
Journal of Water Resource and Protection, 2011, 3, 747-757 
doi:10.4236/jwarp.2011.310085 Published Online October 2011 (http://www.SciRP.org/journal/jwarp) 

Copyright © 2011 SciRes.                                                                               JWARP 

Nonlinear Deterministic Chaos in Benue River  
Flow Daily Time Sequence 

Otache Yusuf Martins, Mohammed Abubakar Sadeeq, Isiguzo Edwin Ahaneku 
Department of Agricultural & Bioresources Engineering, Federal University of Technology, Minna, Nigeria 

E-mail: martynso_pm@yahoo.co.uk 
Received June 21, 2011; revised July 29, 2011; accepted September 3, 2011  

Abstract 
 
The Various physical mechanisms governing river flow dynamics act on a wide range of temporal and spa-
tial scales. This spatio-temporal variability has been believed to be influenced by a large number of variables. 
In the light of this, an attempt was made in this paper to examine whether the daily flow sequence of the Be-
nue River exhibits low-dimensional chaos; that is, if or not its dynamics could be explained by a small num-
ber of effective degrees of freedom. To this end, nonlinear analysis of the flow sequence was done by evalu-
ating the correlation dimension based on phase space reconstruction and maximal Lyapunov estimation as 
well as nonlinear prediction. Results obtained in all instances considered indicate that there is no discernible 
evidence to suggest that the daily flow sequence of the Benue River exhibit nonlinear deterministic chaotic 
signatures. Thus, it may be conjectured that the daily flow time series span a wide dynamical range between 
deterministic chaos and periodic signal contaminated with additive noise; that is, by either measurement or 
dynamical noise. However, contradictory results abound on the existence of low-dimensional chaos in daily 
streamflows. Hence, it is paramount to note that if the existence of low-dimension deterministic component 
is reliably verified, it is necessary to investigate its origin, dependence on the space-time behavior of pre-
cipitation and therefore on climate and role of the inflow-runoff mechanism. 
 
Keywords: Deterministic Chaos, Nonlinear Dynamics, Phase Space, Correlation Dimension, Time Delay 

1. Introduction 
 
One aspect which hydrologists have been extensively 
working on is the structure of hydrological processes, 
such as rainfall and runoff [1]. Even though, during the 
past decades, a number of mathematical models have 
been proposed for modelling hydrological processes, 
there is, however, no unified mathematical approach. In 
part, this difficulty stems from the fact that hydrological 
processes exhibit considerable temporal variability; by 
extension, another part of this difficulty is due to the 
limitation in the availability of ‘appropriate’ mathemati-
cal tools to exploit the structure underlying the hydro-
logical processes [1]. The tremendous spatial and tem-
poral variability of the hydrological processes has been 
believed, until recently, to be due to the influence of a 
large number of variables. Consequently, the majority of 
the previous investigations on modelling hydrological 
processes have essentially employed the concept of sto-
chastic process. However, recent studies have indicated 

that even simple deterministic systems, influenced by a 
few nonlinear interdependent variables, might give rise 
to very complicated structures (i.e., deterministic chaos) 
[1]. Therefore, it is now believed that the dynamic struc-
tures of the seemingly hydrological processes, such as 
rainfall and runoff, might be better understood using 
nonlinear deterministic chaotic models than the stochas-
tic ones. Despite this posturing though, “it is highly im-
probable that complex natural phenomena may be con-
trolled only by the presence of a chaotic dynamics”; 
rather, if it is present, it most likely coexists with other 
types [2]. It is therefore a weaker form of determinism 
which may be hidden in complex natural systems. As 
affirmed by Grassberger [3], “the emphasis should not be 
whether the strongest form of determinism (absence of 
all random noise) is a good model for the underlying 
process, but rather whether the weakest form of deter-
minism consistent with other tests can be ruled out”. 

