
Received July 20, 2020, accepted July 28, 2020, date of publication August 6, 2020, date of current version August 19, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3014736

New Discrete Cuckoo Search Optimization
Algorithms for Effective Route Discovery in
IoT-Based Vehicular Ad-Hoc Networks
HABEEB BELLO-SALAU 1, (Member, IEEE), ADEIZA JAMES ONUMANYI 2, (Member, IEEE),
ADNAN M. ABU-MAHFOUZ 3,4, (Senior Member, IEEE),
ACHONU O. ADEJO 2, (Member, IEEE),
AND MUHAMMED BASHIR MU’AZU 1, (Member, IEEE)
1Department of Computer Engineering, Ahmadu Bello University, Zaria 810107, Nigeria
2Department of Telecommunication Engineering, Federal University of Technology Minna, Minna 920262, Nigeria
3Council for Scientific and Industrial Research (CSIR), Pretoria 0001, South Africa
4Department of Electrical Engineering, Tshwane University of Technology, Pretoria 0183, South Africa

Corresponding author: Adnan M. Abu-Mahfouz (a.abumahfouz@ieee.org)

This work was supported by the Council for Scientific and Industrial Research, Pretoria, South Africa, through the Smart Networks
collaboration initiative and Internet of Things (IoT)-Factory Program (Funded by the Department of Science and Innovation (DSI),
South Africa).

ABSTRACT Recently, the Internet of Things (IoT) is widely considered in vehicular ad-hoc
networks (VANETs) for use in intelligent transportation systems. In particular, the pervasive deployment
of different sensors in modern vehicles has unlocked interesting possibilities for improving routing perfor-
mance in VANETs. Nevertheless, the discovery of short single loop-free routes for effective and efficient
information dissemination in VANETs remains a challenge. This challenge proves more difficult to solve
since it reduces to the case of finding the shortest Hamiltonian path for effective routing in VANETs.
Consequently, in this paper, we propose two discretized variants of the cuckoo search optimization (CSO)
algorithm, namely, the Lévy flight-based discrete CSO (LF-DCSO) and the random walk-based discrete
CSO (RW-DCSO) for effective route discovery in VANETs. In addition, we investigated the inverse mutation
operator gleaned from genetic algorithm (GA) in order to improve the exploration properties of our DCSO
variants. We describe a new objective function that effectively models the reliability of individual links
between nodes that comprise a single route. A detailed report of the routing protocol that controls the routing
process is presented. Our proposed methods were compared against the roulette wheel-based GA and the
improved k-means-based GA termed IGAROT. Specifically, our findings reveal that there was no significant
difference in the performance of the different methods in the low vehicle density scenario, however, in the
medium vehicle density scenario, the RW-DCSO algorithm achieved 2.56%, 100%, and 128.57% percentage
increment in its route reliability score over the LF-DCSO, RW-GA, and IGAROT algorithms, respectively.
Whereas in the high vehicle density scenario, the LF-DCSO algorithm achieved a percentage increment
of 42.85%, 525%, and 733.33% in the route reliability score obtained over the RW-DCSO, IGAROT, and
RW-GA algorithms, respectively. Such results suggest that our methods are able to guarantee effective
routing in VANETs.

INDEX TERMS Discrete, cuckoo search optimization (CSO), route discovery, shortest path, VANET.

I. INTRODUCTION
Vehicular ad-hoc networks (VANETs) are mobile ad-hoc
wireless networks created between vehicles, termed vehicle-
to-vehicle (V2V) communication, or between vehicles and an

The associate editor coordinating the review of this manuscript and

approving it for publication was Eyuphan Bulut .

infrastructure, termed V2I communication. In VANETs, each
vehicle serves as a wireless router in order to communicate
information from some source (transmitter) to some desti-
nation (receiver) within an average transmission radius of
about 100 - 300m [1]. Such communication links in VANETs
for information transfer is made possible by the Internet of
Things (IoT). Nowadays, most vehicles are deployed with

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 145469

https://orcid.org/0000-0001-9207-8670
https://orcid.org/0000-0002-0166-0786
https://orcid.org/0000-0002-6413-3924
https://orcid.org/0000-0002-4012-4599
https://orcid.org/0000-0003-2003-4761
https://orcid.org/0000-0003-4744-9211

H. Bello-Salau et al.: New Discrete CSO Algorithms for Effective Route Discovery in IoT-Based VANETs

a wide variety of sensors that measure and monitor several
communication and physical parameters of a vehicle. For
example, accelerometers are deployed tomeasure the velocity
of a vehicle [2], Global Positioning System (GPS) sensors
are embedded to determine a vehicle’s location, and on-board
sensor units are deployed for communication purposes. These
sensors allow modern vehicles to easily initiate and maintain
communication links. Thus, vehicles within the communica-
tion range of another transmitting vehicle are able to connect
and in turn create a larger network of a wider range [1], [3].
The information often communicated via IoT-based VANETs
(i.e either in V2V or V2I) are mostly related to traffic condi-
tions [3]–[5], road surface conditions [2], [6], infotainment
[1], [7], to name but a few. Essentially, IoT-based VANETs,
which we simply refer to as VANETs hereafter, are geared
toward safeguarding the lives and properties of road users
while providing comfort to drivers and vehicle occupants.

Effective routing is key to the successful deployment of
VANETs. However, information routing in VANETs is a
difficult task to realize because of the highly volatile net-
work topologies often created by constantly moving vehicles.
Further, routing by broadcast methods in VANETs is an inef-
ficient approach since network performance will ultimately
deteriorate due to network congestion. Thus, it is pertinent
to employ optimal reliable communication routes among
multiple possible routes from some source to a destination
node. To achieve optimal route discovery, a number of meta-
heuristic optimization algorithms (MOAs) have found great
patronage in the literature.

MOAs are widely deployed in VANETs for their abil-
ity to find optimal routes within a wider solution-space of
many possible routes. The list of available MOAs in the
soft computing literature has grown exponentially in recent
years. However, these different MOAs often yield varying
performance levels for reasons such as the search strategy
of the MOA, the effectiveness of the operators used in
the MOA, as well as the robustness of the objective func-
tion deployed to describe the problem under consideration.
Additionally, many existing MOAs are designed to solve
continuous optimization problems and thus, they are not
directly applicable to combinatorial optimization problems,
which are discrete in nature, as obtained in VANETs. Some
specific MOAs have been explored for routing purposes in
VANETs (see Section II), however, they pose specific lim-
itations that we seek to address in the present paper, such
as, many of such articles often lack detailed reports about
their adaptation process from the continuous to the discrete
domain, which is required to solve combinatorial problems as
obtained in VANETs. Further, it is pertinent to develop more
robust and easily computable objective functions as explored
in the present article. Furthermore, some effective MOAs are
available, which have not been effectively explored for route
discovery problems in VANETs.

Although the cuckoo search optimization (CSO) algorithm
was considered in the present article, nevertheless, we do
not claim that it is the best MOA in the literature for use in

VANETs. Instead, we note that it has one of the least number
of tunable internal parameters against many other MOAs in
the literature, such as the genetic algorithm (GA) and the par-
ticle swarm optimization (PSO) algorithm. Specifically, apart
from the general parameters, which are common to allMOAs,
such as the population size and the stopping criteria, the CSO
algorithm has only one extra tunable parameter, which is the
probability of abandoning a nest. On the other hand, the GA
and PSO algorithms both have a minimum of six and four
internal parameters to be fine-tuned, respectively, which may
limit their practical use under realtime conditions. This serves
only as an initial justification for the use of the CSO algorithm
in the present article, while further details with regards to the
choice of the CSO algorithm are highlighted in Section II.

Thus, in this article, we address the aforementioned prob-
lems, hence leading to the following specific contributions to
knowledge:

1) We propose two discrete variants of the cuckoo
search optimization (CSO) algorithm, namely the Lévy
flight-based discrete CSO (LF-DCSO) and the random
walk-based discrete CSO (RW-DCSO). The CSO algo-
rithm was adopted for use owing to its improved per-
formance in solving different optimization problems
[8]–[10]. Here, we describe in details the modification
process introduced in order to codify both variants.

2) We introduce a new objective function to model the
reliability of the individual links that comprise a single
route from some source to some destination node. Our
model considers both the signal-to-noise ratio (SNR)
at a receiving node and the average velocity of mobile
vehicles within the network to improve optimal route
discovery.

3) We investigated the inverse mutation operator, gleaned
from the genetic algorithm (GA), in order to improve
the exploration property of our DCSO variants toward
finding optimal routes.

4) Details of the routing protocol that initiates, discovers,
and maintains candidate routes are presented. Compar-
ison is made to demonstrate the validity of our DCSO
variants as against the GA and IGAROT techniques
[1]. We compared these methods under different vehi-
cle density scenario and our methods were shown to
provide improved performance.

The rest of the paper is structured as follows:
Section 2 presents related work, our proposed routing algo-
rithm andmethod of analysis is described in Section 3.While,
Section 4 presents results and discussion. Conclusions are
drawn in Section 5.

II. RELATED WORK
Several VANET routing protocols and their different topo-
logical classifications are discussed in [3]. The routing tech-
niques in [3] were reviewed for different applications with
regards to themobility of vehicles typical of VANET systems.
Similar surveys in [11], [12] have studied different VANET
routing protocols and other bio-inspired classical concepts

145470 VOLUME 8, 2020

H. Bello-Salau et al.: New Discrete CSO Algorithms for Effective Route Discovery in IoT-Based VANETs

deployed for vehicular routing. However, our present review
focuses on examining different MOAs that have been used
for routing purposes in VANETs. Specifically, we discuss the
related works in terms of the evidences prior to our present
study, and their limitations to be addressed in the present
article:

A. EVIDENCE PRIOR TO THE PRESENT STUDY
Different routing algorithms have been proposed in order to
determine the shortest and fastest path in V2V and V2I net-
works. An example can be found in [13], wherein a dynamic
ad-hoc on-demand routing protocol based on the ant colony
optimization (ACO) algorithm was proposed for VANETs.
Experimental results show that the proposed protocol suc-
cessfully withstood episodes of node disconnections during
the communication process. Similarly, authors in [14] incor-
porated the ACO algorithm in the adhoc on-demand distance
vector routing protocol (AODV) in order to determine the
most stable route based on the simulated pheromone concen-
tration of ants along the communication path. Other examples
of an efficient greedy algorithm for transmitting data from
some source to some destination can be found in [15], and
the use of game theory to guarantee data dissemination in
software-defined VANETs is discussed in [16].

A global exchange method involving the hybridization of
a modified ant colony optimization (MACO) and particle
swarm optimization (PSO) algorithm for reducing travel time
in VANETs was presented in [17]. There, authors used the
PSO algorithm to overcome the limitations associated with
MACO, which includes frequent convergence to subopti-
mal solutions. As a consequence, the exploration properties
of the ACO algorithm was thus improved, leading to the
discovery of alternate routes, particularly when the opti-
mal route becomes congested during peak hours. A similar
approach that partitions VANETs into different zones using
the ACO algorithm in order to determine reliable routes
among multiple routes was presented in [18]. Authors used
vehicle mobility, velocity, and fading conditions to develop
a suitable communication model. They used the Nagakami
probability distribution function (PDF) to model the dynamic
reception of data packets, thus leading to better delivery ratios
and reduced end-to-end delay with improved scalability far
beyond four zones.

