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Abstract 

Stability analysis in compliant mechanism (CM) design is of utmost 

importance. From a practical point of view, a CM that is unstable is of no 

significance (has no practical value). Three useful plots were considered in the 

evaluation of each of the dynamic models of nine configurations of compliant 

constant-force compression mechanisms (CCFCMs) for their stability 

characteristics, which includes the polar plot based on the Routh-Hurwitz 

stability criterion, the Bode plot, and the Nyquist diagram which considers 

stability in the real frequency domain. Frequency-domain stability criterion is 

very useful for determining suitable approaches to adjusting the CCFCM 

parameters in order to increase its relative stability. The results obtained show 

that the CCFCMs investigated do exhibit higher relative stability for higher 

values of damping ratio, and for zero damping ratio, all the CCFCMs 

investigated were unstable. The result also show that for the CCFCMs 

investigated to be stable, damping ratio must be greater than 0.03 (ξ > 0.03) 

and depending on what attributes are most desirable, the CCFCM parameters 

can be optimized to achieve the desired results. Nyquist criterion provides us 

with suitable information concerning the absolute stability and furthermore, 

can be utilized to define and ascertain the relative stability of a system.  

Keyword 
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Introduction 

 

Stability analysis in compliant mechanism (CM) design is of utmost importance. From 

a practical point of view, a CM that is unstable is of no significance (has no practical value). 

A stable system is defined as a system with a bounded (limited) system response. That is, if 

the system is subjected to a bounded input or disturbance and the response is bounded in 

magnitude, the system is said to be stable. A stable system is a dynamic system with a 

bounded response to a bounded input [1]. The concept of stability can be illustrated by 

considering a right circular cone placed on a plane horizontal surface. If the cone is resting on 

its base and is tipped slightly, it returns to its original equilibrium position. This position and 

response are said to be stable. If the cone rest on its side and is displaced slightly, it rolls with 

no tendency to leave the position on its side. This position is designated as the neutral 

stability. On the other hand, if the cone is placed on its tip and released, it falls onto its side. 

This position is said to be unstable [1]. These three positions are illustrated in Figure 1. The 

discussion and determination of stability has occupied the interest of many engineers. 

Maxwell and Vishnegradsky were the first to consider the question of stability of dynamic 

systems. In the late 1800s, A. Hurwitz and E. J. Routh published independently a method of 

investigating the stability of linear systems. The Routh-Hurwitz stability method provides an 

answer to the question of stability by considering the characteristic equation of the system. 
 

 
Figure 1. The Stability of a Cone 

 

Using type-synthesis techniques, Murphy et al. [2], generated 28 possible CCFCM 

configurations that generate a constant output force for a wide range of input displacements. 

The 28 configurations consist of different arrangements of pin joints and flexible segments. 

These 28 configurations have been reduced to 15 viable configurations and are divided into 5 

classifications based on the number of flexible segments and their location in each 
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configuration. These classifications and configurations are illustrated in Figure 2 [3]. Howell 

et al. [4] carried out the dimensional synthesis of several of these configurations. Nine of the 

fifteen configurations presented in Figure 2 were investigated for their stability characteristics 

and the results obtained will demonstrate the significance of stability characteristics analysis 

in the design of CMs. 
 

 
Figure 2. Fifteen configurations of the CCFCM 

 

Stability analysis for CCFCM models 

Every CCFCM presented in Figure 2 has essentially the same pseudo-rigid-body 

model (PRBM). Figure 3 shows the generalized PRBM of CCFCMs [5]. The characteristic 

equation in Laplace variable is written as: 

∆(s) = q(s) = ansn + an-1sn-1 + … + a1s + a0 = 0 (1) 
To ascertain the stability of the system, it is necessary to determine whether any one of 

the roots of q(s) lies in the right half of the s-plane. Writing Eq(1) in factored form gives the 

following equation: 

an(s-r1) (s-r2) … (s-rn) = 0 (2) 
where ri = ith root of the characteristic equation. 