Against the backdrop of the dynamics governing river 
flow, therefore, investigating the existence of a chaotic 
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component and more generally, nonlinear time sequence 
analysis may be useful in understanding some aspects of 
the phenomenon of river flow process. This is imperative 
considering the fact that river flow dynamics is linked 
both to the climate, through precipitations, radiation, etc., 
and to the inflow-runoff transformation. Thus, the exis-
tence of chaos cannot be excluded a priori. Generally, it 
should be noted that there are some aspects of the in-
flow-runoff transformation which may reduce the com-
plexity of the local dynamics of the climate, shading 
some degrees of freedom and privileging others. For in-
stance, especially, the geometric, hydraulic, and hydro-
geological characteristics of the watershed [2], and the 
topology of the network (e.g., [4-6]), and the presence of 
aquifers and storage capacities such as lakes should not 
be ignored a priori. Some of these effects, individually or 
as a whole, may shade the strong spatial and temporal 
variability of the precipitations, reducing the number of 
active degrees of freedom and producing a strong 
nonlinear deterministic character. This does not mean 
that river flows are exclusively reducible to a nonlinear 
interaction of a few degrees of freedom. Even simple 
hydrological considerations reveal the error of such an 
assertion [3]. Therefore, what is important is to investi-
gate if the dynamics of the discharges of a river has a 
dominant chaotic component on which high-dimension 
linear and nonlinear dynamics are grafted. The theory of 
nonlinear dynamic systems associated with the concept 
of strange attractors provides a new technique for time 
series analysis; this is because in many instances, the 
time series can be viewed as a dynamic system with a 
low-dimensional attractor which can be reconstructed 
using the ‘time delay embedding method’. The dynamic 
systems theory approach has been applied to analyse 
weather and climate data ([7-10]). These studies focused 
on the calculation of the geometric and dynamic invari-
ants of an underlying attractor from a time series of ob-
servations, such as the fractal dimension and the 
Lyapunov exponents. The calculated invariants can be 
used to diagnose whether the time series is chaotic or 
not.  

In a simple contextual framework, the term “chaos” is 
used to denote the irregular behaviour of dynamical sys-
tems arising from a strictly deterministic time evolution 
without any source of external stochasticity but with sen-
sitivity to initial conditions. From a physical point of 
view, the most striking difference between a picture 
based on a stochastic description and the approach based 
on deterministic chaos is essentially contained in the 
very different number of variables, which characterise 
the system [11]. If, given some irregular dynamics, one 
is able to show that the system is dominated by a low- 
dimensional attractor (an attractor is a geometric object 

that characterises long-term behaviour of a system in the 
phase-space), then an important physical result is that the 
system dynamics can be described by only a few modes 
and hence a small system of ordinary differential equa-
tions [11]. This is in sharp contrast to the behaviour of 
systems dominated by a very large number of excited 
modes which are in general better described by stochas-
tic or statistical models. 

Thus, determining the presence of low-dimensional 
attractor from time series data has important dynamical 
implications. Hence, the calculation of the system di-
mension is one of the steps toward this goal. The central 
idea behind the application of this approach is that sys-
tems whose dynamics are governed by stochastic proc-
esses are thought to have an infinite value for the attrac-
tor dimension, whereas a finite, low, non-integer value of 
the dimension is considered to be a strong indication of 
the presence of deterministic chaos [11]. This assertion is 
premised on the realisation that stochastic processes are 
thought to fill very large-dimensional subsets of the sys-
tem phase-space, while the existence of a low-dimen- 
sional (chaotic) attractor implies that only a rather low- 
dimensional sub-set of the phase-space is asymptotically 
visited by the system motion. In apt recognition of the 
issues involved, the central thesis of this paper is to test 
the hypothesis that the daily streamflow process of the 
Benue River can be described by a small set of variables; 
that is, it is low-dimensional. The importance of this can 
be understood against the premise that such evidence 
may be useful for developing low-order models that may 
help to explain whether whatever prevailing variability in 
the dynamics of the flow process might be linked to 
low-frequency climatic variability. 
 