Other MOAs have been investigated in VANETs includ-
ing the modified lion algorithm (LA) proposed in [19]. The
performance of the modified LA was compared and shown
to outperform the conventional GA and LA in terms of their
complexity, cost, and convergence. Similarly, the grey wolf
optimization (GWO) algorithm was explored in [20] for clus-
tering purposes in VANET. The bees life algorithm (BLA)
was proposed in [21] for optimization of the quality of ser-
vice (QoS) in the multicast routing problem (QoS-MRP)
in VANET with multiple objective functions. The proposed
algorithm was shown to outperform the GA, bees algorithm
(BA), and the marriage in honey bees optimization (MBO)
algorithm. In a different article, authors in [22] used the firefly

with levy distribution (FF-L) algorithm to determine optimal
routes in VANETs. Experimental results show that the FF-L
performed better than the GA, BA, BLA and MBO algo-
rithms. Other MOAs such as the bacterial foraging optimiza-
tion (BFO) [4], the tabu search process in GA [23], PSO [24],
have been deployed with some success in VANETs.

In terms of the evidence of discretized MOAs deployed
in VANET, authors in [25] investigated discrete versions
of the bat, firefly, CSO, and PSO algorithms. The uniform
cross over and swapping functions were adopted with results
demonstrating better performances by the bat, firefly, and
PSO algorithms. Similarly, the PSO algorithm was also dis-
cretized in [26], termed the DPSO, in order to determine opti-
mal communication paths in VANET. Here, authors modelled
the link stability upon the computed Euclidean distance in
polar coordinates, and the fitness function was based on the
probability of occurrence of obstacles along the communi-
cation path. Simulation results show improved performance
in terms of packet delivery ratio, average throughput, and
routing overhead compared to other routing protocols such
as the QADD and GPSR. Interestingly, in other application
areas, it is noted that an improved quantum-behaved PSO
algorithm was developed for end member extraction in [27].
This approach was further extended to solve the multiob-
jective hyperspectral end member extraction problem [28].
A linearmixturemodel constrained PSOwas again developed
in [29] to solve the problem of end member extraction from
highly mixed data. Indeed, these methods are considered
noteworthy advancements in the development of discretized
MOAs.

B. GAPS IN PRIOR STUDIES
Essentially, most MOAs are designed to solve continuous
optimization problems, thus, it is pertinent to accurately
describe the adaptation as well as the codification process
of these continuous-based MOAs to their discrete versions,
which is the form required to solve combinatorial problems
in VANETs. However, with an exception to the approaches
in [25], [26], most articles mentioned above lack the required
details needed to understand the discretization processes
used in their respective implementations, which limits their
use and stifles the replication of these methods for further
investigations.

The details of the DCSO algorithm adopted in [25] leaves
much to be desired since authors simply mentioned that
the uniform crossover and swapping functions were used,
without providing sufficient details with regards to its imple-
mentation process. Instead, authors simply mentioned that
they adopted the DCSO version proposed in [8], which was
designed to address the travelling salesman problem (TSP).
While the approach in [8] adopted a 2-opt and double-bridge
operator to introduce new solutions, authors in [25] used the
uniform crossover and swap operators, which may have been
responsible for the contradictory report of a poorer DCSO
performance in [25] as against the improved performance of
the DCSO algorithm reported in [8]–[10]. Further, the DCSO

VOLUME 8, 2020 145471

H. Bello-Salau et al.: New Discrete CSO Algorithms for Effective Route Discovery in IoT-Based VANETs

variant reported in [25] performed least in comparison to the
bat, firefly, and PSO algorithms, which contradicts reports in
[9] about the superior performance of the DCSO algorithm
against other well-known protocols. Thus, such a poor perfor-
mance of theDCSO algorithm as reported in [25] leavesmuch
room for improvement since incidentally, authors claimed
that the same operators, i.e the uniform crossover and swap-
ping functions were used in all the MOAs compared therein.
On the other hand, details of the implementation procedure of
the DCSO algorithm used in [9] were conspicuously missing.
Consequently, we explore in the present article the inverse
mutation operator, which is a more robust type of swapping
operator as against the uniform crossover and single swap-
ping operators used in [25]. In effect, we present an entirely
new approach to realizing the DCSO, which differs from the
approach in [25].

The Hamming distance function was used in [25], whereas
the Euclidean distance function was used in [9] with con-
trasting findings, thus opening an opportunity for further
investigation as conducted in the present paper. Additionally,
we explore the discovery of the shortest path between an
infrastructure and all other vehicles in a VANET, which dif-
fers from the cluster-based approach in [25], which we con-
sider to be a more complex approach to routing in VANET.
Finally, we introduce a new objective function that differs
from prior works in the literature, with the aim to better model
the link reliability between transmitting and receiving nodes.

III. DESCRIPTION OF THE PROBLEM
In VANETs, communication takes place in two directions:
in the downlink direction, which comprises information dis-
semination from an infrastructure to vehicles (I2V), and/or
in the uplink direction, which transpires from vehicles to
an infrastructure (V2I). Such bidirectional communication
could transpire in an ad-hoc architecture as well, which con-
cerns communication between vehicles, termed V2V. How-
ever, in this article, we refer to the communication between
any infrastructure and a set of vehicles as V2I communica-
tion irrespective of the direction of communication. Here,
an infrastructure may refer to a roadside base station or even
a facility (a building) with rooftop antennas connected to
servers. Thus, our problem reduces to the case of discovering
the most effective and efficient route for information dissem-
ination in V2I networks.

Our aim is to develop a routing algorithm that establishes
a globalized, loop-free, single route between all nodes in a
VANET. This is a non-trivial routing task owing to the volatile
topological nature of VANETs, as well as the possibility for
high vehicular densities in VANETs, which complicates and
increases the computational complexity of discovering the
best routes. We consider the case of push messages, wherein
an infrastructure seeks to disseminate alert messages to all
vehicles in a VANET, for example, to inform vehicles about
a recent accident scene, traffic congestion on certain roads,
insecurity conditions, road anomalies along a road, to name
but a few. In this case, a broadcast (i.e flooding) approach

may be ineffective, since the network may become easily
congested and completely jammed, particularly in the case
of long and many messages. Thus, the most scalable option
is to discover a loop-free, single route from the infrastructure
to all vehicles in the network. We shall discuss in the next
subsection the routing protocol that initiates, discovers, and
maintains such a candidate route. It is noted that the terms
‘‘route’’ and ‘‘path’’ are used interchangeably in the rest of
this article.

From the viewpoint of graph theory, our problem can be
described as the case of finding the shortest Hamiltonian path,
which has the maximum route reliability score in a rooted
graph. The function that computes the route reliability score
for each discovered Hamiltonian path will be discussed in
Section V-A. However, the rooted graphG(V ,E) has a source
node (i.e. an infrastructure), which is distinguished as the
root, whereas all other nodes in the VANET (i.e the graph)
are the vehicles. In particular, V is the set of vertices (called
the nodes or vehicles in the VANET, which includes the
infrastructure), andE is a set of edges (i.e. the communication
links) connecting different ordered pairs of vertices.

Essentially, since we attempt to solve the problem of find-
ing the shortest Hamiltonian route, which is NP-hard, thus,
the complexity of finding the solution grows as (NV − 1)!,
where NV is the total number of vehicles in the network.
Thus, it is noted that searching through such a huge solution
space of possible routes for the shortest Hamiltonian path
is a non-trivial task in VANETs, especially as NV continues
to grow exponentially. Hence, being NP-hard, such a route
discovery problem cannot be efficiently solved in realtime
by most sequential-based search methods, or even by local-
ized greedy-based approaches. Consequently, we leverage
metaheuristic optimization algorithms (MOA), which are
population-based methods, in order to search for optimum
loop-free, single routes in VANETs.

Additionally, most MOAs in the soft-computing litera-
ture are designed to solve continuous-based optimization
problems. Hence, they are not directly applicable to the
discrete-based graph problem as in VANETs. Thus, we con-
sider the problem of discretizing a candidate MOA, chosen
here to be the cuckoo search optimization (CSO) algorithm.
We shall describe in subsequent subsections our discretized
approach of the CSO for use in VANETs. Summarily,
the above problems of discovering the candidate Hamiltonian
route in VANETs and the discretization of the CSO algorithm
are the specific focus of the present article.

IV. THE ROUTING PROTOCOL
We describe the routing protocol that initiates, discovers,
and maintains a loop-free single route in V2I networks. The
method for route discovery depends on the newly proposed
DCSO variants and it will be described in the next section.
The routing protocol comprises three phases namely, the ini-
tialization, route discovery, and route maintenance phase.
They are discussed as follows:

145472 VOLUME 8, 2020

H. Bello-Salau et al.: New Discrete CSO Algorithms for Effective Route Discovery in IoT-Based VANETs

1) THE INITIALIZATION PHASE
The initialization phase describes how vehicles get connected
and registered to an infrastructure in a VANET. A simple
model to describe the initialization phase is depicted in Fig. 1.
Since the address of the infrastructure is not known at initial-
ization, thus, any vehicle intending to access a VANET sends
a broadcast message containing a request to connect (RTC)
packet to an infrastructure, i.e. the nearest infrastructure.
It is assumed that only vehicles moving at below 20 km/hr
would be able to access the network. Results in this regard
are presented in Section VI. This ensures that a more stable
topology can be maintained in VANETs. The broadcast range
of each vehicle is represented by the circles around each node
in Fig. 1. The RTC packet is continuously rebroadcasted by
each vehicle until it reaches the infrastructure. As gleaned
from Fig. 1, the initialization phase can be a heavily con-
gested phase, particularly if many vehicles are requesting
access at about the same time. However, the infrastructure
S sequentially registers each vehicle in an order in which
they arrive, thus, sequentially populating and maintaining an
efficient routing table. An example of the essential fields of
an RTC packet is illustrated in Fig. 2.

FIGURE 1. Initialization phase of the routing protocol. Red dots represent
vehicles, the black triangle S denotes the infrastructure, the arrows are
the transmission range and links.

FIGURE 2. Essential fields of the RTC packets and discovered route
packets.