Multiplying the factors together, we find that: 
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q(s) = ansn-1 – an(r1+r2+ … + rn)sn-1 + an(r1r2 + r2r3 + r1r3 + …)sn-2 – an(r1r2r3 + 
r1r2r4 +…)sn-3 + … + an(-1)nr1r2r3…rn = 0 

(3) 

In other words, for an nth-degree equation, we obtain: 

q(s) = ansn-1 – an(sum of all roots)sn-1 +  
          + an(sum of the products of the roots taken 2 at a time)sn-2 –  
           - an(sum of the roots taken 3 at a time)sn-3 + … +  
           + an(-1)n(product of all n roots) = 0 

(4) 
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Figure 3. The CCFCM configuration Class 3A-n and its Pseudo-rigid-body model 

 

Examining Eq(4) shows that all the coefficients of the polynomial must have the same 

sign if all the roots are in the left-hand plane. Also it is necessary that all the coefficients for a 

stable system be nonzero. These requirements are necessary but not sufficient. That is, we 

immediately know the system is unstable if they are not satisfied; yet if they are satisfied, we 

must proceed further to ascertain the stability of the system [1]. 

 The Routh-Hurwitz stability criterion is a necessary and sufficient criterion for the 

stability of linear systems. The method was originally developed in terms of determinants. 

The criterion is based on ordering the coefficients of the characteristic equation given below: 

ansn + an-1sn-1 + … + a1s + a0 = 0 (5) 
Into an array or schedule as follows: 
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Further rows of the schedule are then completed as follows: 
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Where 
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and so on. 

The algorithm for calculating the entries in the array can be followed on a determinant 

basis or by using the form of Eq(8). The Routh-Hurwitz stability criterion states that the 

number of roots of q(s) with positive real parts is equal to the number of changes in sign of 

the first column of the Routh array. This criterion requires that there be no changes in sign in 

the first column for a stable system. This requirement is both necessary and sufficient. Table 1 

gives the summary of the Routh-Hurwitz stability criterion for up to a sixth-order 

characteristic equation. 

The Routh-Hurwitz method is useful for investigating the characteristic equation 

expressed in terms of the complex variable s . To investigate the stability of the system in the 

real frequency domain, that is, in terms of frequency response, the concept of gain margin and 

phase margin in the context of Bode plots and Nyquist diagrams is introduced. Frequency 

response analysis provides useful insights into stability and performance characteristics of the 

system. The gain margin is a measure of how much the system gain would have to be 
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increased when the phase is = -180° for the locus of the loop transfer function of the system to 

pass through the (-1, 0) point (the limit of stability). The phase margin is a measure of the 

additional phase lag required to bring the system to the limit of stability. In other words, it is 

the angle between the point -1 and the vector of magnitude1. Gain and phase stability margins 

are clearly illustrated in Figure 2 and can easily be determined from both the Bode plot and 

the Nyquist diagram. The frequency response of a system can readily be obtained 

experimentally by exciting the system with sinusoidal input signals. Furthermore, a 

frequency-domain stability criterion would be useful for determining suitable approaches to 

adjusting the parameters of a system in order to increase its relative stability.  
 

 
Figure 4. Gain and phase stability margins 

 

The Nyquist stability criterion (developed by Harry Nyquist in 1932), is defined in 

terms of the (-1, 0) point on the polar plot or the 0-sB, -180° point on the Bode diagram or 

log-magnitude-phase diagram. Proximity to this stability point is a measure of the relative 

stability of a system. The Nyquist stability criterion is based on a theorem in the theory of the 

function of a complex variable due to Cauchy known as Cauchy’s principle of argument. 

Cauchy’s theorem is concerned with mapping contours in the complex s-plane. 

To determine the relative stability of a closed-loop system using the Nyquist stability 

Criterion, one must first investigate the characteristic equation of the system given by: 

F(s) = 1+L(s) = 0 (11) 
For a single-loop system: 

L(s) = G(s)H(s) (12) 
For a multi-loop system, the characteristic equation is given by: 
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F(s) = ∆(s) = 1 - ∑Ln + ∑LmLq … = 0 (13) 
where ∆(s) is the graph determinant 