2. Materials and Methods 
 
2.1. Hydrology of the Benue River/Data Base  

Management 
 
In this study, historical time series for gauging stations at 
the base of the Benue River (i.e., Lower Benue River 
Basin) at Makurdi (7˚44′N, 8˚32′E) was used. A total of 
26 years (1974-2000) water stage and daily discharge 
data were collected. The Benue River is the major tribu-
tary of the Niger River. It is approximately 1400 km long 
and almost navigable during the rainy season (between 
July and October). Its headwaters rise in the Adamawa 
Plateau of the Northern Cameroon, flows into Nigeria 
south of the Mandara Mountains through the east-central 
part of Nigeria. There is only one high-water season be-
cause of its southerly location; this normally occurs from 
May to October, while on the other hand, the low-water 
period is from December to June. Figure 1 explains the      
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Figure 1. General hydrological year flow regime. 
 
hydrological flow regime of the Benue River in line with 
the general climatic pattern. There are definite wet and 
dry seasons which give rise to changes in river flow and 
salinity regimes. The flood of the Benue River (upper, 
middle, and downstream) lasts from July to October, and 
sometimes up to early November.  

The mean daily discharges are as shown in Figure 2. 
Clearly visible are the flood peaks and the seasonal pe-
riodicity, with both large and small discharges during the 
year. Such persistent regimes are related to regional cli-
matic variability. Besides, the autocorrelation and spec-
tral analyses provide the first important indications on 
the aperiodicity of the signal under examination. Figure 
3 shows the autocorrelation for values of the delay time 
(lag) between 0 days and about 5 years. After a rapid 
decrease, the autocorrelation function displays a regular 
behaviour, which represents the effect of the seasonal 
characteristic of the discharges, due, besides the rainfall 
regime, to other hydrologic forcing which breathes with 
the season. Similarly, it is clearly obvious as shown by 
Figure 4 that once the annual periodic component has 
been filtered out from the series through least squares 
method, the spectral density exhibits a typical broadband 
behaviour. The spectrum does not show any privileged 
frequencies, but rather a linear decay that links the whole 
range of frequency components. The fact that the spec-
trum is continuous with a pronounced and wide base 
underscores the aperiodicity of the series; but the prob-
lem however is, how much does the character of this 

complex aperiodicity and irregularities translate to de-
terministic chaos when the frequencies are observed 
critically. 
 
2.2. Reconstruction of Phase-Space (Attractor) 

by Time Delay Embedding 
 
The first step in the search for a deterministic behaviour 
is that of attempting to reconstruct the dynamics in phase 
space. Having available the time series of only one of the 
variables present in the phenomenon, that is, the dis-
charge  ix t , the delay time method proposed by 
Takens [12] and Packard et al., [13] can be used to re-
construct the attractor; this is based on the fact that the 
interaction between the variables is such that every 
component contains information on the complex dynam-
ics of the system. Choosing a delay time τ usually a mul-
tiple of sampling period t , the method entails the con-  

struction of a series of 
 1m

M
t





 vectors, of the 

dimension m, of the form:  

        , , , 1i i i ix t x t x t x t m          (1) 

where,  2,3,m m    is called the embedding dimen-
sion.  

To construct a well-behaved phase space by delay 
time, a careful choice of   is critical. The delay time 
  is commonly selected b  using the autocorrelation  y   
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Figure 2. Daily discharge time series behaviour. 
 

 

Figure 3. Autocorrelation of the original series. 
 

