotes intermittency considering the fact that the series assumes nonzero and 
zero values throughout its length for the period considered. 

Resulting from the analysis and the modelling exercise, the Thomas-Fiering (T-F) model can be used for 
monthly rainfall modelling and short-term forecast. In addition, both the composite and square root transforma-
tion-deseasonalisation schemes may also be employed but not without caution. Because of the ARIMA model 
component of these models in the coupling, their forecast abilities were impaired considering the inadequacy of 
their respective forecast errors to preserve the observed standard deviations of the rainfall series. This primarily 
might have arisen from the second-order stationarity assumptions requirement of the autoregressive models. In 
the same vein, whole decomposition of any trend-free series requiring de-trending, deseasonalisation followed 
by moving average smoothing, and fitting of ARIMA model might be too excessive as it distorts the entire spec-
trum in the overall and not encouraged. The results obtained suggest that modelling of monthly rainfall series in 
the presence of serial correlation between months should be based on the establishment of conditional probabil-
ity framework; in this case, two conditional probabilities: probability that month t has zero rainfall given that 
month t-1 had non-zero rainfall and probability that month t has zero rainfall, given that month t-1 had zero 
rainfall. On the other hand, considering the inadequacy of these modelling schemes because of the autoregres-
sive model components, nonlinear deterministic methods such as Artificial Neural Network, Wavelet models 
could be viable complement to the linear stochastic framework. 
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Appendix 

ARIMA Model Diagnostics 

Table A. Modified Box-Pierce (Ljung-Box) Chi-Square statistic.                                                  

Models Statistics Lag 

( )12
1,0,1ARIMA  
 
 
 
 

 
12 24 36 48 

    
Chi-square 9.6 33.5 41.1 56.0 

Df 10 22 34 46 
P-Value 0.479 0.055 0.188 0.149 

( )12
3,1,1ARIMA  

 
 
 

 
Chi-square 6.9 23.1 29.4 40.1 

Df 8 20 32 44 
P-Value 0.548 0.282 0.600 0.640 

( ) ( )12
1,0,0 1,0,1ARIMA ×       

 
Chi-square 6.5 27.5 39.9 50.3 

Df 9 21 33 45 
P-Value 0.694 0.154 0.257 0.271 

 
Table B. Final Estimates of Parameters.                                                                      

Model Parameter Estimates 
 Type Coefficient SE Coefficient T P 

( ) ( )12
ARIMA 1,0,0 1,0,1×  

 
 
 

     
AR 1 0.0198 0.0442 0.45 0.654 

SAR 12 0.09998 0.0013 748.41 0.000 
SMA 12 0.9677 0.0191 50.78 0.000 

( )12
1,0,1ARIMA  
 
 

     
SAR 12 0.8213 0.0374 21.98 0.000 
SMA 12 0.9640 0.0374 39.88 0.000 

( )12
3,1,1ARIMA  

 
 
 
 

     
SAR 12 −0.0711 0.0483 −1.47 0.142 
SAR 24 −0.1035 0.0483 −2.14 0.033 
SAR 36 −0.0849 0.0487 −1.74 0.082 
SMA 12 0.9544 0.0214 44.51 0.000 
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