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A 5-STEP BLOCK METHOD FOR SPECIAL SECOND
ORDER ORDINARY DIFFERENTIAL EQUATIONS

Y.A YAHAYA' AND U. MOHAMMED

ABSTRACT. Various schemes exist to solve the initial /boundary
value problems of the ordinary differential equationy” =
f (z,y).Parts of the inadequacies of conventional linear multi-
step procedures for direct solution of this class of problem is
the requirement of a starting value and this paper addressed
that. Five specific schemes of orders (6,6,6,6,6)T have been de-
rived and presented in a way to avoid computational burden
and computer time wastage involved in the usual reduction of
second order problem into system of first order equations. Fur-
thermore, a stability analysis of the 5-step block method and
efficiency of the method is tested on problems whose solutions
are, oscillatory or nearly periodic, stiff and non-linear ivp and
bvp ODES
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1. INTRODUCTION

Let us consider the numerical solution of the second order differ-

ential equations of the form.

y'=f(z,y), a<z<b (1.1)
With associated initial or boundary conditions. Solutions to the ini-
tial value problem (IVP) of type (1.1) according to Fatunla [5] are
often highly oscillatory in nature and thus severely restricts the mesh
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size of the conventional linear multistep method. Such system often
occur in mechanical systems without dissipation, satellite tracking
and celestial mechanics (cf: Henrici 7], p. 289).
Lambert [8] and several other authors, have written on conventional
LMM.
k k
D ynt =D Bifars k>2, (1.2)
§=0 §=0

or compactly in the form
p(E)yn = h*6(E) f, (1.3)

where F is the shift operator given by

k

k
p(r) Y aged,6(r) = B, (1.4)
=0

§=0
Yn 1s the numerical approximation to the theoretical solution y, (x;,)
and fn = f(Zn,Yn).

The application of the conventional LMM (1.2) to (1.1) results in
the adoption of intolerably small mesh size in the integration inter-
val [a,b]. This indeed will result in very long computing time and
accumulation of round-off errors. This however, does not becloud
their usefulness. In fact, some of these methods posses non vanish-
ing stability region, especially when they are implicit and are easily
implemented. Their implementation requires the generation of k — 1
initial starting values y(zn+1) = Ynyjj = 1(1)k — 1 using a start-
ing method which is most often RKM. (cf. Fatunla etal, [6] p. 2).
These initial starting-values requirement are eliminated in the new
proposed block methods described in section 3-5. In the present con-
sideration, our motivations for the study of this approach is a further
advancement in efficiency, i.e obtaining the most accuracy per unit of

computational effort, that can be secured with the group of methods
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proposed in section 3 of this paper over Awoyemi [2] and Aladeselu
[1].
Definition 1.1 A-Stable (Dahlquist [3]).

A numerical method is said to be A-stable if its region of absolute
stability contains, the whole of the left-hand half-plane Reh\ < 0.
Definition 1.2 A(«) stable (Wundluid [10]. A numerical method is
said to be A(a)-stable, a € (0, %), if its region of absolute stability
contains the infinite wedge W, = [hA\] —a < m—argh); it is said to be
A(0)- stable if it is A(«)-stable for some (sufficiently small)a € (0, 5).
Definition 1.3 A block method is zero-stable provided the roof
Aj,j = 1(1)s of the first characteristics polynomial p(\) specified
as p(\) = det|> i =0°AT\s — 4)| = 0 satisfies |\;| < 1, and for
those roots with |A;| = 1 the multiplicity must not exceed two. The

principal root of p(\) is denoted by A\; = Ao = 1.

2. THE MULTISTEP COLLOCATION METHOD

In the spirit of Onumayi etal [9] and Yahaya [11] we consider the
construction of multistep collocation method of constant step size h,
though A can be variable and give continuous expression for the co-
efficient. The values of K and M are arbitrary except for collocation
at the mesh points where 0 < m < k + 1.

Let yn4; be approximation to Y,i; where Y, ; = Y(zpqj), n =
0,....,k—1.