 

Figure 4. Spectral density of the filtered flow series (i.e., after the removal of annual periodicity).    
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function (ACF) method where ACF first attains zeros or  

drops below a small value, say 
4

1

e
, or the mutual infor-  

mation (MI) method according to Fraser and Swinney 
[14] where the MI attains a minimum. Here, the delay 
time   was taken as the lag that first generates a zero 
autocorrelation, which is when the autocorrelation func-
tion crosses the zero line [15]. Figure 5 shows that this 
happened at lag time equals to 78 days. In practice, the 
estimate of   is usually application and author de-
pendent; for instance, some authors take the delay time 
as 1 day [2], 2 days [16], 7 days [17], 10 days [18], 20 
days [19], 91 days [20], and 146 days [21]. These differ-
ences may arise from the nature of the autocorrelation 
function; to compare the influence of the delay time   
on the construction of state phase, the state phase maps 
can be plotted for differing   values. The best   
value should make the state phase plot best unfolded. 
Towards this end, the state phase map was constructed 
for different   values (  = 1, 7, 10, 30, and 78). The 
best unfolding was obtained at   = 78; therefore,   = 
78 was adopted for estimating the correlation dimension 
of the daily streamflow process. 
 
Estimation of Correlation Dimension 
The most commonly used algorithm for computing the  

correlation dimension is the Grassberger-Procaccia algo-
rithm [22]. For m-dimensional phase-space, the basic 
formula is given by 

     
1 1

2

1

N N

i j
i j i

C r r x x
N N   

  
         (2) 

subject to the constraints:  
 
 

0, if 0

1, if 0

x x

x x

  
  

where,  x  is the Heaviside step function, and r is the 
radius between the pair of points in phase space. The 
straightforward estimator, Equation (2), is biased to-
wards too small dimensions when the pairs entering the 
sum are statistically independent [23]. For time series 
data with nonzero autocorrelations, independence cannot 
be assumed; for instance, the embedding vectors at suc-
cessive times are often also close in phase space due to 
the continuous time evolution [23], called temporal cor-
relation. In the calculation of correlation dimension, 
temporal correlation may lead to serious underestimation 
unless the necessary care is taken. 

In order to avoid the problem of temporal correlation, 
a modified form of Equation (2) was used in the compu-
tation of the correlation dimension, as given by Equation 
(3) and implemented in the TISEAN 3.0 Software pack-
age. 

 

      
min1 1

min min

2

1
N N

i ji j n
C r r x x

N n N n   


                              (3) 

 

 

Figure 5. Detail of the autocorrelation for both original and the first differenced series.     
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where, nmin is a threshold value such that pairs of vectors 
in the m-dimensional phase space which are closer in 
time than it are discarded to avoid temporal correlations 
that may contaminate the result. For the implementation 
of Equation (3), nmin was set to 182 for the daily flow 
series as suggested by Wang et al., [20]. The correlation 
integral C(r) and the correlation exponent D were com-
puted for the data using different values of the delay time 
in order to examine objectively the appropriate delay 
time. For a finite data set, there is a radius below which 
there are no pairs of points, whereas at the other extreme, 
when the radius approaches the diameter of the cloud of 
points, the number of pairs will no longer increase as the 
radius increases (i.e., saturation point). The scaling re-
gion would be found somewhere between depopulation 
and saturation. Local slopes of “lnC(r)” versus “lnr” can 
indeed show clearly the scaling region if it does exist. 
The local slopes  for this case were computed ac-
cording to Equation (4). 

i

   
   

1 1

1 1

log log

log log
i

i

i i

C r C r

r r


 

       


i        (4) 

 
2.3. Maximal Lyapunov Exponent 
 
Since a positive maximal Lyapunov exponent is a strong 
signature of deterministic chaos, it is of considerable 
interest to determine its value; at least to complement the 
results obtained with the correlation dimension method. 
The first algorithm for this purpose was suggested by 
Wolf et al., [24]. This algorithm does not provide for the 
testing of the presence of exponential divergence, but 
just assumes its existence and thus yields a finite expo-
nent for stochastic data also, where the true exponent is 
infinite [24]. For the computation of the maximal 
Lyapunov exponent, the algorithm introduced recently 
by Rosenstein et al., [25] and Kantz [26] independently 
was adopted. The implementation of the algorithm was 
done by using the TISEAN 3.0 Software package. The 
algorithm tests directly for the exponential divergence of 
nearby trajectories and thus allows one to decide whether 
it really makes sense to compute a Lyapunov exponent 
for a given data set. Essentially, the Lyapunov exponent 
is an average of these local divergence rates over the 
whole data. 
 