Table 1. The Routh-Hurwitz stability criterion 

n Characteristic Equation Criterion 
2 s2 + bs + 1 = 0 b > 0 
3 s3 + bs2 + cs + 1 =0 bc – 1 > 0 
4 s4 + bs3 + cs2 + ds + 1 = 0 bcd – d2 – b2 > 0 
5 s5 + bs4 + cs3 + ds2 +es + 1 = 0 bcd + b – d2 – b2e > 0 
6 s6 + bs5 + cs4 + ds3 +es2 + fs + 1 = 0 (bcd + bf – d2 – b2e)e + b2c – bd + bc2f – f2 + bfe 

+cdf > 0 
 

Cauchy’s principle of argument is stated thus; If a contour Γs in the s-plane encircles 

the zeros Z and poles P of F(s) and does not pass through any poles or zeros of F(s) and the 

traversal is in the clockwise direction along the contour, the corresponding contour ΓF in the 

F(s)-plane encircles the origin of the F(s)-plane N times in the clockwise direction, with N 

given by: 

N = Z - P (14) 
A contour map is a contour or trajectory in one plane mapped or translated into 

another plane by a relation F(s). Nyquist stability Criterion is concerned with the mapping of 

the characteristic equation F(s) = 1 + L(s) and the number of encirclements of the origin of 

the F(s)-plane. Alternatively, we may define the function F'(s) so that: 

F'(s) = F(s) – 1 = L(s) (15) 
The change of functions represented by Eq(15) is very convenient because L(s) is 

typically available in factored form, while [1 + L(s)] is not. Then the mapping of Γs in the s-

plane will be through the function F'(s) = L(s) into the L(s)-plane. In this case, the number of 

clockwise encirclements of the origin of the F(s)-plane becomes the number of clockwise 

encirclements of the (-1, 0) point in the F'(s) = L(s) – plane because F'(s) = F(s) – 1. The 

modified Nyquist criterion therefore has the following form; the number of unstable close-

loop poles Z is equal to the number of unstable open-loop poles P plus the number of 

encirclements N of the point (-1, 0) of the Nyquist plot of L(s), that is: 

Z = P + N (16) 
Clearly if the number of poles of L(s) in the right-hand s-plane is zero (P = 0), we 

require for a stable system that 0=N , and the contour must not encircle the (-1, 0) point. 

Also, if P is other than zero, then we require for a stable system that 0=Z , which means that 

we must have N = -P, or P counterclockwise encirclements. Gain and phase margins may be 
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found from Bode plots as follows; locate the point where the gain is zero dB (unity gain) and 

project down onto the phase diagram. The phase margin is the margin between the phase plot 

and – 180°. Similarly, locate the point where the phase angle reaches ±180° and project this 

back to the gain plot. The gain margin is the margin between this point and the zero dB level. 

If the gain is increased until this is zero, the system becomes unstable. 

 

 

Results and Discussion 

 

In the evaluation of the dynamic model for its stability characteristics, three useful 

plots were considered which includes the polar plot based on the Routh-Hurwitz stability 

criterion shown in Figure 5, the Bode plot shown in Figure 6, and the Nyquist diagram which 

considers stability in the real frequency domain shown in Figure 7. Figure 5 shows the plot of 

the root locations of the characteristic equation for the CCFCM. Using Routh-Hurwitz 

stability approach, the condition for stability is that all the roots must lie in the left hand s-

plane. As shown in Figure 5, it can be seen clearly that all the roots of the characteristic 

equation lie in the left hand s-plane which means that the poles of the transfer function for the 

CCFCM have negative real part and therefore shows that the CCFCM is a stable system. 

Figure 6 and 7 shows the Bode plot and the Nyquist diagrams for the CCFCM. The Nyquist 

diagram is simply based on using open loop performance to test for close loop stability. The 

system will be unstable if the locus of the transfer function for the system has unity value at a 

phase crossover of ±180°. Two relative stability indicators “Gain Margin” and “Phase 

Margin” may be determined from both the Bode plot and the Nyquist diagram. As shown in 

Figure 6, the gain and phase margins are labeled clearly on the Bode diagrams. Nyquist 

criterion provides us with suitable information concerning the absolute stability and 

furthermore, can be utilized to define and ascertain the relative stability of a system. Figure 6 

show that the CCFCM has a gain and phase margin of 33.096 dB and 11.363 degree 

respectively, which shows that the system is relatively stable. This is demonstrated clearly in 

