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Summary

Mycobacterium tuberculosis the causative agent of tuberculosis has many intrinsic features which enable it to evade the activity of antibiotics. 
Many studies have been carried out to understand the mechanisms of drug resistance by this organism. An attempt was made in this write up to 
elucidate the various mechanism of drug resistance in M. tuberculosis, including its innate impermeable cell wall and mutation of specific genes. 
Drug resistance in Mycobacterium tuberculosis is not a product of a single homogeneous genetic unit. Rather it is as a result of frequent mutation in 
various genes which encode for resistance to antibiotics. Also, the slow metabolism during a prolonged dormant stage greatly enhances it resistance 
to drug, the waxy impermeable cell wall with the presence of numerous efflux pump are essential for withstanding the potency of antibiotics. 
Having an adequate knowledge on the molecular mechanisms of drug resistance in M. tuberculosis may be helpful in exploring new targets for drug 
development.
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Introduction 
Tuberculosis (TB) is an infectious disease caused by 

Mycobacterium tuberculosis. Streptomycin, with high bactericidal 
activity was the earliest curative agent used in its treatment. 
However, drug-resistant strains began to emerge few years later. 
Initially, this was thought to result mainly from using only single 
drug, streptomycin, to treat the infection, prompting the use of 
multi-drug therapy for controlling the infection, but in recent 
decades multi-drug resistant (MDR) has emerged [1]. Furthermore, 
the reports gave by World Health Organization in 2010 reveal two 
other more classes which are, extensively- drug resistant (XDR), 
which is resistant to at least 4 of the core anti-TB drugs and totally-
drug resistant (TDR) strains of TB. A type of TB resistance in people 
who are originally infected by the antibiotics resistant strain but 
have not used any anti-TB chemotherapy is regarded as the primary  

 
resistance, while a situation in which resistance developed due to 
inadequacy of treatment is referred to as acquired resistance [2,3].

The complexity of the mechanisms used by M. tuberculosis in 
drug resistance has led scientists to studying M. tuberculosis at 
the molecular level. Various researchers have been able to identify 
some molecular features which have been attributed to drug 
resistance in the organism. When considering the mechanisms of 
drug resistance in M. tuberculosis, it is imperative to understand 
the interplay between the molecular mechanisms, adaptive features 
and the innate attribute which play crucial role in resistant-MTB 
strain. Both [4] and Blair (2015), accentuated that drug resistance 
in Mycobacterium tuberculosis is not a single homogeneous 
biological unit, thus suggesting that the complexity and severity of 
resistance in the pathogen is due to some other intrinsic factors. 
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This study aims to present findings on the mechanism of drug 
resistance in M. tuberculosis, presenting a comparative review of 
the molecular mechanism, the adaptive features and the innate 
mechanisms through which the organism develop resistance to 
antitubacular drugs.

Mechanistic Innate Features of Drug Resistance

Impermeable Cell Wall

The fundamental characteristics of passive resistance to 
antibiotics in M. tuberculosis are due to its impermeable cell 
wall [5]. M. tuberculosis has a cell wall that is composed of three 
main components, these are: mycolic acids, Wax-D and the cord 
factors [6]. The hydrophilic arabinogalactan layer ensures the 
impermeability of the cell wall to hydrophobic chemicals. This 
layer is further contained in hydrophobic mycolic acids which 
extremely impede the entrance of hydrophilic molecules [7]. This 
impermeability result in accumulation of antibiotics slowly around 
the cell, the accumulated drugs around the cell wall are slowly 
detoxify by different cellular component or by release of enzyme.
[8], showed that β-lactams, which are inhibitive to the incorporation 
of peptidoglycan (rigidity structure) into the cell wall, are degraded 
by M. tuberculosis because it possesses β-lactamases, an enzyme 
that effectively degrade β-lactam antibiotics.