2.4. Nonlinear Prediction 
 
The use of chaotic models to forecast follows the recent 
trend of viewing most of the natural phenomena in a 
nonlinear way. In the chaotic approach, the governing 
assumption is that the discharges are driven by a multi-
variate dynamical system  and observed 

through the equation . Let m be the dimen-
sion of the attractor of the original and unobservable 
system 

 1t tX F X 

 tY h X t

tX ; the characteristics of the dynamics can be 
analyzed in a reconstructed phase space obtained by the 
d-dimensional vectors Y Y , where   1, , ,t t dY Y t t
  is called delay time and d, embedding dimension. As 
a consequence, in the reconstructed phase space there 
exists a deterministic dynamic f such that 

 1, t dY  1 1, ,t t tY f Y Y             (5) 

Equation (5) can be used to forecast the future of the 
time series  tY  and a good prediction depends, essen-
tially, on the ability of approximating the dynamic f with 
an estimate f. To execute nonlinear prediction as de-
scribed above, there is the need to find an approximation 
of f in Equation (5). This can be done by several methods, 
starting with polynomial representations, from Kernel or 
Spline methods, up to Neural Networks, Wavelets or the 
Nearest Neighbours’ method. The nonlinear prediction 
was performed by adopting the method of local constant 
approximation using the Fast Neighbour search algo-
rithm [23], and implemented in the TISEAN 3.0 Soft-
ware package.  
 
3. Results and Discussion 
 
3.1. Correlation Dimension 
 
Analyses of correlation dimension for the presence of 
deterministic chaos in streamflow series for timescales of 
daily, monthly and discharge derivative values show 
contrasting results. For instance, Savard [27] analysed 
the 27009 data point for Merced River discharge deriva-
tive  Q1tQ   t  and found no low dimensional attractor, 
Wilcox et al., [19] presented a thorough CIA analysis of 
a standardised (periodicity removed), log-transformed 
runoff record and also found no low dimensional attrac-
tor, Wang et al., [20] carried out a similar detailed analy-
sis on selected streamflow series in China, and found no 
low dimensional attractor; in general, their analysis re-
vealed that using a short time lag results in a significant 
underestimate of the correlation dimension. However, 
Jayawardena and Lai [16] investigated rivers in Hong 
Kong, but used very short (2 - 3 days) time lags. Their 
reported correlation dimension of ~ 0.45 violate reality; 
no fewer than 3 degrees of freedom can generate chaos 
[21], and chaotic attractors cannot have a correlation 
dimension less than 1, except on a mapping [28]. Physi-
cally, a correlation dimension equals to 0.45 means that a 
river could arbitrarily jump from one location to another 
and likewise discontinuously vary its velocity and accel-
eration [28]. Against the backdrop of the assertions re-
ported above, most of the results reported in literature on 
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the fractal dimensions of hydrologic systems reveal in-
consistent and unreliable applications of correlation inte-
gral analysis (CIA) in particular and chaos theory in 
general. To understand why records of daily river dis-
charge are not likely to yield low dimensional attractors, 
it is useful to consider what happens to the data when it 
is embedded. Analysed as if they are random, river dis-
charge data are most likely to fit the log-normal distribu-
tion, with most points falling in a narrow range of values 
and a few present as outliers. 

