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Response Surface Method as an Efficient
Tool for Modeling and Optimizing
Performance

Yisa Yakubu* and Angela Chukwu**

Response Surface Methodology (RSM) is a collection of statistical and mathematical
techniques useful for developing, improving and optimizing processes. In this paper,
the Central Composite Design (CCD) method for fitting a second-order model was used
and illustrated with the data extracted from Ipadeola (1990) as found in Ilimiese
(2008) to examine the effects of extraction time (¢), solvent volume (V), ethanol
concentration (C) and temperature (7) on the yield and phosphatidylcholine enrichment
(PCE) of deoiled rapeseed lecithin when fractionated with ethanol. The significance of
the linear, quadratic and interaction terms was first examined and it was discovered
that each of them significantly contributes to the response model at & = 0.05 level,
which implies that the fitted second-order model significantly explains the response
surface. Then the analysis proceeds to locate the set-of the levels of the factors that
optimize the predicted response (the stationary point). This point is the combination of
the design variable levels where the predicted response‘is at its optimum, and it was
foupd that the estimated maximum response yield of deoiled rapeseed lecithin
is ¥y 21.47 at the stationary point (¢ = 1.82545 = 1.83 min of reaction time,
V = 8.66455 = 8.66 liter solvent volume,~Conc. = 96.67299 = 96.67% of ethanol
concentration, and 7 = 22.93308 = 22.93°C temperature). The canonical analysis
was carried out and it was detected that' the stationary point is a saddle point.

Keywords: Response surface, Second-order models, Central composite design, Yield, Stationary
point

Introduction

The statistical design of experiments approach to process development offers several key
advantages over the traditional one-variable-at-a-time approach. Box et a/. (1978) reported
that “the practice of a single factor optimization by maintaining other factors involved at
an unspecified constant level do not portray the combined effect of interactions of factors
involved. The method is tedious, time-consuming and expensive, especially for a large
number of variables. Moreover, it does not guarantee the determination of optimum
conditions among the variables.”

The limitations of a single factor optimization process can be eliminated by optimizing
all the contributing process parameters collectively using statistical experimental design
in particularly Response Surface Methodology (RSM). RSM is a set of techniques that
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includes setting up a series of experiments that will yield adequate and reliable
measurements of the response of interest, determine a model that best fits the data collected
from the design chosen, and determine the optimal settings of the experimental factors that
produce the maximum or minimum value of the response. These designs provide information
on direct effects, pairwise interaction effects and curvilinear variable effects.

RSM is a critical technology in developing new processes and optimizing their
performance. The objectives of quality improvement, including reduction of variability and
improved process and product performance, can often be accomplished directly using RSM.

Response surface design allows for the evaluation of the statistical significance of the
fitted mathematical models, the contribution of individual process parameters, as well as
that of the interaction between factors, which is not possible using the one-variable-at-a-
time approach. The mathematical models can then be utilized to find the predicted optimum
system response within the experimental bounds of the study. The optimized set of conditions
can then be verified experimentally to validate the model prediction.

First-order model has earlier been illustrated by Audu et a/. (2009). In this paper, the
Central Composite Design (CCD) method for fitting a second-order model was used and
illustrated with the data extracted from Ipadeola (1990) as found in Ilimiese (2008),
to examine the effects of extraction time (¢), solvent volume (), ethanol concentration (C),
and temperature (7) on the yield and phosphatidylcheline enrichment (PCE) of deoiled
rapeseed lecithin when fractionated with ethanol. The significance of the linear, quadratic
and interaction terms in the fitted model was examined and the set of the levels of the factors
that optimize the predicted response (the stationary point) was located.

CCD as the most popular method for fitting-a second-order model was introduced by Box
and Wilson (1951). It consists of factorial points (from a 2* factorial design or a 2** fractional
factorial design), central points and axial ‘points.

RSM consists of a group of mathematical and statistical techniques used in the
development of an adequate functionalsrelationship between a response of interest y and
a number of associated control (or-input) variables denoted by x1, x2, ..., xk (Montgomery,
2005). Usually, the nature of the function relating the responses to the variables is assumed
to be unknown and the function or surface is modeled empirically using a first- or a second-
order polynomial model. The eventual objective of RSM is to determine the optimum
operating conditions for the system or to determine a region of the factor space in which
operating specifications are satisfied.

For example, the growth of a plant is affected by a certain amount of water, sunshine and
other variables. These variables can vary continuously and when treatments are from a
continuous range of values, then RSM is useful for developing, improving and optimizing
the response variable.

Such a response is a function of the k input factors, i.e.:
Yo =Xy Xy 1 Xy 1o X)) + €, ...(1)

where y,(u=1, 2, ...,n represents the u™ response value obtained as a result of applying

the u™ design setting (or u™ treatment combination), x,, is the level of the /* factor in the
u™ treatment combination, / = 1, 2, ..., k The function 7 describes the form, in which
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the response and the input variables are related and e, is the random error associated with
the ™ observation that is independently and normally distributed with mean zero and
common variance, ¢2.