The RTC packet sent from the requesting vehicle will
contain its GPS coordinates and its average speed (in km/hr).
However, before rebroadcasting the packet, the nearest
re-forwarding vehicle(s) would append to the RTC packet
the received signal strength (RSS) value measured from the
requesting vehicle. Consequently, this ensures that only the
nearest vehicle(s) one-hop away from the requesting node
are able to update the RSS field of the RTC packet since the
RSS field will be found empty at this point. Simultaneously,
the GPS coordinates of the appending vehicle (i.e the vehicle
that appends the RSS value) are included in the ‘‘Appended

GPS Coordinate’’ field. This initialization process can be
better understood by considering the simple model of Fig. 1.
Let us assume that vehicle 1 in Fig. 1 is the requesting vehicle,
then only vehicles 2 and 3 will receive the broadcast RTC
packet since they are the only cars within the broadcast range
of vehicle 1. At this point, vehicles 2 and 3 would check
the RSS field of the RTC packet and they would append
their independently measured RSS value to the RSS field
since they would find the field empty at this point. Then,
they would rebroadcast the updated RTC packet. Now, vehi-
cle 5 receives the RTC packet from vehicle 2 and simply
rebroadcasts without altering the RSS field since it is already
occupied, and likewise with vehicle 7, which received from
vehicle 3. Thus, henceforth, every other vehicle that receives
the RTC packet simply rebroadcasts as long as the RSS field
is occupied. For example, vehicle 4 would rebroadcast two
different RTC packets with different RSS field values from
both vehicles 5 and 7. Consequently, the RTC packet from
vehicle 1 arrives at the infrastructure S along with the details
of the measured RSS values from only vehicles 2 and 3.
Hence, the infrastructure is able to obtain only the closest
vehicles to vehicle 1 and consequently build an approximate
map of its network topology.

The above process enables the infrastructure to construct
an accurate position of each vehicle in its network. How-
ever, since the network topology may change rapidly in
VANETs, this process would continue for every new vehicle
that emerges in the network. Nevertheless, the computational
and convergence demands of the route initialization phase
would reduce over time, since different infrastructures would
be networked to pass routing tables amongst themselves
toward accelerating and improving network convergence and
stable tracking of vehicles.

2) THE ROUTE DISCOVERY PHASE
The infrastructure S executes the route discovery phase fol-
lowing the completion of the route initialization phase from
which an accurate network topology is constructed. For the
case of push messages in the downlink mode, the infrastruc-
ture computes the most effective and efficient route through
all vehicles in the network. To achieve this, the infrastructure
executes our newly proposed DCSO variants (to be discussed
in Section V-C) in order to discover the best loop-free, single
route. For example, Fig. 3 illustrates the discovered route
based on the node deployment in Fig. 1 that prevents any
further use of flood messages in the network. In this case,
the Hamiltonian route is S-6-4-7-3-1-2-5, whereas an exam-
ple of a link (i.e. an edge) is {6, 4}, where i = 6 and j = 4.
Thus, several links make up a route, and a single route is
formed by a set of edges. This approach improves network
efficiency as well as scalability.

3) THE ROUTE MAINTENANCE PHASE
Since network topologies change frequently in VANETs, it is
essential to discuss how such loop-free, single routes are
maintained. In this case, once a route has been discovered and

VOLUME 8, 2020 145473

H. Bello-Salau et al.: New Discrete CSO Algorithms for Effective Route Discovery in IoT-Based VANETs

FIGURE 3. Route discovery phase of the routing protocol. Red dots
represent vehicles, the black triangle S denotes the infrastructure,
the arrows are the transmission range and links.

information has been disseminated, the infrastructure contin-
ues to check if new vehicles have been added or discarded
from the routing table. For newly added vehicles via the
initialization phase, the route discovery phase is re-initiated
to compute a new route. This update can be conducted period-
ically to obtain the updated positions of older vehicles in the
routing table. On the other hand, once an acknowledgement
message is not received by the infrastructure from any vehi-
cle, such vehicle(s) is/are expunged from the routing table and
a new route is computed via the route discovery phase. This
process ensures that loop-free, single routes are maintained.

V. THE DISCRETE CUCKOO SEARCH OPTIMIZATION
ALGORITHMS
In this section, prior to describing our proposed discrete CSO
variants, first, we describe the objective function deployed in
our methods. Then, we describe the original CSO algorithm
as a complete basis for introducing our discretized variants.
Then, the details of our proposed variants are presented.

A. THE ROUTE RELIABILITY FUNCTION
We describe a new objective function that measures the reli-
ability of the wireless communication link between any two
communicating vehicles. This function is referred to as the
route reliability function R. In this regard, two important
factors that characterize the reliability of a link are considered
in our function, which are the velocity ϑ of each vehicle and
the signal-to-noise-ratio (SNR) γ at each receiving vehicle.
Since most modern vehicles are designed with on-board pro-
cessing units, the velocity of each vehicle can be obtained and
reported in the RTC packet, whereas the γ at each receiving
vehicle j relative to the signal transmitted from vehicle i is
computed as

γi,j =
RSSi,j

σ
j
n
, (1)

where RSSi,j is the received signal strength measured at a
receiver vehicle j relative to a signal transmitted from vehicle
i, and σ jn is the noise level at vehicle j.

Thus, we model the reliability r of the link between any
two vehicles i, j using the cumulative probability distribution
function of an exponential random variable as

ri,j = 1− exp(
−γ dBi,j

ϑj + 1
), (2)

for γ dBi,j > 0, where γ dBi,j is the SNR dB equivalent of
(1) obtained as γ dBi,j = 10 log10 γi,j, and ϑj is the average
velocity of the vehicle j. It is seen in (2) that if the SNR
value is increased while keeping the velocity fixed, then
the exponential function value decreases toward zero. Thus,
by decreasing toward zero, the entire reliability function con-
verges asymptotically toward one, which implies that the link
is becoming more reliable as desired. On the other hand, let
us consider the case where the SNR is kept fixed, whereas the
velocity is increased. Again, it is noted that the exponential
function increases toward one, thus, causing the reliability
function to decrease toward zero, which implies that the link
is becoming an unreliable link as expected. For the converse
case, the reliability function would typically decrease toward
zero if either of the SNR or the velocity value is reduced, thus
justifying the workability of the proposed model.

Recall that both the SNR and velocity values for each
vehicle are easily obtained since the respective RSSi,j values
of each vehicle are acquired as described in Section IV-1.
Further, the reliability function ri,j produces values bounded
between 0 and 1, thus, it reduces to a simple probability score
of the link reliability between two communicating vehicles.
Thus, a link is considered to be perfectly reliable when ri,j =
1 and totally unreliable (i.e. non-existent) when ri,j = 0.
A link becomes totally unreliable if γ dBi,j ≤ 0, which means
the transmitted signal power is less than the receiver noise
level and thus cannot be processed, whereas ri,j = 1 is
obtained only for i = j, which describes the case of a looped
link or the distance d between i and j being zero (di,j = 0).
Hence, since we aim to discover only loop-free routes and
vehicles cannot be physically overlapped to obtain di,j = 0,
thus i 6= j. Having established these facts, we obtain the total
reliability R of a single route k , which comprises many links,
as

R(k) =
∏
i,j

ri,j, (3)

for k = 1, 2, 3, . . . ,K , i = j = 1, 2, 3, . . . ,NV , and i 6= j,
where NV is the total number of vehicles registered in the
VANET. Thus, the best loop-free, single route R∗ is obtained
from among so many possible routes K as

R∗ = max
k∈K

R(k), (4)

where K = (NV − 1)!. It is noted that searching through K in
factorial space for an optimal solution is an NP-hard problem.
However, it can be further considered to be NP-complete
since it can be reduced to the special case of solving the trav-
elling salesman problem, which is shown to be NP-complete
in [30].We shall present in SectionV-C two new discrete vari-
ants of the CSO metaheuristic algorithm designed to search
for R∗.

B. THE CONTINUOUS-BASED CSO
Prior to presenting our DSCO variants, it is instructive to
discuss the original continuous-based CSO algorithm. A brief

145474 VOLUME 8, 2020

H. Bello-Salau et al.: New Discrete CSO Algorithms for Effective Route Discovery in IoT-Based VANETs

summary is provided in this subsection. The CSO algorithm
was proposed in [31] to model the brood parasitic nature of
cuckoo birds as they aim to ensure that their eggs are hatched
by other host birds. The success of this nature-inspired pro-
cess served to motivate the construction of the CSO algorithm
for optimization purposes. In this regard, the metaphoric
relationship of terminologies in the CSO algorithm to known
terms in general optimization parlance is given as follows:
an egg or a nest represents an individual solution in the
case of solving single objective function problems. In solv-
ing multi-objective function problems, an individual (nest)
could contain multiple solutions (i.e. multiple eggs). How-
ever, we consider the single objective function problem in this
article. A collection of nests corresponds to the total popula-
tion of candidate solutions. The process of abandoning a nest
by a foreign bird, i.e. the case where a host bird discovers
the cuckoo’s egg, refers to the process of discarding a poor
solution or a set of poorer solutions from the population of
solutions, whereas, the laying of a new egg(s) by a cuckoo in
a nest or in several nests refers to introducing new solution(s)
to the population.

Essentially, the continuous-based CSO algorithm finds
new and better solutions using [31]

x(t+1)p = x(t)p + α ⊗ Lėvy(λ), (5)

where x(t+1)p denotes a new solution for a cuckoo p, obtained
in a new iteration t+1 from an older solution x(t)p obtained in
the previous iteration t . The Lévy flight distribution function
Lėvy(λ) is used to update older solutions, where λ is the
Lévy walk parameter, α is the step size related to the scale of
the problem of interest, and the symbol ⊗ means entry wise
multiplication. The Lévy flight function provides a random
walk and the random step length is drawn from a Lévy
distribution generally approximated using the Mantegna
algorithm as

Lėvy(λ) ∼
u
v−λ

, (6)

where u and v are drawn from normal distributions defined as

u ∼ N (0, σ 2
u), (7)

v ∼ N (0, σ 2
v), (8)

where

σ 2
u =

0(1+ λ) ∗ sin(πλ2)

0(1+λ2) ∗ λ ∗ 2(
λ−1
2)
, (9)

σ 2
v = 1, (10)

where 0 is the Gamma function and 1 < λ ≤ 3.
The summary of the steps in the CSO algorithm are as

follows:
1) Configure the values of all parameters, including the

probability of abandoning nest Pa, the population size
NP, and the stopping criterion, as well as the parameters
of the problem to be solved.

2) Initialization stage: Generate initial population of
solutions

3) while stopping criterion is not met do
a) Getcuckoo stage: Get new solutions using the

Lévy flight walk according to the Mantegna algo-
rithm through (6) - (10).

b) Evaluate the new solutions to obtain the global
best solution

c) Empty nest stage: Discard the poorest solutions
based on Pa and replace them with new solutions

d) Re-evaluate the new population of solutions to
obtain new global best solution

4) Continue iteration until stopping criterion is satisfied.
Since the solution x can take on any continuous value

along the real number line, thus, the present form of the CSO
algorithm is not applicable to problems whose solutions take
on only discrete values, particularly integer values. Conse-
quently, we propose two new discretized versions of the CSO
algorithm in order to solve the route discovery problem in
VANETs.

C. THE PROPOSED DCSO
Two DCSO approaches are proposed, namely, the Lévy
flight-based method, wherein we strive to maintain the steps
as obtained in the original CSO algorithm, and the random
flight-based method. The random flight-based method is pro-
posed as a faster option as against the Lévy flight method.
Following from Section V-B, we note that there are three
main stages in the CSO algorithm, namely, the initialization,
getcuckoo, and empty nest stages, and we describe our meth-
ods along these stages.