The essence of the discussion above is to put the ex-
isting results in perspective so as to provide an objective 
framework for drawing conclusions on the findings in 
this study. It is important to note that some authors do 
not provide scaling region when reporting on the inves-
tigation aimed at determining the existence of chaos (e.g., 
[16,11,18]), whereas others do, but give no obvious 
scaling region (e.g., [2]). However, a clearly discernible 
scaling region is crucial for making a convincing and 
reliable estimate of correlation [23]. In respect of this, as 
reported in Figure 6, there is no visible scaling region; 
this does indicate that there is no presence of chaotic 
behaviour. 

Looking at the result obtained further, given the limi-
tations of the autocorrelation function approach, which 
was used here, an effort was made to study the effect of 
the delay time on the correlation dimension estimate. 
Figure 7 shows the relationship between the correlation 
exponent values and the embedding dimension while 
using differing values of delay time. It can be seen from 
Figures 7 and 8 that the correlation dimension exhibits 
an increasing behaviour without a saturation point, which 
is a basic indicator of deterministic chaos, thus suggest-
ing the lack of the presence of chaos in the daily stream-
flow series. But Bellie, S. et al., [11], Havstad and Ehlers 
[29] contend that correlation dimension estimated with a 
considerably small or large delay time can result in un-
derestimation and over-estimation of the correlation di-
mension. They opined that when the delay time is large, 
the successive coordinates in the embedding vector are 
independent of each other thus converging to a random 
process. This bring to mind the question of spurious cor-
relation; most of these results do not take into account 
temporal correlation that might result when the Grass-
berger and Procaccia [22] formulation of the correlation 
integral equation is used directly without making allow-
ance for the exclusion of temporal correlation. In addi-
tion, it is reported in some literatures that the first differ-
ence series of the streamflow gives important indications 
about the existence of a chaotic component (e.g., [2,30]). 
But as noted in Figure 9, it is obvious that both the fil-
tered and original stream flow series do not show evi-
dence of deterministic chaos. However though, one no-

table feature in Figure 9 is that when differenced data 
series was used, the correlation dimension is, in general, 
much larger than that of the original data, and does not 
converge at all. This finding accords with that of 
Provenzale et al., [31]; thus, one may be tempted to con-
clude that some of the results to the contrary, might be 
due to spurious convergence. 
 
3.2. Maximal Lyapunov Exponent 
 
For a time series generated by deterministic dynamical 
systems, positive characteristic exponents indicate the 
presence of chaos; this is why it is sufficient to calculate 
the largest Lyapunov exponent (λ). Table 1 reports the  
 

Table 1. Estimated maximal lyapunov exponent. 

Embedding Dimension (m) 
Lyapunov Exponent  

(λ × 10–2 Units) 

2 0.77 

3 1.24 

4 1.28 

5 1.27 

6 1.05 

7 1.33 

8 1.30 

9 1.35 

10 1.26 

11 1.64 

12 1.50 

13 1.44 

14 1.62 

15 1.82 

16 2.04 

17 1.63 

18 1.24 

19 1.61 

20 1.84 

21 1.73 

22 1.54 

23 1.68 

24 1.64 

25 2.02 

26 1.42 

27 1.51 

28 1.67 
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Figure 6. Correlation integral slopes for m between 2 and 14. 
 

 

Figure 7. Correlation exponent versus embedding dimension for various delay time (tau) values. 
 

 

Figure 8. Correlation integrals for average daily discharge. 
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Figure 9. Relationship between correlation exponent and embedding dimension. 
 
values of the Lyapunov exponent computed for the daily 
streamflow series. The values of λ reasonably are con-
stant over a range of m between 3 and 28; based on the 
recommendation of Jayawardena and Lai [16], for this 
region where the values are constant, the mean of the 
series of λ generated in different dimensional phase-space: 
m = 3 to 28, was taken as the estimated maximal 
Lyapunov exponent. The resulting maximal Lyapunov 
exponent approximates λ = 0.01497 units, even if the 
convergence may not be completely satisfying, as typical 
in the presence of noise in the data series. The computed 
value is not distinctly larger than zero in any meaningful 
statistical sense, thus the maximal Lyapunov exponent λ 
as calculated here does not translate into an exhibition of 
deterministic chaos. Jayawardena and Lai [16] and 
Francesco and Villi [30] in their analysis respectively, 
reported the largest Lyapunov exponent for daily stream-
flow as 0.0086 and 0.007 units. These values are seem-
ingly very low even though there are no currently avail-
able tests to determine if it is statistically greater than 
zero, but it does beg the question of whether daily flow 
series may actually be chaotic. Basically, their conclu-
sions really contrast with that of Kember and Flower [32], 
who posited that daily river flows are unlikely to be cha-
otic. 
 