In practice, the form of fis not known and it is therefore approximated, within the
experimental region, by a polynomial of suitable degree in variable. The adequacy of the
fitted polynomial is tested through the usual analysis of variance.

Let the true value of the response corresponding to any particular combinations of the
levels of the factors under study be represented by 77, where:

77=¢(X1/X2/"'/X/<)/ (2)

Then, polynomials such as Equation (2), which adequately represent the specific
relationship between the true response 77 and k input variables (xq,x,,...,x,)are called
RSM models and the designs that allow the fitting of response surfaces and provide a
measure for testing their adequacy are called response surface designs.

If the function fis a polynomial of degree one, it is called a first-order (linear) response
surface and is called a second-order (quadratic) responseisurface, if fis a polynomial of
degree two.

Methodology
The Model

In this work, the data, as given in the Appendix, consist of four factors, so we considered
a second-order model of the form:

2 2 2 2
Yu = Bou + Prxry + BoXoy + BaXsy + BaXaw+ BraXiy + BooXou + B3sxsy + BaaXay
+1812X1UX2U +:813X1u)(3u +ﬁ14X1uX4u +ﬂ23X2uX3u +ﬁ24X2uX4u +:834X3uX4u +eu -(3)

where y, (v =1, 2, ..., N) represents the v response value (yield of deoiled rapeseed
lecithin) obtained as a result of applying the o™ design setting (or o™ treatment
combination), x, is the level of the /* factor in the u™ treatment combination, / = 1, 2,

..., 4, e, is the random error associated with the v'" observation that is independently and

normally distributed with mean zero and common variance o?. Computer software is used
here to analyze the above second-order model.

Following the convention adopted by Box and Wilson (1951) and Box (1952), a set of
standardized levels are defined as:

3 _p /2
Xy = (gl‘us;‘f/‘), where S, = {ﬁﬂeﬁi}
! u=1

N /e .. (4)

For these standardized levels therefore:
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N N
2 2 2
Xiu =0 and Xiy = ...(5)
u=1

u=1

o=

where the convention is adopted that ¢ = 1. Using these standardized levels, we have the
N x k design matrix D, as given in the Appendix.

Analysis of the Second-Order Model

The second-order model is flexible, because it can take a variety of functional forms and
approximates the response surface locally. Therefore, this model is usually a good estimation
of the true response surface. Besides, the method of least squares can be applied to estimate
the coefficients /3J in the model. The ANOVA and regression analysis for the response variable,

Yield, as generated by the Minitab software, is shown in Figure 1 and Tables
1, 2 and 3.

Figure 1: Residual Plot of Purified Lecithin Yield
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Figure 1 (Cont.)

Histogram of the Residuals
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Table 1: Analysis of Purified Lecithin Yield
Central \Composite Design
Factors 4 Replicates 01
Base Runs . 25 Total Runs . 25
Base Blocks 1 Total Blocks 1
Two-Level Factorial: Full Factorial
Cube Points 16
Center Points in Cube 1
Axial Points .8
Center Points in Axial 0
Alpha o 1.414

The regression equation is:
Yield = 21.46 + 1.34 A+ 2.67 B+ 213 C+ 1.28 D+ 0.41 A2 -1.59 B™2
-154 "2-0.94 D2 + 0.775 AB + 0.275 AC + 0.150 AD + 0.625
BC + 0.500 BD - 0.100 CD
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Response Surface Regression: Yield versus A, B, C, D. The analysis was done using coded
units.

Table 2: Estimated Regression Coefficients for Yield
Term Coeffi. SE Coeffi. T P
Constant 21.4632 0.4338 49.480 0
A 1.3380 0.1617 8.275 0
B 2.6706 0.1617 16.516 0
c 2.1336 0.1617 13.195 0
D 1.2805 0.1617 7.919 0
A*A 0.4106 0.2557 1.606 0.139
B*B -1.5900 0.2557 -6.218 0
c*C -1.5400 0.2557 —6.022 0
D*D -0.9398 0.2557 -3.675 0.004
A*B 0.7750 0.1808 4.287 0.002
A*C 0.2750 0.1808 1.521 0.159
A*D 0.1500 0.1808 0.830 0.426
B*C 0.6250 0.1808 3.457 0.006
B*D 0.5000 0.1808 2.766 0.020
Cc*D -0.1000 0.1808 -0.553 0.592
S 0.7231
R? 98.6%
R (Ad].) 96.7%