1) PARAMETER DESCRIPTION
We describe the different parameters required to execute
our proposed DCSO route discovery methods. Since the
infrastructure is able to obtain the SNR γi,j between any
two communicating vehicles i and j in the network, thus,
the route reliability score ri,j of a link between any pair of
communicating vehicles can be computed using (2) for i =
j = 1, 2, 3, . . . ,NV and i 6= j.
The population sizeNP and the probability of abandoning a

nest Pa are the two main parameters to be configured a priori
by users of our DCSO methods. The stopping criterion of
the proposed DCSO algorithms is the total number of fitness
evaluations NFE , which ensures that all MOAs are fairly
compared without presenting undue advantage to any MOA
that deploys extra computational stages in its search strategy.
Here, the termfitness function and objective function are used
interchangeably to refer to the route reliability function of (2).
Further classical details with regards to the fair comparison
of MOAs based on the number of fitness function consumed
can be found in [32], [33]. Thus, at the start of the algorithm,
the iteration counter IC is initialized as IC ← 0 and incre-
mented + + IC each time the fitness function is evaluated.
Hence, the algorithm stops once IC > NFE .

VOLUME 8, 2020 145475

H. Bello-Salau et al.: New Discrete CSO Algorithms for Effective Route Discovery in IoT-Based VANETs

2) INITIALIZATION STAGE
The initialization stage applies to both DCSO variants. Here,
both algorithms begin by constructing a population of ran-
domly generated solutions. A single solution (i.e. an egg)
in a nest is a single loop-free Hamiltonian path from the
infrastructure S through every indexed vehicle (vertices) in
the network. An example of a single solution is depicted
in Fig. 4(a). The example in Fig. 4(a) depicts a network
with seven nodes (i.e including the infrastructure and 6 other
vehicles), thus, NV = 7 in this case. Hence, a single solu-
tion in this example is a single loop-free route given as S-
v4-v6-v1-v2-v5-v3. A population of solutions is illustrated
in Fig. 4(b). In this case, several randomly generated Hamil-
tonian routes are obtained yielding a population matrix of
size NP × NV .

FIGURE 4. Representation of a single route and the case of multiple
possible single routes.

We shall refer to a single solution (i.e a route) as V (k),
which is a set of vertices (i.e vehicles) that make up the
route, thus, V (k)

=
{
v1, v2, v3, . . . , vNV

}
and its corre-

sponding route reliability score is denoted as R(k) computed
using (3). Thus, the population of route scores RP is a vector
stated as

RP =
{
R(k)

}
(11)

for k = 1, 2, 3, . . . ,NP. The algorithm for the initialization
stage is presented in Alg. 1. Since our problem pertains to
maximizing the route reliability score that corresponds to the
best route, thus, step 1 of Alg. 1 initializes the best route reli-
ability score as−∞ so that any subsequent score will always
be greater this initial value. Each step of Alg. 1 contributes
toward generating an initial population of solutions, which
will be further iterated in subsequent stages. We note that the
use of the randperm function in step 6 of Alg. 1 ensures that
no vehicle index (i.e element) is duplicated in a solution (i.e
individual). This is ensured since the randperm(NV) function
simply drawsNV random numbers between 1 andNV without
replacement. By not replacing the numbers that have been
drawn, we avoid the problem of duplicating elements within
an individual.

Algorithm 1 Initialization Stage of DCSO Algorithms
Require: Population size NP, Number of vehicles registered

in the VANET NV
Ensure: Initial population of routes VP, Initial population

of route reliability scores RP, Best route V ∗, Best route
reliability score R∗

1: IC ← 0 *Initialize the fitness evaluation counter*
2: R∗←−∞
3: V ∗← ∅
4: RP← ∅
5: VP← ∅
6: for k = 1 to NP do
7: Use a random permutation function denoted as

randperm(Nv) to generate an individual route V (k)

(as illustrated in Fig. 4(a)). The route reads V (k)
=

randperm(Nv). A simple Fisher-Yates shuffle algo-
rithm can be deployed for this purpose.

8: Compute the reliability score R(k) of this route
using (3)

9: ++ IC *Update fitness evaluation counter*
10: RP←

{
RP,R(k)

}
Save the route reliability score

11: VP←
{
VP,V (k)

}
Save the route

12: if R(k) > R∗ then
13: R∗← R(k) *Update best route reliability score*
14: V ∗← V (k) *Update best route*
15: end if
16: if IC > NFE then
17: Terminate the algorithm
18: return R∗, V ∗

19: end if
20: end for
21: return R∗, V ∗

3) GETCUCKOO STAGE: THE Lévy FLIGHT APPROACH
The population of solutions obtained in the initialization
stage is passed to the getcuckoo stage. The getcuckoo stage
relates to the laying of eggs by a cuckoo in different nests
within the population. Technically, this implies replacing ini-
tial solutions with new solutions. The original CSO algorithm
achieves this stage using the Lévy flight approach, which we
aim to replicate in our discrete version. The use of the Lévy
distribution to generate step-sizes in order to update older
solutions (recall (5)) is the hallmark of the CSO algorithm.
The Lévy distribution yields both short and long step lengths
owing to its long-tailed distribution, thus, it enables the CSO
algorithm to jump out of possible local optimal solutions
toward finding the global optimal solution.

Alg. 2 describes the getcuckoo stage based on the Lévy
distribution, which we term the LF-DCSO approach. It is
noted that the entire output of the initialization stage becomes
the input to the getcuckoo stage. The standard parameter
values required to generate random values from the Lévy dis-
tribution are stated in steps 1 - 3. New solutions are generated
via steps 5 - 23. The Lévy flight step value is computed in

145476 VOLUME 8, 2020

H. Bello-Salau et al.: New Discrete CSO Algorithms for Effective Route Discovery in IoT-Based VANETs

Algorithm 2 Getcuckoo Stage: For the LF-DCSO Approach
Require: Initial population of routes VP, Initial population

of route reliability scores RP, Best route V ∗, Best route
reliability score R∗, Lévy walk parameter λ

Ensure: New population of routes VP, New population of
route reliability scores RP, Best route V ∗, Best route
reliability score R∗

1: λ← 3
2

2: σ 2
v ← 1

3: α← 0.01
4: Compute σ 2

u using (9).
5: for k = 1 to NP do
6: Generate u using (7) and v using (8)
7: Compute the Lévy flight step Lėvy(λ) as

Lėvy(λ) = d u
v−λ e

8: Compute the distanceD between the present routeV (k)

and the best route V ∗. This can be realized using either
the Euclidean or Hamming distance function.

9: Compute the step-size h as h = dα ∗ D ∗ Lėvy(λ)e
10: Apply the inverse mutation operator fINV to obtain a

new solution (i.e a new route) as
V (k)
← fINV (V (k),Q1,Q2, h).

The details of this operator are explained via (12).
11: Compute the reliability score R(k) of this new route

using (3)
12: ++ IC *Update fitness evaluation counter*
13: RP ←

{
RP,R(k)

}
*Save the new route reliability

score*
14: VP←

{
VP,V (k)

}
Save the new route

15: if R(k) > R∗ then
16: R∗← R(k) *Update best route reliability score*
17: V ∗← V (k) *Update best route*
18: end if
19: if IC > NFE then
20: Terminate the algorithm
21: return R∗, V ∗

22: end if
23: end for
24: return R∗, V ∗

step 7. The ceiling function d•e is used to ensure that integer
values are obtained, since we aim to update discrete values.
In step 8, we compute the distance D, which is a measure of
how far a solution differs from the current best route. This
distance measure can be estimated using either the Euclidean
or Hamming distance function. It is noted that small values
of D would be obtained for solutions that are close to the

FIGURE 5. Inverse mutation operation for the LF-DCSO and RW-DCSO
algorithms.

present best solution, which yields smaller step-size values in
step 9. These smaller step-size values invariably improve the
exploitation properties of the LF-DCSO algorithm. Whereas,
for larger values of D, larger step-size values are obtained,
which enhances the exploration properties of the LF-DCSO
algorithm. Consequently, a new solution is obtained in step 10
via the use of our proposed inverse mutation operation
described as follows:
• Inverse Mutation Operation for the LF-DCSO:
The inverse mutation operator fINV works by reversing
a sequence of vertices in a route starting from a first
point of inversion Q1 to a stopping point Q2 (see the
illustration in Fig. 5(a)). The point Q1 is a random
number drawn from a discrete uniform distribution U as

Q1 ∼ U {a, b} , (14)

where a = 2 and b = NV . The value a = 2 is used to
ensure that the infrastructure S remains rooted at index 1
during the operation such that inversion can only take
place from index 2. Thus, once Q1 is drawn, Q2 can be

fINV (V ,Q1,Q2, h) =

{v1, . . . , vh, vb, vb−1, vb−2, vb−h+1} , if Q2 < 1
{v1, . . . , vb−h, vb, vb−1, vb−2, vb−h+1} , if Q2 > NV{
v1, . . . , vQ1, vQ2, vQ2−1, vQ2−2, . . . vQ1+1, vQ2+1, vQ2+2, . . . , vb

}
, if 1 ≤ Q2 ≤ NV

(12)

fINV (V ,Q1) =
{
v1, v2, . . . , vQ1−1, vb, vb−1, vb−2, vQ1

}
(13)

VOLUME 8, 2020 145477

H. Bello-Salau et al.: New Discrete CSO Algorithms for Effective Route Discovery in IoT-Based VANETs

Algorithm 3Getcuckoo Stage: For the RW-DCSOApproach
Require: Initial population of routes VP, Initial population

of route reliability scores RP, Best route V ∗, Best route
reliability score R∗

Ensure: New population of routes VP, New population of
route reliability scores RP, Best route V ∗, Best route
reliability score R∗

1: for k = 1 to NP do
2: Apply the inverse mutation operator fINV in (13) to

obtain a new solution (i.e a new route) as
V (k)
← fINV (V (k),Q1).

3: Compute the reliability score R(k) of this new route
using (3)

4: ++ IC *Update fitness evaluation counter*
5: RP ←

{
RP,R(k)

}
*Save the new route reliability

score*
6: VP←

{
VP,V (k)

}
Save the new route

7: if R(k) > R∗ then
8: R∗← R(k) *Update best route reliability score*
9: V ∗← V (k) *Update best route*

10: end if
11: if IC > NFE then
12: Terminate the algorithm
13: return R∗, V ∗

14: end if
15: end for
16: return R∗, V ∗

obtained as

Q2 = Q1+ h (15)

where h is the step-size computed in step 9 of Alg. 2.
Consequently, for any route V = {v1, v2, v3, . . . , vb},
where b = NV , the general function for the inverse
mutation operator for the LF-DCSO algorithm is given
in (12), as shown at the bottom of the previous page.

The route reliability score is then computed in step 11 of
Alg. 2 for the new route generated using the inverse mutation
operator in step 10. The fitness function evaluation counter is
updated in step 12, and updates are conducted accordingly in
steps 13 - 14. The global best route reliability score is updated
between steps 15 - 18, and the stopping criterion is checked
in steps 19 - 22. Then, the new population of solutions and
their corresponding route reliability scores are outputted to
the next stage.