Danilchanka O et al. [7], reported the presence of an outer 
membrane channel protein CpnT in both M. tuberculosis and M. 
bovis, which performs a dual role of nutrient uptake and selective 
susceptibility to antibacterial agents. The report showed that the 
CpnT mutant of M. bovis is more resistant to most antitubercular 
drugs, including the bactericidal nitric oxide, which is utilized in 
controlling M. tuberculosis infection in mice.

Slow Metabolism Mechanism

Bacteria with slow metabolic processes and long generation 
time are difficult target for most antibiotics i.e., bacteria that are 
metabolically active and replicate quickly are good target for 
antibiotics [9]. However, in M. tuberculosis, it is not still clear if the 
long generation time corroborate its drug resistance. According to 
[10], the long generation time in M. tuberculosis does not impact 
drug resistance ability on the organism. [11]. Also reported a 
negative association between drug resistance and generation time 
in the organism. However, the slow growth rate of M. tuberculosis 
has been reported to play a key role in its drug resistance, for 
example, unstable antibiotics such as carbapenems loses their 
activity at a faster rate than the mycobacterial growth rate [12], 
identified some specific genes which allow M. tuberculosis to 
grow in oxygen-deprived (stress) conditions, most of which are 
directly involved in triacylglycerol production. Triacylglycerol 
causes slowdown in the metabolic processes of Mycobacterium 
tuberculosis. This is mainly because triacylglycerol synthesis uses 
up acetyl CoA, which is an essential component in tricarboxylic acid 

cycle, a fundamental metabolic pathway [12]. This triacylglycerol 
is extensively produced by Mycobacterium tuberculosis when 
responding to diverse stress conditions such as oxygen deprivation, 
acidic pH, and iron deficiency [13,14], observed that the ability of 
the organism to grow under acidic condition is aided genetically 
and not only limited to physiological adaptations.

Also, evaluating the metabolic status of the organism at each 
stage of its pathogenesis is challenging since the organism can 
adapt to various microenvironment within the host. Furthermore, 
the extent of heterogeneity of infecting population in various 
cellular compartment within the same host adds to the challenges 
of targeting the metabolism processes [15] for therapeutic purpose.

Possession of Numerous Efflux Pumps

This protein channels play crucial role in the normal metabolism 
and physiology of the organism such as signaling molecules across 
the cell wall, and toxins, waste, and nutrient transportation [16]. 
Efflux pumps have also been shown to be adapted to drug resistance 
in M. tuberculosis. Multidrug efflux pumps pass through the inner 
and outer membranes and serve as an outlet for antibiotics from 
the cell [17]. Drug efflux pumps in M. tuberculosis have been found 
to possess regulatory protein systems; which controls efflux pump 
expression and thus specializing them for drug resistance roles 
[16]. 

Molecular Mechanisms

Acquisition of antibiotics resistance in M. tuberculosis has been 
shown to result from spontaneous mutation in several chromosomal 
genes, this frequent mutation has been found to confer alteration to 
the required interaction between each anti-tuberculosis drug and 
their specified target.

Rifampicin

This is a fundamental lipophilic annamycin chemotherapeutic 
agent initiated into the multi-drug treatment scheme of tuberculosis 
in the 1970s. It is usually combined with isoniazid as the first line 
chemotherapy in the treatment of tuberculosis [18]. Rifampicin 
is known to have an inhibitory effect against slow and actively 
growing tuberculosis [19]. Rifampicin mode of action is by binding 
to the β-subunit of the RNA polymerase, inhibiting the elongation 
of messenger RNA [20]. Rifampicin resistant strain of Mtb, usually 
serve as an indicator for multi-drug resistant tuberculosis, because 
these strains are not sensitive to all other tubercular drugs Comas 
et al., (2011) [21].