Then a k-step multistep collocation method is constructed as follows.
We find a polynomial y(z) of degree P =t+m —1, t >0, m > 0

and such that it satisfies the conditions:
y(xn—l-j) = yn+jj € {07 s 7k'} (21)

y//(a?n-i-j) :f(xn+]7y('fn+.7)7 j:(),...,m—l, (22)
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Where Z1,...,Z,—1 are free collocations points, we then take as an

approximation to Y4k, Yotk = Y (Tptk). Let

k—1 m—1
y(@) = aj(@)ynss + 02 5(@)f (@541, 9(T)),  (2:30)
j=0

=0

Where o and §; are assumed polynomial of the form

t+m—1 t+m—1
aj(z) = Z aj,i+ 1a/: hzﬁj(m) = Z hzﬂj,i + 1zt (2.3b)
i=0 i=0

and the collocation point Z;41 in (2.3a) belong to the extended set

Q = {wTM ceey $n+k} U ($n+k,1, .Tn+k). (236)

From the interpolation conditions (2.1) and the expression for y(x)

in (2.3a) the following conditions are imposed on a;(x) and 3;(z):

j(Tmyi) = 0ij, G =0, t—1,i=0,...,t—1
h2Bj(xnsi=0,j=0,...,m—1;i=0,...,t -1 (2.3d)

and

N(Tpyi) =05=0,....,t —1,i=0,...,m—1
hﬁj(l’n_,_i:dij,jZO,...,m—l; i:O,...,m—l

} . (2.3¢)
Next we write (2.3d)—(2.3e) in a matrix equation of the form:
DC =1, (2.3f)

where I is the identity matrix of dimension (¢ + m).
The matrices D and C' are both of dimensions (t +m) x (t +m). It
follows from (2.3f) that the columns of C = D~! give the continuous

coefficient oj(z) and 3;(x)

3. DERIVATION OF THE PRESENT METHOD

We propose an approximate solution to (1.1)in the form

m+t—1
y(x) = Z ajr', i=0,(1)(m+t—1), (3.1)
=0
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m-+t—1

y'(@)= Y ili—Daa" 2 i=2,3,...,(m+t-1), (32
=0

withm =5,t=2, p=m+t—1and o, G5, j =0,1,(m+t—1)
are parameters to be determined. p is the degree of the polynomial
interpolant of our choice. Specifically, we collocate equation (3.2) at
{Zn, Tnt1, Tnt2, Tnts, Tntd, Tnys) and interpolate equation (3.1) at
{Zn+3, Tn+a} using the method described in section 2 of this paper;

we obtain a continuous form for the solution

t—1
Y " 0 (@)ynti (i1, Y(Tj41)) (3.3a)
7=0
This gives rise to the system of equations put in the matrix form
below.
2 3 4 5 6 7
1 xpis w;+3 $§1+3 932+3 1g+3 wg+3 w?+3 o Ynis
1 wnpa iy Thpta Tpta Tnia Tpta Tn+ta aq Yn+4
0 0 2 6z, 1222 203 30z 4225 as N
0 0 2 6rnp1 1222, 20%5 ., 30xh,, 4223 az | _ | s
0 0 2 67, ., 12z,,, 20x),, 30z),, 42z0,, ay frt2
0 0 2 67,5 12z, .5 2005 30z, 4 42z;+3 as fnis
0 0 2 6w, 1222, 2020, 30ai,, 4225, s fna
0o 0 2 6w, 1202, 2020, 30zt 4227 ar fnts
(3.3b)
Note,
Da=F
_ p-1
a=D"'F

where E = (Y1, 42, -+ Yrs f1, f2r -5 f5)T

Matrix D in equation (3.3b), which when solved either by matrix
inversion techniques or Gaussian elimination method to obtain the
values of the parameters o, j = 0,1, m+t—1 and then substituting

them into equation (3.1) give a scheme expressed in the form.

N
—_

k—2
y(@) =D aj(@)yntj + 1Y Bi(x) fars (3.4)
7=0

<.
Il
=)
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If we now let k = 5, after some manipulations we obtain a continuous

form of solution

ya) — [(4]1 - (z - xn))} Yoss + [(—3h + gc —z)
e [ = 2)7 4 210 = )% = 179( — 2,)?

+789(x — x,)*h® + —1918(2 — x,)3h?

+2520(x — z,)°h° — 1588(z — z,)h° + 336R7] f,
1

1008075

—5390(z — ,)*h3 + 8400(x — x,,)3h* — 14059(x — ,,)h8

+10668%] frt1

[10(z — 2,,)" = 196(z — 2,)h + 1491(z — z,,)° 1

7 6 51,2
+—— |—(x—2xp)" +18(x — xy) h — 124(x — x,
5h2[(az Tn) 8(x — xn)°h (x —xp)°h

+375(z — @) h® — 420(x — x,)2h* — 314(x — 2,,) RO
+974R"] frio

1
+ o002 [10(z — 2,,)" — 168(z — 2,)°h + 1029(z — z,,)°h?