4) GETCUCKOO STAGE: THE RANDOM FLIGHT APPROACH
It is obvious that the getcuckoo stage for the LF-DCSO
algorithm in Alg. 2 involves a number of computations,
which increases its complexity. Thus, we propose a simpler
and faster approach termed the random flight/walk-based
approach for the getcuckoo stage of the DCSO (RW-DCSO)
algorithm. Essentially, we used the discrete uniform distribu-
tion to determine the first point of inversion Q1 and then we
apply the inverse mutation operation as follows:

Algorithm 4 Empty Nest Stage: For Both DCSO Variants
Require: Output of getcuckoo stage: Population of routes

VP, Population of route reliability scores RP, Best route
V ∗, Best route reliability score R∗

Ensure: New population of routes VP, New population of
route reliability scores RP, Best route V ∗, Best route
reliability score R∗

1: Calculate the number of poorest solutions Z using (16).
2: for k = 1 to Z do
3: Obtain a first point of inversion Q1 using (14).
4: Apply the inversion mutation operation for the

RW-DCSO algorithm to the best route V ∗ using (13)
as fINV (V ∗,Q1, h).

5: end for
6: Replace the Z poorest solutions with the newly mutated

solutions.
7: for k = 1 to NP do
8: Compute the new reliability score R(k) of this new

route using (3)
9: ++ IC *Update fitness evaluation counter*

10: RP ←
{
RP,R(k)

}
*Save the new route reliability

score*
11: VP←

{
VP,V (k)

}
Save the new route

12: if R(k) > R∗ then
13: R∗← R(k) *Update best route reliability score*
14: V ∗← V (k) *Update best route*
15: end if
16: if IC > NFE then
17: Terminate the algorithm
18: return R∗, V ∗

19: end if
20: end for
21: return R∗, V ∗

• Inverse Mutation Operation for the RW-DCSO:
The sequence of vertices are reversed starting fromQ1 to
b, where b = NV . A simple illustration of this process is
shown in Fig. 5(b). The general function for the inverse
mutation operator for the RW-DCSO algorithm is given
in (13), as shown at the bottom of the previous page..

The getcuckoo stage for the RW-DCSO algorithm is sum-
marized in Alg. 3. It is easily observed that Alg. 3 has fewer
computational steps as against Alg. 2, thus providing a faster
option for use under real-time scenario.

5) EMPTY NEST STAGE
The empty nest stage applies to both DCSO variants and
it is the last operation performed by the CSO algorithm in
order to obtain newer and improved solutions. The outputs
of the getcuckoo stage are the inputs to the empty nest stage.
An attempt is made in step 1 of Alg. 4 to discover the number
of poorest solutions Z in the population based on the value of
Pa as follows:

Z = dPa × NV e (16)

145478 VOLUME 8, 2020

H. Bello-Salau et al.: New Discrete CSO Algorithms for Effective Route Discovery in IoT-Based VANETs

Algorithm 5 Overall Proposed DCSO Methods
Require: Population size NP, Number of vehicles registered

in the VANET NV
Ensure: Best route V ∗, Best route reliability score R∗

1: Run Alg.1
Main loop:

2: while Stopping criterion is not satisfied do
3: To use the LF-DCSO method, run Alg. 2,
4: Else, to use the RW-DCSO method, run Alg. 3
5: Run Alg. 4
6: end while
7: return R∗, V ∗

Then, a number of new solutions corresponding to the number
of the poorest solutions are obtained between steps 2 - 5 of
Alg. 4. These new solutions are obtained by mutating the cur-
rent global best route Z times with the aim to replace the poor-
est solutions by these new solutions. This approach allows us
to preserve the quality of the current best route and improve
the exploitation properties of our proposed algorithms.

The algorithm then replaces in step 6 the Z poorest routes
in VP by the new Z solutions obtained between steps 2 - 5.
This can achieved by ranking the population of route reli-
ability scores in RP and then selecting the least Z scores
as the poorest solutions. The positions of these routes with
the poorest route reliability scores can be identified and then
replaced with the new Z solutions.

The algorithm then evaluates this new population of solu-
tions in steps 7 - 21 in order to obtain their new route relia-
bility scores. It proceeds to update the best route reliability
scores and the best route in steps 12 - 15. The stopping
criterion is checked in steps 16 - 19 and the outputs are
returned in step 21. This marks the end of the iterative process
of our proposed DCSO variants. Consequently, an overall
summary of the entire process is presented in Alg. 5.

D. COMPLEXITY ANALYSIS
The complexity analysis of the overall algorithm in Alg. 5
is evaluated in terms of the time complexity (TC) as well
as the fitness function computational complexity (FC) of
the algorithm. Essentially, the TC informs us about the time
scalability of the algorithm as a function of an increasing
input sample size, whereas the FC refers to the number of
times the fitness function is computed in a defined number of
iterations NI .
The variables required to compute the FC include the pop-

ulation size NP, the dimension of an individual solution NV
(i.e the number of vehicles), and the number of iterations NI .
It is noted that a population of solutions is typically generated
once at the initialization stage in step 1 of Alg. 5 (i.e using
Alg. 1) and mutated twice in steps 3 or 4 and in step 5 of
Alg. 5, i.e. both at the getcuckoo stage (Alg. 2 or 3) and in
the empty nest stage (Alg. 4). Consequently, the overall FC

of Alg. 5 can generally be estimated as [32]

FC = NPNV + 2NINVNP (17)

where the first term in (17) accounts for the number of
fitness function computations in Alg. 1, whereas the sec-
ond term accounts for the FC in the other two stages i.e
(Alg. 2 or 3 and Alg. 4). It should be noted that only either of
Alg. 2 or 3 can be used at the getcuckoo stage, which depends
on the specific method (i.e the LF-DCSO or RW-DCSO
method) deployed for use in the route discovery process.
Hence, in the result section, we used the FC measure of (17)
as the stopping criteria to compare the different MOAs eval-
uated in the present article.

On the other hand, the TC is analysed asymptotically by
evaluating the number of for loops encountered in the entire
process of Alg. 5. In this regard, we consider the input sample
size as NPNV , which accounts for both the effect of the total
population of solutions and the number of vehicles in the
network. Thus, it can be observed that only a single for loop
of NP exists in Alg. 1 between steps 6 - 20, in Alg. 2 between
step 5 - 23, in Alg. 3 between steps 1 - 15, and in Alg. 4
between steps 7 - 20. The only other for loop can be seen
between steps 2 - 5 of Alg. 4, which is a function of Z . Thus,
in the absence of any nested for loop and since all other
steps in Alg. 1 - Alg. 4 are computed once in O(1), hence,
the overall TC of Alg. 5 can be approximated as

TC = 3× O(NPNV)+ O(Z) (18)

However, since NPNV � Z and by neglecting the constant
multiplicative term in (18), the overall asymptotic TC of our
DCSO methods reduces to O(NPNV). Then, the worst case
TC of our methods would be O(N 2

P) if NP = NV , which
suggests that in the worst case, our methods are scalable in
quadratic time. Similarly, our methods can be made to run
faster (i.e. reduced to linear time) by ensuring that NP � NV .

VI. RESULTS AND DISCUSSION
We discuss our findings under two main subsections. In the
first subsection, we present and discuss results with regards to
the parameter configuration of our proposed DCSO variants.
In the subsequent subsection, we compare these algorithms
under different vehicle density scenarios, including in low
(10 vehicles), medium (30 vehicles), and high (50 vehicles)
density deployment scenarios. All graphical results were
obtained following 1000 different Monte Carlo trials in order
to improve the statistical significance of our findings. Thus,
we report the mean, best, and worst results obtained per
parameter. The mean results were averaged over the entire
1000 Monte Carlo trials, whereas the best and worst results
are single realizations selected from the 1000 trials. In order
to simulate the received SNR γ in dB at each receiving
vehicle j, we considered for simplicity sake the use of the free
space model stated as

γi,j = PiT − 20 log10(di,j)+20 log10(f)−147.5−wj, (19)

VOLUME 8, 2020 145479

H. Bello-Salau et al.: New Discrete CSO Algorithms for Effective Route Discovery in IoT-Based VANETs

FIGURE 6. Choice of probability of abandoning nests, Pa, for the variants of the DCSO. (a) The mean route reliability was obtained as an average
over 1000 Monte Carlo trials, (b) The best route reliability represents the best route found out of 1000 Monte Carlo trials, (c) The worst route
reliability corresponds to the worst route discovered out of 1000 Monte Carlo trials.

TABLE 1. Parameter settings for simulation.

where PiT is the transmit power of each ith transmitting vehi-
cle, f is the operating frequency of the VANET, wj is the
noise power at each jth receiving vehicle modelled as additive
white Gaussian noise wj ∼ N (0, σ 2

w), σ
2
w = 1 is the noise

variance, and di,j is the Euclidean distance between any i, j
paired communicating vehicle computed as

di,j =
√
(xi − xj)2 + (yi − yj)2, (20)

where the coordinates {xi, yi} and {xj, yj} of any paired vehi-
cles in the VANET were distributed over an area A via a
uniform random distributionU(0,A), forA ∈ <2. A summary
of the parameter values used in our simulation are presented
in Table 1. All codes were written and simulations were
conducted in MATLAB R2019a

Dataset Generation: We considered a square spatial area
of length L = 1 km within which vehicles were randomly
deployed in the VANET. Consequently, it is noted that vehi-
cles were uniformly distributed over an area of A = 1 km2.
Thus, the coordinates {x, y} of each vehicle vwas obtained as

xv = L × ϕv, for v = 1, 2, 3, . . . ,NV (21)

yv = L × φv, for v = 1, 2, 3, . . . ,NV (22)

where ϕ and φ are random numbers generated between 0 and
1 via a uniform distribution function U(0, 1). Thus, any num-
ber of vehicle locations NV can be simulated within a defined
space A. We used this approach to generate the different
vehicle density scenarios considered in the present article
within a 1 km2 area, where the set NV = {10, 30, 50} was

used, which corresponds to the low,medium, and high vehicle
density scenarios, respectively.

A. PARAMETER CONFIGURATION
The performance of our DCSO algorithms is governed by
three main parameters, namely, the probability of discovering
alien eggs (also called the probability of abandoning a nest),
Pa, the population size Np, and the number of times the
fitness function is evaluated, which we term the number of
fitness evaluations. Usually, the number of times the fitness
function is computed typically controls the number of itera-
tions as well as the running time of the algorithm, thus, all
other parameters and performance metrics are compared as a
function of the number of fitness evaluations. Other variables
such as the average velocity of the vehicles involved in the
network and the distance function deployed in the DCSO
variants are also compared in this subsection. The results
reported in this subsection were obtained for the case of the
medium vehicle density scenario (i.e for 30 vehicles in the
network), wherein vehicles were assigned an average velocity
of 20 km/hr (see Section VI-A4).

1) EFFECT OF THE PROBABILITY OF ABANDONING NEST ON
THE ROUTE DISCOVERY PERFORMANCE OF THE DCSO
VARIANTS
Fig. 6 graphs the route reliability scores, which describes the
quality of the discovered routes as a function of the number
of times the fitness function was evaluated by our DCSO
algorithms for different Pa values. Here, we present only the
results obtained for the RW-DCSO algorithm, since the same
performance results were obtained for the LF-DCSO variant.