Figure 7, which shows that the locus of the loop transfer function of the CCFCM does not 

pass through the (-1, 0) point (the limit of stability). This further confirms that the CCFCM is 

a stable system and also depending on what attributes are most desirable, the CCFCM 

parameters can be optimized to achieve the desired results. 
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Table 2. CCFCM configuration Class 3A-n 
Mechanism Parameters Parameter Values
r2 90 mm 
r3 120 mm 
m2 0.026 kg 
m3 0.037 kg 
ms 0.087kg 
b 25.4 mm 
h1 0.38 mm 
h2 0.38 mm 
h3 0.38 mm 
I1 1.1615·10-13 m4 
I2 1.1615·10-13 m4 

I3 1.1615·10-13 m4 

E 207 Gpa 
l1 9.00 mm 
l2 10.50 mm 
l3 12.00 mm 
K1 2.6714 Nm 
K2 2.2897 Nm 
K3 2.0035 Nm 

 

 
Figure 5. Plot of root locations of the characteristic equation of CCFCM model (ξ = 0.07)  
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Figure 6. Bode diagram showing gain and phase margin (ξ = 0.07) 

 

 
Figure 7. Nyquist diagram for the transfer function of the CCFCM model (ξ = 0.07) 
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Figure 8. Plot of root locations of the characteristic equation of the CCFCM model (ξ = 0)  

 

 
Figure 9. Bode diagram showing gain and phase margin (ξ = 0) 
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Figure 10. Nyquist diagram for the transfer function of the mechanism (ξ = 0) 

 

 
Figure 11. Plot of root locations of the characteristic equation of the CCFCM model (ξ = 0.3) 
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Figure 12. Bode diagram showing gain and phase margin (ξ = 0.3) 

 

 
Figure 13. Nyquist diagram for the transfer function of the CCFCM model (ξ = 0.3) 
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Figure 14. Nyquist diagram for the transfer function of the CCFM model (ξ = 0.03) 

 

Table 3. Summary of stability results for all CCFCMs investigated 
Mechanism 
Configuration 

Gain Margin (dB) Phase Margin (deg.) Remark 

Class 1A-a 34.251 (at 2244.7 rad/s) 11.363 (at 457.44 rad/s) Stable System 
Class 1A-b 28.157 (at 2015.3 rad/s) 11.363 (at 590.82 rad/s) Stable System 
Class 1B-e 34.458 (at 2251.8 rad/s) 11.363 (at 453.24 rad/s) Stable System 
Class 2A-h 41.754 (at 2461.4 rad/s) 11.363 (at 320.24 rad/s) Stable System 
Class 2A-i 31.043 (at 2128.2 rad/s) 11.363 (at 525.54 rad/s) Stable System 
Class 2B-j 37.290 (at 2342.9 rad/s) 11.363 (at 397.92 rad/s) Stable System 
Class 2B-k 30.568 (at 2110.1 rad/s) 11.363 (at 536.05 rad/s) Stable System 
Class 3A-n 33.096 (at 2204.1 rad/s) 11.363 (at 481.37 rad/s) Stable System 
Class 3A-o 41.861 (at 2463.8 rad/s) 11.363 (at 318.52 rad/s) Stable System 

 

Damping may be small, but its effect on the system stability and dynamic response, 

especially in the resonance region, can be significant [6]. To demonstrate this, we consider the 

stability of the CCFCM for zero damping. As shown in Figures 8 through 10, the CCFCM is 

unstable for zero damping. Also, considering the mechanism for a damping ratio of 0.3 as 

demonstrated in Figures 11 through 13, shows clearly that the CCFCM is relatively stable 

with a gain and phase margin of 33.401 dB and 50.209 degree respectively. This clearly 

demonstrates that the effect of damping on the CCFCM’s stability is highly significant. 