3.3. Nonlinear Prediction 
 
As reported in Casdagli [33], if the time series is chaotic, 
it is expected that the prediction errors will suddenly 
decrease to a value close to zero as the embedding di-
mension m is increased to the optimal dimension M, and 
remain close to zero for values of m greater than M; but 
if the time series is random, no such decrease should be 
observed. Figure 10 shows the prediction error (RMSE) 

against the embedding dimension. It is clear from this 
figure that this phenomenon is not exhibited here. This 
shows there is no discernible evidence of chaotic behav-
iour in the daily streamflow series. In the same context, 
for a chaotic time series, the correlation coefficient is 
close to 1 as m is increased to the optimal embedding 
dimension M and remains close to 1 for values of m 
above M [33]. But as reported in Figure 11, even though 
the correlation values remain close to 1 as m was in-
creased to M (here, M = 3) and immediately afterwards, 
it does not remain constant when the embedding dimen-
sion was increased beyond the optimal embedding di-
mension, rather it decreased when the embedding dimen-
sion was increased. Though as suggested by Sugihara 
and May [34], this may be caused by contamination of 
nearby points in the high-dimensional embedding with 
points whose earlier coordinates (at low embedding di-
mensions) are close but whose recent coordinates (at 
high embedding dimensions) are distant. Therefore, it is 
probably difficult to proffer a plausible explanation for 
this. The situation may be analogous to periodic signal 
with additive noise, rather than chaotic signatures. 
 
4. Conclusions 
 
The study of the dynamics which controls the evolution 
of river flow, conducted in the light of chaos theory may 
have conflicting results. Some of these are more of a 
speculative character whereas others may have practical 
potentials. Following from the nonlinear analyses in this 
study, there is no discernible evidence to suggest the 
existence of low-dimensional chaos in the daily stream-
flow process of the Benue River. Though contradictory 
results abound on the existence of low-dimensional 
chaos in daily streamflows, aramount to note that  it is p   
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Figure 10. Relationship between degree of error (RMSE) and embedding dimension. 
 

 

Figure 11. Relationship between correlation coefficient and embedding dimension. 
 
since the dynamics of observed hydrological series is 
inevitably contaminated by not only measurement noise, 
but also dynamical noise, one may contend that the daily 
streamflow time series may span a wide dynamical range 
between deterministic chaos and periodic signal con-
taminated with additive noise. Added noise (measure-
ment error) may strongly affect the nonlinear behaviour 
of deterministic system by decreasing the predictability, 
and invariably increases the dimension of an existing 
attractor. Thus, because streamflow process usually suf-
fers from strong natural and anthropogenic disturbances 
which are themselves made up of both stochastic and 
deterministic components, it does beg the question of 
how a reliable identification of chaotic dynamics can be 
made even if the streamflow is actually low-dimensional. 
Considering also, for instance, the correlation dimension 
analysis provides information only on the number of 
variables influencing the dynamics of the system and 
does not in any plausible way identify the variables or 
the mathematical model for the dynamics of the river 
flow process. Hence, evidence of the existence of chaotic 
characteristics does not in any physical way, translate 

directly to determinism. However, regardless of the con-
tradictory reports on the result of findings on determinis-
tic chaos, this concept provides a profound technique for 
time series analysis and thus invariably allows for an 
intuitive understanding of dynamical systems. 
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