As can be observed from the coefficients in Table 2, each of the four main effects
is significant at both 0.01 and 0.05 significance levels. The quadratic terms, B2, C?,
D? and interaction terms AB, BC and BD significantly contribute to the response model
at a = 0.05. Table 3 summarizes the linear terms, the squared terms and the
interactions. This indicates that there are significant interactions between the factors at
0.05 level of significance. The small p-values for linear and square terms also point out

Table 3: Analysis of Variance for Yield

Source df Seq. SS Adj. SS Adj. MS F P
Regression 14 371.469 371.469 26.5335 50.74 0
Linear 4 302.270 302.270 75.5675 144.52 0
Square 4 47.609 47.609 11.9022 22.76 0
Interaction 6 21.590 21.590 3.5983 6.88 0.004
Residual Error 10 5.229 5.229 0.5229 - -
Total 24 376.698 - - - -
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that their contribution is significant to the model. Since there are no replicated center points,
the software cannot obtain a lack-of-fit. But small p-values for the interactions and the
squared terms suggest there is curvature in the response surface.

In addition, the package draws four residual plots (Figure 1)—histogram of residuals,
which is an exploratory tool to show general characteristics of the data, normal plot of
residuals, to show if the data obey the normality assumption, residuals versus fits, which
shows a random pattern of residuals on both sides of 0, and residuals versus order, which
is a plot of all residuals in the order that the data were collected. We can see that the
residual plots do not indicate any problems with the model.

As a result, the final model for the response variable yield, based on these significant
terms, is given as:

Yield = 21.5 + 1.34 A+ 2.67 B+ 2.13 C + 1.28 D — 1.59 B?
—1.54 C?-0.94 D? + 0.77 AB + 0.62 BC + 0.50 BD ...(6)
Locating the Stationary Point

The second-order models illustrate quadratic surfaces such as minimum, maximum, ridge,
and saddle. If there exits an optimum, then this point is“a=stationary point. The stationary
point is the combination of design variables where the surface is at either a maximum or
a minimum in all directions. If the stationary point is maximum in some direction and
minimum in another direction, then the stationary point is a saddle point. When the surface
is curved in one direction but is fairly constant in another direction, then this type of surface
is called ridge system (Montgomery, 2005). The stationary point can be found by using matrix
algebra. The fitted second-order model of Equation (3) above can be expressed in matrix
form as follows:

J =By +xb+x Bx

..(7)
where,
_Xl ] ,él ﬁn, ﬂlZ 12,. . ﬂlk /2
X2 B, Boaro - o B /2
x=| b=\ and B = :
L] _'Bk_ | Sym. ﬂAkk i

That is, b is a (k x 1) vector of the first order regression coefficients and B is a
(k x k) symmetric matrix whose main diagonal elements are the pure quadratic coefficients
(B) and whose off-diagonal elements are one-half the mixed quadratic coefficients

(,[3,./-,/ # /) (Montgomery, 2005).
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The derivative of y with respect to the elements of the vector x equated to zero is:

oy’

Dx

=b+ 2Bx=0 ..(8)

The stationary point is the solution to Equation (8), that is:

Xo=-1B" .9)

By substituting Equation (9) into Equation (7), we can find the predicted response at
the stationary point as:

Jo=Bo+Lxob ..(10)

Using Excel package, the calculations for locating the stationary point for the response
Yield are as follows.

Now from the fitted regression equation in Figure 1, we have our B in Equation (7) to be:

0.410 0.387 0.137  0.075
g =|0.387 -1.590 0.312  0.250
0.137 0.312 -1.540 -0.050
0.075 0.250 -0.050 -0.940

The inverse of B is B, given as:

1.800809 0.531824 0.259138 0.271340
g1 =| 0.531824 —0.525310 —0.056050 —0.094300
0.259138 —0.056050 —0.638940 0.039754
0.271340 —0.094300 0.039754 -1.069370

The k x 1 vector of the first order regression coefficients, b, is given by:

b=(x'x)"tx'y . That is:

1.338041
b =] 2.670601
2.133629
1.280457

And from Equation (9), the stationary point is given by:

Xo=-1B". That is:
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1.800809 0.531824 0.259138 0.27134 ||1.338041 —2.36509
0.531824 -0.52531 -0.05605 -0.0943 2.670601 0.46582

X, :-l =
® " 210.259138 -0.05605 -0.63894 0.039754 ||2.133629 0.557663
0.27134 -0.0943 0.039754 -1.06937 1.280457 0.586615
That is, x,, = — 2.36509, x,, = 0.46582, x,, = 0.557663, x,, = 0.586615,

approximately.
In terms of the natural variables (time, volume, concentration and temperature),
the stationary point is:

-2.36509 = %, 0.46582 =X =72 0557663 = @, 0.586615 = - —20

which yields ¢ = 1.82545 = 1.83 min of reaction time, IV = 8.66455 = 8.66 liter solvent
volume, Conc. = 96.67299 = 96.67% of ethanol concentration and 7 = 22.93308 = 22.93 °C
temperature.