Fig. 6(a) reports the mean values of the route reliability
scores for different Pa values. We section the range of the fit-
ness evaluations (i.e the x-axis) into three segments, namely,
the fast-run range (i.e. between 1 - 10000 fitness computa-
tions), the mid-run range (i.e. between 10000 - 20000 fitness

145480 VOLUME 8, 2020

H. Bello-Salau et al.: New Discrete CSO Algorithms for Effective Route Discovery in IoT-Based VANETs

FIGURE 7. Choice of Population size, Np, for the variants of the DCSO. (a) The mean route reliability was obtained as an average over
1000 Monte Carlo trials, (b) The best route reliability represents the best route found out of 1000 Monte Carlo trials, (c) The worst route
reliability corresponds to the worst route discovered out of 1000 Monte Carlo trials.

computations), and the long-run range (i.e. between
20000 - 30000 fitness computations). It can be observed
in Fig. 6(a) that using larger Pa values (i.e. Pa ≥ 0.5)
accelerates the DCSO variants into discovering better routes
as against the use of smaller Pa values. However, by the
mid-run range, the use of smaller Pa values, particularly at
Pa = 0.2, obviously outperforms the larger values in finding
better routes. Interestingly, in the long-run, the use of smaller
Pa values clearly outperforms the use of larger values. These
findings clearly suggest that using smallerPa values improves
the exploration properties of the DCSO algorithm, which
ensures that the algorithm avoids being stuck in local optimal
values, as against the observation made for the use of larger
Pa values. Thus, we concluded that the use of Pa = 0.2
in order to configure the DCSO algorithms yields the most
satisfactory results.

Figs. 6(b) and 6(c) present the best and worst route relia-
bility scores found under different Pa values. We observed
that the use of Pa = 0.2 again yielded the best route (i.e
the highest route reliability score) quicker than other values.
In particular, the best route (see Fig. 6(a)) was discovered
at about the end of the fast-run range, and which was well
sustained into the long-run range. With regards to the worst
routes discovered (see Fig. 6(c)), we observed that using
Pa = 0.2 produced the highest reliability score from amongst
the worst routes discovered, which implies that this value
yet again yielded the best route from among the set of worst
routes discovered under different parameter values.

2) EFFECT OF POPULATION SIZE ON THE ROUTE
DISCOVERY PERFORMANCE OF THE DCSO VARIANTS
We studied the effect of different population sizes NP on
the performance of our DCSO variants and our findings are
presented in Fig. 7. We used Pa = 0.2 to configure our
algorithms during the course of examining the different pop-
ulation sizes. The mean route reliability scores in Fig. 7(a)

reveal that the use of NP = 50 yielded the highest score start-
ing in the fast-run range and sustained into the early stages
of the long-run range, until it was surpassed only by NP =
100. It should be noted that under real deployment scenarios,
iterations may not necessarily persist into the long-run range
since this might demand huge computational and memory
resources, as well as prolonged delay. Thus, the algorithms
are required to converge to the best routes either in the fast or
mid-run range. On another note, the process of fairly evaluat-
ing different MOAs based on the number of fitness function
consumed simply ensures that using larger population sizes
does not yield any accuracy advantage for any MOA. This
can be easily explained by noting that the number of batch
computations θ over the computational process is obtained
as θ = NFE

NP
, where NFE is the total number of fitness func-

tion evaluations. Thus, it is easily observed that using larger
NP values in the denominator only reduces the number of
batch computations, thus implying a faster computation time
albeit at the expense of less accurate reliability scores. Thus,
we concluded that the use of NP = 50 yields a satisfactory
result in order to configure our DCSO variants.

Further, Fig. 7(b) shows that the best route was discovered
using NP = 50 from early in the mid-run range, whereas all
other population sizes could only discover the best route far in
the long-run range. Again, we observe in Fig. 7(c) that using
NP = 50 produced the best route reliability score amongst the
set of worst routes discovered. This route was discovered in
the fast and into themid-run range. Thus, these results suggest
that NP = 50 realizes the best performance for both DCSO
variants.

3) EFFECT OF DIFFERENT DISTANCE FUNCTIONS ON THE
ROUTE DISCOVERY PERFORMANCE OF THE LF-DCSO
We recall that different distance functions were used in the
literature with contradictory conclusions. Authors in [25]
adopted the Hamming distance function in their DCSO

VOLUME 8, 2020 145481

H. Bello-Salau et al.: New Discrete CSO Algorithms for Effective Route Discovery in IoT-Based VANETs

FIGURE 8. Choice of the distance function used in the LF-DCSO. (a) The mean route reliability was obtained as an average over 1000 Monte Carlo
trials, (b) The best route reliability represents the best route found out of 1000 Monte Carlo trials, (c) The worst route reliability corresponds to
the worst route discovered out of 1000 Monte Carlo trials.

variant with poorer results to show, whereas authors in [9]
used the Euclidean distance function and obtained better
performances against other routing protocols. Thus, we inves-
tigated the use of both functions in our LF-DCSO variant and
our findings are presented in Fig. 8.

The mean, best, and worst results shown in Figs. 8(a), 8(b),
and 8(c) respectively, show that using the Euclidean distance
function clearly outperforms the use of theHamming distance
function. An explanation for this result is that since both
functions typically aim to compute the similarity (in terms of
distance) between the best route and other routes within the
population, however, the Euclidean distance function pro-
duces larger numerical values than the Hamming distance
function, hence resulting in larger step sizes drawn from the
Lévy flight walk and thus, better routes are found. Conse-
quently, we concluded on the use of the Euclidean distance
function in our LF-DCSO variant. Summarily, based on the
mean results of Fig. 8(a), it is deduced that the Euclidean dis-
tance metric produces approximately about 1300% increase
in its route reliability score over the use of the Hamming dis-
tance metric. This is a significantly large degree of improve-
ment, thus, supporting the overwhelming decision to use the
Euclidean distance function in our methods.

4) EFFECT OF CHANGING VELOCITY ON THE ROUTE
DISCOVERY PERFORMANCE OF THE DCSO VARIANTS
We examined the required velocity of mobile vehicles needed
by our DCSO variants in order to discover the best routes in
VANETs. Here, we investigated different average velocities
and our findings are reported in Fig. 9.

We observed that extremely low route reliability scores
were obtained at high velocities, thus, we used the log-scale
on the y-axis to ensure that results are properly visualized.
Figs. 9(a), 9(b), and 9(c) reveal that the best routes are
established when the average velocities of all vehicles in
the VANET are below 20 km/hr. This observation agrees

with intuition since the topology becomes steadier at lower
mobility rates. Thus, the rest of our comparative analysis in
the next subsection were conducted at an average velocity
of 20 km/hr. It is seen that the reliability score at and above
20 km/hr approximates to zero, thus implying that it is prac-
tically difficult to form reliable routes above such a threshold
value. Further, these results ensure that a threshold velocity
of 20 km/hr can be used in VANETs in order to determine
when vehicles are granted access to the network for onward
routing of information.

B. COMPARATIVE PERFORMANCE ANALYSIS UNDER
DIFFERENT VEHICLE DENSITY SCENARIOS
In this subsection, we compare the route discovery perfor-
mance of our DCSO variants against the GA with roulette
wheel (RW-GA) and the GA with k-means (IGAROT) [1].
The parameter configuration of these algorithms is docu-
mented in Table 2. We explore the case of low, medium, and
high vehicle density scenarios. In each case, we present the
route reliability graphs as well as the actual best routes found.
Our findings are discussed as follows:

TABLE 2. Parameter settings of the methods compared in our
experiments (population size = 50).

1) IN LOW VEHICLE DENSITY SCENARIOS
The low vehicular density scenario comprised 10 nodes
assumed to be vehicles deployed randomly using the uniform
distribution function within a 1 square km. The case of V2I

145482 VOLUME 8, 2020

H. Bello-Salau et al.: New Discrete CSO Algorithms for Effective Route Discovery in IoT-Based VANETs

FIGURE 9. Choice of the average velocity at which vehicles may join the network to establish reliable routes (a) The mean route reliability was
obtained as an average over 1000 Monte Carlo trials, (b) The best route reliability represents the best route found out of 1000 Monte Carlo trials,
(c) The worst route reliability corresponds to the worst route discovered out of 1000 Monte Carlo trials.

FIGURE 10. In low vehicular density (10 vehicles): Comparative route reliability performance of the different algorithms.

communication was considered, wherein the infrastructure,
which could be a server, aims to send information to all vehi-
cles in the VANET. This could be the dissemination of infor-
mation about an accident scene or a dangerous road anomaly
along a certain road. In our simulation, the infrastructure was
located at the origin (0,0) and it aims to ensure that the best
route is found in order to effectively disseminate information
while avoiding the case of multiple routes via the same node.
Fig. 10(a) presents the mean route performance obtained
over 1000 Monte Carlo trials. It shows that the RW-DCSO
algorithm typically discovered the better routes most of the
time during the entire run ranges. This performance was
followed by the IGAROT, RW-GA, and the LF-DCSO. The
least performance of the LF-DCSO algorithm arises from
larger step sizes computed during the Lévy walk, which led
to solutions that fell outside the range of the discrete routes.
Thus, in the event of violating the constraints, the LF-DCSO
algorithm was forced into using smaller step sizes, which
limited its average route discovery performance in most of
the Monte Carlo trials.

Nevertheless, Fig. 10(b) shows the best route reliability
score discovered by each algorithm. Here, it is seen that the
RW-DCSO and LF-DCSO algorithms were able to discover
the best route starting from the fast-run range onwards. The
IGAROT algorithm was able to find the best route only in
the mid-run range, whereas the RW-GA discovered the best
route only in the long run. The worst route scores in Fig. 10(c)
show that the RW-DCSO algorithm produced the best scores
in this category. Thus, the RW-DCSO algorithm is considered
to be the best performer in the low density deployment case.
In terms of percentage increment, it is deduced based on the
mean results of Fig. 10(a) that in the long run our RW-DCSO
algorithm achieved a percentage increment of 5.26%, 8.12%,
and 90.48% in its route reliability score over the IGAROT,
RW-GA, and LF-DCSO algorithms, respectively. Although
not significantly better than the IGAROT and RW-GA in this
case, nevertheless, it outperforms the LF-DCSO algorithm
considerably as already noted above.

The validity of these route reliability scores is corroborated
by the actual discovered best routes provided in Figs. 11.

VOLUME 8, 2020 145483

H. Bello-Salau et al.: New Discrete CSO Algorithms for Effective Route Discovery in IoT-Based VANETs

FIGURE 11. In low vehicular density (10 vehicles): Best discovered route.

FIGURE 12. In medium vehicular density (30 vehicles): Comparative route reliability performance of the different algorithms.

In this case, since all the algorithms were able to converge
to the same best route reliability score (see Fig. 10(b)), thus it
is observed that they all estimated the same best route as seen
in Figs. 11(a) - 11(d), respectively.