Resistance to rifampicin in M. tuberculosis have been found to 
be due to mutation in rpoB of RNA polymerase retarding affinity 
for rifampicin [20]. Some studies have been able to identify specific 
codon which can causes rifampicin resistance when mutation occur 
in them [22,23]. Report by [24] observed that most of the rifampicin 
resistant isolates, have a missense mutation and substitution 
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of nucleotide at codon 526 and 531 of rpoB. [25], was also able 
to identify resistant strains with a form of mutation at 69-bp 
region and point mutation in rpoB alleles. [26] in his review work 
concluded that rifampicin resistance in tuberculosis is associated 
with nucleotide substitution at point 516, 526, or 531of rpoB locus. 
The potency for rifampicin cross-resistance with rifamycin has 
been reported by several researchers, this has been characterized 
with conformational changes in codons (518 or 529) [27-29].

Pyrazinamide

Pyrazinamide is a first-line drugs, potent against non-
replicating persistent MTB [30]. PZA is also perform crucial function 
in reducing the relapse rate in tuberculosis; shortened the course 
of treatment from one year to six months [31] effective where 
there is resistance to rifampicin and isoniazid [32]. The proposed 
mechanism of action of pyrazinamide involves conversion of 
pyrazinamide to pyrazinoic acid, by the enzyme pyrazinamidase/
nicotinamidase coded by the pncA gene. The pyrazinoic acid 
disrupts the bacterial membrane energetics; membrane transport; 
formation of CoA, and acidification of the cytoplasm [32]. Most 
resistance to pyrazinamide has been associated with mutation in 
the pncA gene [30,33]. The mutation in pncA accounts for most of 
the resistance cases reported in MTB. Other targets and mechanism 
include: efflux pump [34] ribosomal protein S1 (RpsA) involved in 
trans-translation [31], Yang et al. (2015), identified mutation at the 
C-terminus of RpsA which is responsible for retarding the binding 
of POA to RpsA, thus making PZA inactive.0

Isoniazid

Isoniazid and rifampicin form the core antibiotics in the 
treatment of tuberculosis. Isoniazid is usually present in the 
inactive form but their metabolism in the body convert them into 
a pharmacologically active form [35], Rouse et al. (2005). The 
metabolism of isoniazid to the active form occur via the activities 
of catalase/peroxidase enzyme KatG, coded by the KatG gene [36]. 
Once activated, it has been found to be a strong bacteristatic agent 
on metabolically and physiologically active M. tuberculosis, with a 
minimum inhibitory range of (0.02 μg/ml to 0.06 μg/ml) [37,38].

The mode of action of isoniazid resistance is complex and 
remains unclear, however, most isoniazid Mtb-resistant strains have 
been associated with mutation in KatG and inhA [39,40]. Mutations 
of the S315T of KatG is more common in isonazid resistant strains, 
mutation at this point causes the formation of isoniazid product 
with little affinity for isoniazid aduct [36]. Also, the conformational 
changes in inhA active site retard efficient binding to drug, drugs 
such as Ethionamide which have inhA as their target site are also 
affected (Ho et al., 2009). [40] who studied 11,411 Mtb isolates 
from 49 countries reported that 64% of all isoniazid resistant strain 
studied has mutation in katG315 while 19% having mutation in the 
inhA-15 region. [41] reported that 88% of Mtb strains from patients 
with multidrug-resistant (MDR), and extensive drug resistant (XTR) 

tuberculosis in the Republic of Moldova had a katG 315T mutation. 
However, [38] was able to identify isoniazid resistant strains which 
do not harbor conformational changes in the KatG nor inhA.