Comparing the results obtained for a damping ratio of 0.3 with that obtained for a damping 

ratio of 0.07 shows that the CCFCM gives better stability for higher damping ratios.  
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Table 4.Compliant Constant-Force Mechanism (CCFCM) Parameters and Values. 
Parameter Class 1A-a Class 1A-b Class 1B-e Class 2A-h 
r2 95.00 mm 80 mm 95.00 mm 120 mm 
r3 80.00 mm 95 mm 95.00 mm 85 mm 
m2 0.031 kg 0.028 kg 0.031 kg 0.037 kg 
m3 0.028 kg 0.031 kg 0.031 kg 0.024 kg 
ms 0.087 kg 0.087 kg 0.087 kg 0.087 kg 
b 25.4 mm 25.4 mm 25.4 mm 25.4 mm 
h1 0.38 mm - - 0.38 mm 
h2 - - 0.38 mm 0.38 mm 
h3 - 0.38 mm - - 
I1 1.1615 x 10-13 m4 - - 1.1615 x 10-13 m4

I2 - - 1.1615 x 10-13 m4 1.1615 x 10-13 m4

I3 - 1.1615 x 10-13 m4 - - 
E 207 Gpa 207 Gpa 207 Gpa 207 Gpa 
l1 9.50 mm - - 12.00 mm 
l2 - - 9.50 mm 10.30 mm 
l3 - 9.50 mm - - 
K1 2.5308 Nm - - 2.0035 Nm 
K2 - - 2.5308 Nm 2.3456 Nm 
K3 - 2.5308 Nm - - 
Parameter Class 2A-i Class 2B-j Class 2B-k Class 3A-o 
r2 85.00 mm 105.00 mm 85.00 mm 120.00 mm 
r3 120.00 mm 85.00 mm 105.00 mm 90.00 mm 
m2 0.024 kg 0.034 kg 0.024 kg 0.037 kg 
m3 0.037 kg 0.024 kg 0.034 kg 0.026 kg 
ms 0.087 kg 0.087 kg 0.087 kg 0.087 kg 
b 25.4 mm 25.4 mm 25.4 mm 25.4 mm 
h1 - 0.38 mm 0.38 mm 0.38 mm 
h2 0.38 mm - - 0.38 mm 
h3 0.38 mm 0.38 mm 0.38 mm 0.38 mm 
I1 - 1.1615 x 10-13 m4 1.1615 x 10-13 m4 1.1615 x 10-13 m4 

I2 1.1615 x 10-13 m4 - - 1.1615 x 10-13 m4 

I3 1.1615 x 10-13 m4 1.1615 x 10-13 m4 1.1615 x 10-13 m4 1.1615 x 10-13 m4 

E 207 Gpa 207 Gpa 207 Gpa 207 Gpa 
l1 - 10.50 mm 8.50 mm 12.00 mm 
l2 10.30 mm - - 10.50 mm 
l3 12.00 mm 8.50 mm 10.50 mm 9.00 mm 
K1 - 2.2897 Nm 2.8285 Nm 2.0035 Nm 
K2 2.3456 Nm - - 2.2897 Nm 
K3 2.0035 Nm 2.8285 Nm 2.2897 Nm 2.6714 Nm 

 
As demonstrated in Figures 5 through 13, an increase in the value of damping ratio 

from 0.07 to 0.3 increased the gain and phase margin from 33.096 dB and 11.363 degree to 

33.401 dB and 50.209 degree respectively. Figure 14 shows that for the CCFCMs investigated 

to be stable, damping ratio must be greater than 0.03 (ξ > 0.03). Table 4 shows the mechanism 

parameters for the eight additional CCFCMs investigated and the results obtained for all the 

CCFCMs investigated have been summarized and presented in Table 3. 
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Conclusions 

 
Stability analysis in CM design is of utmost importance. From a practical point of 

view, a CM that is unstable has no practical value. Three useful plots were considered in the 

evaluation of each of the dynamic models for their stability characteristics, which includes the 

polar plot based on the Routh-Hurwitz stability criterion, the Bode plot, and the Nyquist 

diagram which considers stability in the real frequency domain. Nine of the fifteen 

configurations presented in Figure 2 were investigated for their stability characteristics and 

the results obtained show that all the CCFCMs investigated exhibit higher relative stability for 

higher values of damping ratio, and for zero damping ratio, all the CCFCMs investigated were 

unstable. The result also show that for CCFCMs to be stable, damping ratio must be greater 

than 0.03 (ξ > 0.03) and also depending on what attributes are most desirable, CCFCM 

parameters can be optimized to achieve the desired results. 
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