—2730(z — ,)*h3 + 2800(x — x,)>h? — 5813(z — 2,,)h°

+13524h7] fats
1

*Toosoms @

+214(x — z,)*h® — 210(z — 2,)°h* — 3(z — ,)A®

+269h7] fria

—x)" +15(x — 2,)°h — 86(2 — 2,)°h*

. 7 6 572
Toogors 2@ — @) = 28(x — 2a)°h + 147(2 — 20)"h
_350(1' — xn)4h3 + 336($ . wn)3h4 . 107(IE _ .’L‘n)h6
—84h"] fass (3.5)

The continuous form (3.5) was evaluated at some selected points it

yielded the following discrete schemes:
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h2
a. Ynt5 + Ynt+3 — 2Ynta = 240 [fn — 6 fnt+1 + 14 fnto
+4fn+3 + 209fn+4 + 18fn+5]
4 1 h?
b, Ynta — 3Un+3 + 3Yn = 365 [8fn 4+ 127 fr41 + 232 fpi0+
+232fni3 + 32fnsa — fais)
2
Co Unt2 — 2Yn+3 + Ynta = 7= [—fnt1 + 24 fng2

240

+194fn3 + 24fnia — fais)
2

h
d. Ynt1 — 3Yni3 + 2Ynga = 210 [—fn +22fnt1+

+242fnq0 + 412 fny3 + AT frqa — 2fn+5] (3-6)

Taking the first derivative of equation (3.5), thereafter, evaluate the

resulting continuous polynomial solution at x = zq yields

2
1000 [—3176 f,, — 14059 f,+1 — 6280 fr12

_11626fn+3 - 32fn+4 - 107fn+5] : (37)

Yn+3 — Yn+a + h2o =

Equation (3.6) and (3.7) constitute the member of a zero-
stable block integrators of order (6,6,6,6,6)T with Cs =

—221 —11 _31 31 —1313 ot :
(60480, 10080 804807 J0160° 12 ) The application of the block inte-

grators with n = 0 give the accurate values of unknown as shown in
tables 1-2 of section 5.

To start the IVP integration on the sub interval [ X, X5], we com-
bine (3.6) and (3.7), when n = 0 i.e the 1-block 5-point method
as given in equation (3.8). Thus produces simultaneously values for
along with without recourse to any predictor like Aladeselu [1] and
Awoyemi [2] to provide y; and ys in the main method. Hence this
is an improvement over these reported works. Though, this does not

becloud the contribution of these authors.
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4. STABILITY ANALYSIS

Recall, that, it is a desirable property for a numerical integrator

to produce solution that behave similar to the theoretical solution to

a problem at all times. Thus several definitions, which call for the

method to possess some “adequate” region of absolute stability, can

be found in several literatures. See Lambert [8], Fatunla [4,5] etc.

Following Fatunla [4,5], the five integrator proposed in this report in

equations (3.6) and (3.7) are put in the matrix-equation form and for

easy analysis the result was normalized to obtain:

10000 Yn+1 0 0
01000 Ynt2 0 0
00100 Yots | =] 0 0
10010 Ynt4 0 0
00001 Ynts 0 0
—23803 =761 =941 =341 107
10080 2520 5040 5040 10080
—9707 =37 136 —101 8
2520 63 315 630 315
—83523 -9 8T -9 9
672 140 112 35 224
8363 176 608 16 16
1260 315 315 63 315
—16243 625 3125 625 275
\ 2016 504 1008 1008 2016
1231
0000 i foa
71
0000 & fo—s
123
+ 0 0 O 0 m fn_2
0000 37 fat
0000 42 Jn

O O oo

OO O OO

—_ = = =

fn+1
fn+2
fn+3
fn—H

fn+5

Yn—4
Yn—3
Yn—2
Yn—1
Yn

+h?

(3.8)
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Equation (3.8) is the 1-block 5 point method. The first characteristic
polynomial of the proposed 1-block 5-step method is

P(R) = det |RA©®) — A1)

1 00 00 000 01
01000 00001
P(R) = det|R| 0O 0O 1 0O (|—-]00O0TO01 (3.9)
10010 00001
i 00001 0 00 01
R 0 0 0 -1
0O R OO0 -1
= det] 0 0 R 0 -1
0 0 0 R -1
0 0 0 0 R-1
= [R*(R-1)]

P(R) = R*(R — 1), and this implies Ry = Ry = R3 = R4 = 0 or
R; =1.