2) IN MEDIUM VEHICLE DENSITY SCENARIOS
Thirty nodes were randomly distributed to simulate the case
of the medium vehicle density scenario. The increased num-
ber of vehicles deployed in the VANET obviously increases
the complexity of the route discovery process. The infras-
tructure (i.e. the server) is located at the origin and aims to
disseminate information to all vehicles in the VANET.

The route reliability scores obtained are presented
in Fig. 12. The mean scores in Fig. 12(a) indicate that the
RW-DCSO algorithm demonstrated the greater ability to
discover better routes most of the time. This performance
was followed by the LF-DCSO algorithm, whereas poorer
performances were recorded by the RW-GA and the IGAROT
algorithms. It is evident that discovering the most effective
route in dense vehicular deployment scenarios is a difficult
task to realize, and thus both the GA variants found it quite
challenging to discover good routes in this scenario. In terms
of the best route score, although the GA variants achieved an
early start in finding better routes, yet they never converged to
the best score, whereas it is seen that in the mid and long-run

range, the DCSO variants were able to discover the best
routes. In the case of theworst routes, we observe in Fig. 12(c)
that the RW-DCSO algorithm produced the best route scores
followed by the LF-DCSO algorithm. Thus, we concluded
that the RW-DCSO algorithm suffices as the best performer
in this case. Based on Fig. 12(a), it can be deduced that in the
long run the RW-DCSO algorithm achieved 2.56%, 100%,
and 128.57% percentage increment in its route reliability
score over the LF-DCSO, RW-GA, and IGAROT algorithms,
respectively. Although the RW-DCSO algorithm does not sig-
nificantly outperform the LF-DCSO algorithm, nevertheless,
both algorithms are shown to significantly outperform the
RW-GA and IGAROT algorithms.

To further corroborate our findings, the best discovered
routes are plotted per method in Figs. 13(a) - 13(d). It can
be observed that the same routes are displayed for the
RW-DCSO and the LF-DCSO algorithms. However, it is
seen that the GA variants converged to less efficient routes.
For example, we can observe in Fig. 13(c) that the RW-GA
algorithm opted for the less efficient route from vehicles
29 - 8 - 28 - 5, instead of the shorter route from vehicles
29 - 28 - 8 - 5 as obtained by the RW-DCSO algorithm.
In addition, the IGAROT algorithm selected a less efficient
route in Fig. 13(d) from vehicles 23 - 16, instead of the
more efficient option from vehicles 23 - 15 - 10, which

145484 VOLUME 8, 2020

H. Bello-Salau et al.: New Discrete CSO Algorithms for Effective Route Discovery in IoT-Based VANETs

FIGURE 13. In medium vehicular density (30 vehicles): Best discovered route.

FIGURE 14. In high vehicular density (50 vehicles): Comparative route reliability performance of the different algorithms.

was selected by the DCSO variants. Thus, the results of
Figs. 13(a) - 13(d) have substantiated the numerical scores
earlier graphed in Fig. 12, which indicates that estimating
higher reliability scores validly corresponds to discovering
better routes in physical terms.

3) IN HIGH VEHICLE DENSITY SCENARIOS
The number of vehicles was increased to fifty within the
1 square km area to model a higher density deployment
scenario. The mean scores of Fig. 14() show that it is obvi-
ously more difficult to find better routes in the fast-run range.

However, starting from the mid-run range, it is observed that
the LF-DCSO algorithm races to the better routes and onward
into the long-run range. This is followed by the RW-DCSO
algorithm, whereas the GA variants ranked lower in terms of
finding good routes. Similarly the best route is found by the
LF-DCSO algorithm in Figs. 14(b) and 14(c), respectively.
We can deduce from Fig. 13(a) that in the long run the
LF-DCSO algorithm achieved 42.85%, 525%, and 733.33%
percentage increment in its route reliability score over the
RW-DCSO, IGAROT, and RW-GA algorithms, respectively.
Although marginally superior to the RW-DCSO algorithm,

VOLUME 8, 2020 145485

H. Bello-Salau et al.: New Discrete CSO Algorithms for Effective Route Discovery in IoT-Based VANETs

FIGURE 15. In high vehicular density (50 vehicles): Best discovered route.

both the LF-DCSO and RW-DCSO algorithms are seen to
have significantly outperformed the RW-GA and IGAROT
algorithms.

The best discovered physical routes using each algorithm
are plotted in Figs. 15. It can be observed that indeed, the
LF-DCSO algorithm found the best route by closely follow-
ing the traced routes. We note that the LF-DCSO algorithm
opted for the route from vehicles 9 - 36 - 38, whereas the
RW-DCSO converged to the route from vehicles 9 - 15 - 36
- 38. It is seen that the RW-DCSO algorithm converged to
a longer and less efficient route, thus reducing its best route
reliability score as shown in Fig. 14(b). Further, we observed
the route disparity between both DCSO algorithms at vehicle
22 in Figs. 15(a) and 15(b), respectively. Here, the LF-DCSO
algorithm converged to the more efficient route from vehicles
22 - 14 - 30 - 50, whereas the RW-DCSO algorithm opted
for the less efficient route from vehicles 22 - 30 - 14 - 50.
Thus, we concluded that the LF-DCSO algorithm suffices
as the best performer, nevertheless, the RW-DCSO algorithm
produced a relatively competitive performance in this regard.

C. SUMMARY OF FINDINGS
Our findings are summarized as follows:

1) In terms of the proper fine tuning of the parameters
of our DCSO variants, we suggest the use of smaller
values for the probability of discovering alien eggs,

which leads to a better performance of the algorithm.
Essentially, we have demonstrated that smaller Pa val-
ues improves the exploration property of our proposed
DCSO algorithms, thus ensuring that they do not get
stuck in local optimal.

2) Increasing the population size does not necessarily
lead to better convergence properties. Instead, it simply
increases the computational speed at the expense of
reduced accuracy. This is explained in Section VI-A2,
wherein larger population sizes only increased the step
size and thus exhausted the total number of fitness
evaluations within a shorter time frame, at the expense
of reduced randomness. Further, reduced randomness
leads to reduction in the diversity of the solutions in
the population. Thus, smaller population sizes lead to
better accuracy although at longer processing times.

3) Lower velocity of vehicles, typically at 20 km/hr and
below is required to discover and establish reliable
routes for information dissemination in VANETs.

4) The use of the Euclidean distance function in the
LF-DCSO algorithm leads to improved performance
since it produces larger step sizes in the Lévy flight
walk.

5) The RW-DCSO algorithm generally yielded the best
performance across all the density scenarios investi-
gated in the present article. Essentially, it performed

145486 VOLUME 8, 2020

H. Bello-Salau et al.: New Discrete CSO Algorithms for Effective Route Discovery in IoT-Based VANETs

best in the low and medium density scenarios, and
competed well enough in the high density scenario.

6) The use of the Lévy flight probability distribution func-
tion tomodel step sizes in the LF-DCSO algorithm does
not necessarily lead to better performance as against the
random walk version, which is based on the uniform
random probability distribution function. This is an
interesting finding that may be peculiar to the case
of the discrete combinatorial) optimization problem as
obtained in VANETs. We note as a caveat, that this
improved performance of the random walk may not
necessarily apply in the case of continuous optimiza-
tion problems.

VII. CONCLUSION
Our proposed discrete variants of the cuckoo search optimiza-
tion (DCSO) algorithm, namely, the Lévy and the random
walk approach have been shown to improve route discov-
ery performance in VANETs. The improved performance
of our methods was demonstrated against the genetic algo-
rithm (GA) and its variant termed IGAROT. Our methods
were developed following some freshly investigated ideas,
including the application of the inverse mutation operator in
our DCSO algorithms and a proposed objective function for
modelling the reliability of the communication link between
pairs of communicating vehicles. The proposed methods
are shown to provide improved performance under different
vehicle density scenario. The routing protocol that demon-
strates the viability of our new methods for route discov-
ery in VANETs was discussed. Although shown to provide
improved performance under different operating conditions,
our proposed methods can be further enhanced in the follow-
ing areas: the exploitation property of our methods can be
improved to obtain better solutions in a shorter time range.
Further, they can be extended to the case of actual data trans-
mission in more realistic VANET scenarios to evaluate their
performances under realtime use. We shall consider in future
works the more complex case of vehicles and road network
modelling to cover vehicles moving at different velocities
across the network in the presence of obstacles. The use
of IoT-based long range communication technologies such
as Sigfox, LoRa, NB-IoT can be explored in further works
to increase single hop communication range in VANETs.
Nevertheless, the discovery of candidate Hamiltonian routes
in VANETs for effective communication via single, loop-free
routes is demonstrated to be realizable and should be pursued
and further developed in future IoT-based VANETs.

REFERENCES

[1] H. Bello-Salau, A. M. Aibinu, Z. Wang, A. J. Onumanyi, E. N. Onwuka,
and J. J. Dukiya, ‘‘An optimized routing algorithm for vehicle ad-hoc
networks,’’ Eng. Sci. Technol., Int. J., vol. 22, no. 3, pp. 754–766, 2019.

[2] H. Bello-Salau, A.M.Aibinu, A. J. Onumanyi, E. N. Onwuka, J. J. Dukiya,
and H. Ohize, ‘‘New road anomaly detection and characterization algo-
rithm for autonomous vehicles,’’ Appl. Comput. Informat., pp. 1–10,
Jul. 2020.

[3] A. Dua, N. Kumar, and S. Bawa, ‘‘A systematic review on routing pro-
tocols for vehicular ad hoc networks,’’ Veh. Commun., vol. 1, no. 1,
pp. 33–52, Jan. 2014.

[4] K. Mehta, P. R. Bajaj, and L. G. Malik, ‘‘Fuzzy bacterial foraging opti-
mization zone based routing (FBFOZBR) protocol for VANET,’’ in Proc.
Int. Conf. ICT Bus. Ind. Government (ICTBIG), 2016, pp. 1–10.

[5] M. A. Gawas and S. S. Govekar, ‘‘A novel selective cross layer based
routing scheme using ACO method for vehicular networks,’’ J. Netw.
Comput. Appl., vol. 143, pp. 34–46, Oct. 2019.

[6] H. Bello-Salau, A. J. Onumanyi, A.M.Aibinu, E. N. Onwuka, J. J. Dukiya,
and H. Ohize, ‘‘A survey of accelerometer-based techniques for road
anomalies detection and characterization,’’ Int. J. Eng. Sci. Appl., vol. 3,
no. 1, pp. 8–20, 2019.

[7] F. Abbas and P. Fan, ‘‘Clustering-based reliable low-latency routing
scheme using ACO method for vehicular networks,’’ Veh. Commun.,
vol. 12, pp. 66–74, Apr. 2018.

[8] A. Ouaarab, B. Ahiod, and X.-S. Yang, ‘‘Discrete cuckoo search algorithm
for the travelling salesman problem,’’ Neural Comput. Appl., vol. 24,
nos. 7–8, pp. 1659–1669, Jun. 2014.

[9] B. Ramakrishnan, S. Sreedivya, and M. Selvi, ‘‘Adaptive routing protocol
based on cuckoo search algorithm (ARP-CS) for secured vehicular ad hoc
network (VANET),’’ Int. J. Comput. Netw. Appl., vol. 2, no. 4, pp. 173–178,
2015.