We can see that the stationary point is within the region of exploration for fitting the
second-order model.

The predicted response at the stationary point is given:by Equation (10) as:

Jo=Bo+Lxb. That is:

1.338041
, . 2.670601
Dyield =21.46 +3[-2.36509 0.46582 (0.557663 0.586615] > 133629
1.280457

=21.46+0.010204
2 o= 21.47020 = 21.47

Therefore, the predicted response at the stationary point is V' yier =21.47.

Characterizing the Response Surface

The simplest way to characterize a response surface is to construct a contour plot of the
response as a function of a pair of the variables. Figure 2 gives the two-dimensional contour
plot of the yield as a function of a pair of each of the four input variables. Since we have
more than three process variables, the interpretation of the contour plot is a little bit
complicated here. However, it is clear from examining Figure 2 that each of the main factors
is related to the response variable yield at their high levels.

At this point, we adopt a more formal analysis to determine whether the stationary point
above is a point of maximum or minimum response or a saddle point. Transforming the
model into a new coordinate system with the origin at the stationary point x, we have the
fitted model:

V=90 + Lol + 02 + ;0% + 1,0? ..(1D)
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Figure 2: Contour Plot of Purified Lecithin Yield
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called the canonical form of the model. Wheresthe { @, } are the transformed independent

variables and the { 4; } are constants, which are just the eigenvalues or characteristic roots
of the matrix B (Montgomery, 1991).

Now, the eigenvalues A;, 4,, 4;, and 4, are the roots of the determinantal equation:
1B-21=0

That is:

0.41-4 0.387 0.137 0.075

0.387 -1.59-4 0.312 0.25

0.137 0.312 -1.54-1 -0.05

0.075 0.25 -0.05 -0.94-1

Then by means of computer software, this gives us:

2 +3.662% +3.38559342 - 0.508999116 1 —1.176002089 =0
The roots of this equation are:
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A, =0.5102911689, 4, =—0.8811205241, A, = - 1.345987115, and 4, =— 1.943183530.
And the canonical form of the fitted model is:

Yy =21.47+0.5102907 —0.881120% —1.34598w% —1.94318 0/

Since the {A;} have different signs, we conclude here that the stationary point x, is
a saddle point.

Conclusion

Statistically designed experiments are highly efficient in that they give a fixed amount of
information with much less effort than the classical one-variable at-a-time approach, and
many of them give additional information about interaction as a bonus. RSM provides
statistically-validated predictive models that can then be manipulated for finding optimal
process configurations. Second-order model describes quadratic surfaces, and this kind of
surface can take many shapes. Therefore, response surface can represent maximum,
minimum, ridge or saddle point.

Our analysis results show that each of the four main effects and the quadratic terms,
B2, C?, D?* and interaction terms AB, BC and BD significantly contribute to the response
model at & = 0.05. The analysis of variance (Table 3) indicates that there are significant
interactions between the factors at 0.05 level of significance. The small p-values for the
interactions and the squared terms suggest there is eurvature in the response surface.

Also, the residual plots drawn do not indicate any problems with the model. The two-
dimensional contour plots of the yield as a function of pairs of the four input variables
indicate that each of the main factors is related to the response variable yield at their high
levels. The located stationary point is within'the region of exploration for fitting the second-
order model. The canonical analysis performed shows that the located stationary point is
a saddle point. Therefore, RSM is a ckitical technology in developing new processes and
optimizing their performance. The objectives of quality improvement, including reduction
of variability and improved process.and product performance, can often be accomplished
directly using RSM. 3
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Appendix
Design Matrix
Facmau o, t % c T Yield
1. -1 -1 -1 -1 12.6
2. 1 -1 -1 -1 13.0
3. -1 1 -1 -1 14.0
4. 1 1 -1 -1 17.4
5. -1 -1 1 -1 15.6
6. 1 -1 1 -1 17.0
7. -1 1 1 -1 19.0
8. 1 1 1 -1 24.0
9. -1 -1 -1 1 14.0
10 1 -1 -1 1 15.4
11 -1 1 -1 1 17.4
12 1 1 -1 1 21.4
13 -1 -1 1 1 16.6
14. 1 -1 1 1 18.6
15. -1 1 1 1 22.4
16 1 1 1 1 27.6
17 -1.414 0 0 0 20.6
18 1.414 0 0 0 23.4
19 0 -1.414 0 0 13.4
20. 0 1.414 0 0 22.6
21. 0 0 -1.414 0 15.6
22 0 0 1.414 0 20.6
23. 0 0 0 -1.414 17.6
24. 0 0 0 1.414 21.0
25. 0 0 0 0 22.6
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