From definition (1.3) and the equation (3.9), the 1 block 5-point is
zero stable and is also consistent as its order (6,6, 6, 6, 6)” > 1, thus,

it is convergent, following Henrici [7].

5. NUMERICAL EXPERIMENT

In what follows, we present some numerical results on some problems.
Problem 1: From Awoyemi [2], we consider the problem

y" =2y, y (1) = 1,4 (1) = —1. The Exact solution is y (z) = 1
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Table of Results 1a

N | x Exact value | Approx value | Error
0 1 1 1 0
1 1.1 ] 0.909090109 | 0.9090915345 1.4255000000E-06
2 1.2 ]0.833333333 | 0.8333348725 1.5395000000E-06
3 1.3 ]0.769230769 | 0.7692331795 2.4105000000E-06
4 1.4 ] 0.714285714 | 0.7142889753 3.2613000001E-06
5 1.5 | 0.656666667 | 0.6666709495 1.0004282500E-02
6 1.6 | 0.625 0.6250043096 4.3096000000E-06
7 | 1.7 |0.588235294 | 0.5882396428 4.3488000000E-06
8 1.8 | 0.555555556 | 0.5555599414 4.3854000000E-06
9 1.9 10.526315789 | 0.5263202115 4.4225000000E-06
10 {20 |0.5 0.5000044666 4.4666000000E-06
Table of Results 1b
N |x Exact Awoyemi|2] Present Error
value error
1 1.1 ] 0.909090109 | 2.8483722D-03 1.4255000000E-06
2 1.2 ] 0.833333333 | 2.26883436D-01 | 1.5395000000E-06
3 1.3 ] 0.769230769 | 7.3968630D+00 | 2.4105000000E-06
4 1.4 ]0.714285714 | 2.1168783D+01 | 3.2613000001E-06
5 1.5 ] 0.656666667 | 3.3156524D+01 | 1.0004282500E-02
6 1.6 | 0.625 4.3968593D+01 | 4.3096000000E-06
7 | 1.7 |0.588235294 | 5.3903097D+01 | 4.3488000000E-06
8 1.8 ] 0.555555556 | 6.3121827D+01 | 4.3854000000E-06
9 1.9 ]0.526315789 | 7.1723621D+01 | 4.4225000000E-06
10 {20 |0.5 7.9776590D+01 | 4.4666000000E-06

Problem 2 From Aladeselu [1] we consider the problem y” =

—100y, y(0) =1, y'(0) =10
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Table 2a
h = 0.001
X Exact Approx Present
Value Value Error
0 1 1 0
0.001 1.00994983 1.00994983 3.00000E-
09
0.002 1.01979867 1.01979867 3.00000E-
09
0.003 1.02954553 1.02954553 4.00000E-
09
0.004 1.03918944 1.03918944 0
0.005 1.04872943 1.04872943 0
h = 0.0025
X Exact Approx Present
Value Value Error
0 1.00000000 | 1.00000000 0
0.0025 | 1.02468491 | 1.02468491 3.00000E-
09
0.005 1.04872943 | 1.04872943 1.00000E-
09
0.0075 | 1.07211853 | 1.07211853 5.00000E-
09
0.01 1.09483758 | 1.09483758 2.00000E-
09
0.0125 | 1.11687240 | 1.11687240 0
h=0.005
X Exact Approx Present Error
Value Value
0 1.00000000| 1.00000000 0
0.005 | 1.04872943| 1.04872943 1.00000E-09
0.01 1.09483758 | 1.09483758 3.00000E-09
0.015 | 1.13820921| 1.13820921 1.00000E-09
0.02 1.17873591| 1.17873591 1.00000E-09
0.025 |1.21631638| 1.21631638 2.00000E-09

11
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Table 2b
H Aladeselu (2007) Present

Method

0.001 | -2121925354003096E-05 3.00000E-09
-5.066394805908203E-05 3.00000E-09
-9.107589721679688E-05 4.00000E-09
0.00000E+00
0.00000E+00
0.0025 | -1.30891799926758E-04 3.00000E-09
-3.131628036499023E-04 1.00000E-09
-5.636215209960938E-04 5.00000E-09
2.00000E-09
0.00000E+00
0.005 | -5.2449431610107742E-04 1.00000E-09
-1.250743865966797E-03 3.00000E-09
-2.251148223876953E-03 1.00000E-09
1.00000E-09
2.00000E-09

REMARKS: Aladeselu [1] proposes 1-block 3-point method, while
the present method is a 1-block 5-points that produces simultane-
ously, y1, Y2, y3, ya and y5 (see Table 2b)

Problem 3 (Boundary Value Problem)

y' =3x+4y, y(0)=0, y(1)=1.