[10] K. Bibiks, Y.-F. Hu, J.-P. Li, P. Pillai, and A. Smith, ‘‘Improved discrete
cuckoo search for the resource-constrained project scheduling problem,’’
Appl. Soft Comput., vol. 69, pp. 493–503, Aug. 2018.

[11] T. E. Ouahmani, A. Chehri, and N. Hakem, ‘‘Bio-inspired routing protocol
in VANET networks—A case study,’’ Procedia Comput. Sci., vol. 159,
pp. 2384–2393, 2019.

[12] S. Bitam, A. Mellouk, and S. Zeadally, ‘‘Bio-inspired routing algorithms
survey for vehicular ad hoc networks,’’ IEEE Commun. Surveys Tuts.,
vol. 17, no. 2, pp. 843–867, 2nd Quart., 2015.

[13] A.M. Oranj, R. M. Alguliev, F. Yusifov, and S. Jamali, ‘‘Routing algorithm
for vehicular ad hoc network based on dynamic ant colony optimization,’’
Int. J. Electron. Electr. Eng., vol. 4, no. 1, pp. 79–83, 2016.

[14] H. Dong, X. Zhao, L. Qu, X. Chi, and X. Cui, ‘‘Multi-hop routing opti-
mization method based on improved ant algorithm for vehicle to roadside
network,’’ J. Bionic Eng., vol. 11, no. 3, pp. 490–496, Sep. 2014.

[15] M. Chahal and S. Harit, ‘‘A stable and reliable data dissemination scheme
based on intelligent forwarding in VANETs,’’ Int. J. Commun. Syst.,
vol. 32, no. 3, p. e3869, Feb. 2019.

[16] M. Chahal and S. Harit, ‘‘Network selection and data dissemination in het-
erogeneous software-defined vehicular network,’’Comput. Netw., vol. 161,
pp. 32–44, Oct. 2019.

[17] V. Jindal and P. Bedi, ‘‘An improved hybrid ant particle optimization
(IHAPO) algorithm for reducing travel time in VANETs,’’ Appl. Soft
Comput., vol. 64, pp. 526–535, Mar. 2018.

[18] H. Rana, P. Thulasiraman, and R. K. Thulasiram, ‘‘MAZACORNET:
Mobility aware zone based ant colony optimization routing for VANET,’’
in Proc. IEEE Congr. Evol. Comput., Jun. 2013, pp. 2948–2955.

[19] M. B. Wagh and N. Gomathi, ‘‘Route discovery for vehicular ad hoc
networks usingmodified lion algorithm,’’Alexandria Eng. J., vol. 57, no. 4,
pp. 3075–3087, Dec. 2018.

[20] M. Fahad, F. Aadil, S. Khan, P. A. Shah, K.Muhammad, J. Lloret, H. Wang,
J. W. Lee, and I. Mehmood, ‘‘Grey wolf optimization based clustering
algorithm for vehicular ad-hoc networks,’’ Comput. Electr. Eng., vol. 70,
pp. 853–870, Aug. 2018.

[21] S. Bitam and A. Mellouk, ‘‘Bee life-based multi constraints multicast
routing optimization for vehicular ad hoc networks,’’ J. Netw. Comput.
Appl., vol. 36, no. 3, pp. 981–991, May 2013.

[22] M. Elhoseny, ‘‘Intelligent firefly-based algorithm with Levy distribution
(FF-L) for multicast routing in vehicular communications,’’ Expert Syst.
Appl., vol. 140, Feb. 2020, Art. no. 112889.

[23] R. Hajlaoui, E. Alsolami, T. Moulahi, and H. Guyennet, ‘‘Construction
of a stable vehicular ad hoc network based on hybrid genetic algorithm,’’
Telecommun. Syst., vol. 71, no. 3, pp. 433–445, Jul. 2019.

[24] X. Bao, H. Li, G. Zhao, L. Chang, J. Zhou, and Y. Li, ‘‘Efficient clus-
tering V2V routing based on PSO in VANETs,’’ Measurement, vol. 152,
Feb. 2020, Art. no. 107306.

[25] A. D. Masegosa, E. Osaba, J. S. Angarita-Zapata, I. Laña, and J. D. Ser,
‘‘Nature-inspired metaheuristics for optimizing information dissemination
in vehicular networks,’’ in Proc. Genetic Evol. Comput. Conf. Companion,
Jul. 2019, pp. 1312–1320.

VOLUME 8, 2020 145487

H. Bello-Salau et al.: New Discrete CSO Algorithms for Effective Route Discovery in IoT-Based VANETs

[26] M. Chahal and S. Harit, ‘‘Optimal path for data dissemination in vehicular
ad hoc networks using meta-heuristic,’’ Comput. Electr. Eng., vol. 76,
pp. 40–55, Jun. 2019.

[27] B. Du, Q.Wei, and R. Liu, ‘‘An improved quantum-behaved particle swarm
optimization for endmember extraction,’’ IEEE Trans. Geosci. Remote
Sens., vol. 57, no. 8, pp. 6003–6017, Aug. 2019.

[28] L. Tong, B. Du, R. Liu, and L. Zhang, ‘‘An improved multiobjective
discrete particle swarm optimization for hyperspectral endmember extrac-
tion,’’ IEEE Trans. Geosci. Remote Sens., vol. 57, no. 10, pp. 7872–7882,
Oct. 2019.

[29] M. Xu, B. Du, and Y. Fan, ‘‘Endmember extraction from highly mixed
data using linear mixture model constrained particle swarm optimiza-
tion,’’ IEEE Trans. Geosci. Remote Sens., vol. 57, no. 8, pp. 5502–5511,
Aug. 2019.

[30] C. H. Papadimitriou, ‘‘The Euclidean travelling salesman problem is NP-
complete,’’ Theor. Comput. Sci., vol. 4, no. 3, pp. 237–244, Jun. 1977.

[31] X. S. Yang and S. Deb, ‘‘Cuckoo search via Lėvy flights,’’ in Proc. World
Congr. Nature Biol. Inspired Comput. (NABIC), 2009, pp. 210–214.

[32] M. Črepinšek, S.-H. Liu, L. Mernik, and M. Mernik, ‘‘Is a comparison of
results meaningful from the inexact replications of computational experi-
ments?’’ Soft Comput., vol. 20, no. 1, pp. 223–235, Jan. 2016.

[33] N. Veček, M. Mernik, B. Filipič, and M. Črepinšek, ‘‘Parameter tuning
with chess rating system (CRS-Tuning) for meta-heuristic algorithms,’’ Inf.
Sci., vol. 372, pp. 446–469, Dec. 2016.

HABEEB BELLO-SALAU (Member, IEEE)
received the B.Tech. degree in electronic/electrical
engineering from the Ladoke Akintola Univer-
sity of Technology, Ogbomoso, Nigeria, in 2009,
the M.Sc. degree in communication engineering
from International Islamic University Malaysia,
Kuala-Lumpur, in 2012, and the Ph.D. degree
in communication engineering from the Federal
University of Technology Minna, Minna, Nigeria,
in 2017. He is currently with the Department of

Computer Engineering, Ahmadu Bello University, Zaria, Nigeria. He has
authored and coauthored more than 20 different research articles in peer
reviewed journals and over 30 conference papers. His research interests
include digital signal and image processing, vehicle ad-hoc networks, artifi-
cial intelligence, cognitive radio, and wireless sensor networks.

ADEIZA JAMES ONUMANYI (Member, IEEE)
received the B.Eng. degree in electrical and
electronics engineering from Abubakar Tafawa
Balewa University, Bauchi, Nigeria, in 2005,
and the M.Eng. and Ph.D. degrees in commu-
nication engineering from the Federal Univer-
sity of Technology (FUT) Minna, Minna, Nigeria,
in 2010 and 2014, respectively. He was a Post-
doctoral Research Fellow with the University of
Pretoria, South Africa, from 2018 to 2019. He is

currently a Lecturer with the Department of Telecommunication Engineer-
ing, FUT Minna. He has published several research articles in different
peer reviewed journals, and in different IEEE flagship conferences. He has
won several grants at FUT Minna, served on several organizing committees
for different conferences, including the IEEE conferences, reviewed several
articles for high impact journals. He has participated in different technical
workshops. His research interests include spectrum sensing in cognitive
radio, wireless sensor networks, radar systems, image processing, cyber
physical systems, and low powered wireless area networks.

ADNAN M. ABU-MAHFOUZ (Senior Member,
IEEE) received the M.Eng. and Ph.D. degrees
in computer engineering from the University of
Pretoria. He is currently a Principal Researcher
with the Council for Scientific and Industrial
Research (CSIR), a Professor Extraordinaire with
the Tshwane University of Technology, a Visit-
ing Professor with the University of Johannes-
burg, and an Extraordinary Faculty member with
the University of Pretoria. He has participated

in the formulation of many large and multidisciplinary Research and
Development successful proposals (as a Principal Investigator or a main
Author/Contributor). He is the founder of the Smart Networks collaboration
initiative that aims to develop efficient and secure networks for the future
smart systems, such as smart cities, smart grid, and smart water grid. His
research interests include wireless sensor and actuator networks, low power
wide area networks, software defined wireless sensor networks, cognitive
radio, network security, network management, and sensor/actuator node
development. He is a member of many IEEE Technical Communities. He is
an Associate Editor of IEEE ACCESS, the IEEE INTERNET OF THINGS, and the
IEEE TRANSACTION ON INDUSTRIAL INFORMATICS.

ACHONU O. ADEJO (Member, IEEE) received
the first degree in electrical/computer engineering
from the Federal University of TechnologyMinna,
Minna, Nigeria, in 2006, the M.Sc. degree from
the University of Nottingham Malaysia, in 2010,
and the Ph.D. degree in electrical engineering from
Newcastle University, U.K., in 2018. His doctorate
program was carried out in the Communications,
Sensors and Signal processing group at the School
of Engineering. Since 2010, he has been with the

Federal University of Technology Minna. His current research interests
include resourcemanagement andmodeling of cellular communications with
focus on 5G communications and D2D networks.

MUHAMMED BASHIR MU’AZU (Member,
IEEE) received the M.Sc. and Ph.D. degrees from
Ahmadu Bello University, Zaria, Nigeria. He is
currently the Research Team Lead of the Concept
to Product Laboratory and the Head of the Depart-
ment of computer Engineering, Ahmadu Bello
University. He was the Coordinator of the Cisco
Network Academy and the Deputy Director of the
ICT Directorate and the immediate past Director
of the Institute (ICICT), ABU Zaria. He led the

University Fibre-Optic Backbone project toward networking the whole Uni-
versity. A project to which he won the Vice Chancellor’s distinguishing
Award during the 2014 convocation. He is the Chairman of the Nigerian
Communications Commission (NCC), and the Inter-Agency Committee
on Telecommunications Research Proposals from the Academia. He has
authored and coauthored more than 60 different research articles in peer
reviewed journals and over 40 conference papers. His research interests
include control systems, computational intelligence and bio-inspired sys-
tems, computing and networking, microcontroller applications, and energy
systems.

145488 VOLUME 8, 2020