Ethambutol

Part of the four-drug regimen anti-tuberculosis drug, it is 
combined with PZA, rifampicin, and isoniazid to prevent rifampicin 
resistance especially in cases where their isoniazid resistance is 
not detectable [42]. The mode of action of ethambutol involved 
interfering with synthesis of cell wall in the Mycobacterium 
tuberculosis [43]. However, several other formulated hypotheses 
on the mechanism of action of ethambutol include inhibition of 
the synthesis of spermidine [44], blockage of mycolic acid transfer 
to the cell wall [45], interfering with RNA metabolism [46], 
inhibition of the synthesis of phospholipid [45]. There is no clarity 
on the mechanism to ethambutol resistance, with the resistance 
mechanism initially related to mutation of the codon 306 in embB, 
[47,48], however, certain studies have found M. tuberculosis 
with mutation at this same point to be susceptible to ethambutol 
[49,50]. Isoniazid resistant-MTB with mutation at the katG Ser315 
were also found to concurrently exhibit resistance to ethambutol 
as well [48]. Polymorphism in embA, embC, and Mutations in 
embB497 and embB406, mutation in the codon 306 in embB have 
all been implicated in ethambutol resistance [48]. In 2013, Safi et 
al. proposed that mutation in ubiA (Rv3806c) resulted in high level 
of ethambutol resistance. [51], found mutations in ubiA in all the 
Ethambutol resistant Mtb he worked on, while [52], observed that 
ubiA mutations in Mycobacterium tuberculosis varies from one 
geographical location to another.

Fluoroquinolones

Fluoroquinone majorly the ciprofloxacins are chemotherapeutic 
agents used in the treatment of tuberculosis Rustomjee et al. (2008) 
[53], they have been found to demonstrate high antibacterial 
activity on Mycobacterium complexes and are majorly employed as 
combined therapy, it is inhibitory to DNA gyrase and topoisomerase 
IV [54]. Resistant to fluoroquinolone occur via mutation in the gyrA 
or gyrB [55]. Efflux pumps, pentapeptide proteins (MfpA) mediated 
regulation of gyrase, and the bacterial cell wall have been also 
implicated in fluoroquinone resistance in Mtb [34].

Ethionamide

These are antitubacular drugs that are structurally like 
isonaizid, in their normal state, they are inactive chemotherapeutic 
agents, and however, their metabolisms make them to be 
pharmacologically active, this activation requires a monooxygenase 
coded by ethA gene [56]. The mode of action of ethionamide by their 
inhibitory effect on the synthesis of mycolic acid in M. tuberculosis 
[57], the mechanism of resistance to ethionamide is largely unclear, 
however several report has associated the conformational changes 
in orf1 gene of inhA locus with ethionamide resistant strains [58], 
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although certain resistant strains have also been found to harbor 
mutation at etaA / ethA , ethR [59].

Kanamycin, Capreomycin, Amikacin, Viomycin

These are second line antitubacular drugs which inhibit protein 
synthesis. Viomycin and Capreomycin are cyclic polypeptides, 
while, amikacin and kanamycin are aminoglycoside antibiotics 
[60]. Capreomycins and Viomycin are bacteriostatic antibacterial 
agents with a known mechanism of action of inhibiting translation 
reactions through biding to the 50S ribosomal subunit [61,56]. 
The exact mode of acquisition of resistance to Capreomycin and 
Viomycin is not totally clear; however, cross-resistance between 
Capreomycin and Viomycin has been reported [59].

[60, 62], reported mutations in tlyA gene plays key role in 
Viomycin and Capreomycin resistance. Amikacin and Kanamycin 
alters the 16S rRNA configuration, thus inhibiting protein synthesis, 
amikacin and kanamycin resistance are associated with mutational 
alterations in the rrs gene [63-66] conformational changes in the 
aminoglycoside acetyltransferase gene (eis), also contribute to 
Kanamycin resistance [58].

Conclusion
Drug resistance in Mycobacterium tuberculosis is not a product 

of a single homogeneous genetic unit. Rather it is as a result of 
frequent mutation in various genes which encode for resistance to 
antibiotics. Also, the slow metabolism during a prolonged dormant 
stage greatly enhances it resistance to drug, the waxy impermeable 
cell wall with the presence of numerous efflux pump are essential 
for withstanding the potency of antibiotics. Having an adequate 
knowledge on the molecular mechanisms of drug resistance in 
M. tuberculosis may be helpful in exploring new targets for drug 
development.
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