We solve the equation in the range [0, 1] using h = 0.2
. . 7 2x _ ,—2x
The exact solution is y = ﬁ — %x
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Table 3
X | Exact Approx Absolute
Value Value Error
0 0.00000000000{ 0.00000000000{ 0.00000E+00

0.2

0.04819251100

0.04800965479| 1.82856E-04

0.4

0.12852089500

0.12812778320| 3.93112E-04

0.6

0.27833169000

0.27766443290| 6.67257E-04

0.8

0.54623764000

0.54518670770| 1.05093E-03

1.0

1.00000000000

1.00000000000{ 0.00000E4-00

Problem 4

We solve the equation in the range [0, 27] using h =

y' = —100y + 99sinz, y(0) =1, 3 (0) = 11.

s
25

The exact solution is y (z) = cos(10x) + sin(10zx) + sin x
Table 4

X

Exact Solu-

tion

Numerical Solution

Exact Error

1

1

0

1.484987182

1.486674194

1.68701200E-03

1.707107000

1.716007839

8.90083900E-03

0

-0.007809376051

7.80937605E-03

-0.29289300

-0.2957147581

2.82175810E-03

1

1.012907416

1.29074160E-02

0.2928930000

0.2968513269

3.95832690E-03

-2

-2.054221848

5.42218480E-02

-1.707107000

-1.710563310

3.45631000E-03

1

0.9945228202

5.47717980E-03

Problem 5

y' = —y+0.001e", y(0) =1, ' (0) =0.9995.

13

We solve the equation in the range [0,27] using h = 53 The exact

solution is y (z) = u (z) + v (x) , where

i? = —1, u(w) = cosx + 0.0005x sinx and

v (x) = sinz — 0.0005z cos .
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To compute the error we use

1
— 2 2|2
Error (y) = |y («) = y| = |(u(x) = w)* + (v (&) - v)?]
Table 5
n EXACT SOLUTION NUMERICAL SOLUTION ERROR
U(x) V(x) U(x) V(x)

1 0.923954672 0.382502029 0.923957552 0.382505370 4.410591536E-06
2 0.707384461 0.706829101 0.707391100 0.706836742 8.339167678E-06
3 0.383227642 0.923654113 0.383236832 0.923664694 1.401475590E-05
4 0.000785398 1.000000000 0.000795633 1.000011652 1.550895536E-05
5 -.3817764158 0.924255231 -0.381765839 0.924267960 1.655019240E-05
6 -.7062737406 0.707939822 -0.706268156 0.707952968 1.428323238E-05
7 -.9233535545 0.383953256 -0.923355672 0.383965476 1.240205369E-05
8 -1 0.001570796 -1.000009240 0.001580122 1.312825906E-05
9 -.9245557900 -.3810508025 -0.924570467 -0.381045791 1.550873066E-05
10 | -.7084951821 -.7057183803 -0.708515033 -0.000554345 1.985075033E-05
11 | -.3846788689 -.9230529956 -0.384696891 -0.923057354 1.854121268E-05
12 | -0.002356194490 | -1 -0.002369543 -1.000010067 1.671867759E-05
13 | 0.380325189 -.9248563488 0.380318548 -0.924870314 1.546355230E-05
14 | 0.705163020 -.7090505425 0.705163991 -0.709066021 1.550883303E-05
15 | 0.922752437 -.3854044822 0.922761523 -0.385420982 1.883636632E-05
16 | 1.000000000 -0.003141592654 | 1.000012339 -0.003154864 1.812089929E-05

6. CONCLUSION

Onumanyi etal [9], and Awoyemi [2] discussed in some detail theo-
retical and practical aspects of collocation with piecewise polynomial
functions. Roughly, their results particularly Awoyemi [2] indicate
that the solution of a second order non linear problem can be ap-
proximated with linear multistep methods. In this paper we devel-
oped a uniform order 1-block 5-point integrators of orders (6, 6, 6, 6, 6)
and the resultant numerical integrators posses the following desirable

properties.

I. zero- stability i.e. stability at the origin
II. cheap and reliable error estimates
III. Facility to generate the solution at five point simultaneously.

IV. It is a convergent scheme.

Hence our work is an improvement over other cited works.
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