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ABSTRACT 
 
In this paper, self starting block method of order 
(7, 7, 7, 7, 7, 7) is proposed for the solution of 
general second order initial value problem of the 
form ( )yyxfy ′=′′ ,,  directly without reducing it to 
first systems of odes. The continuous formation of 
the integrator enable us to differentiate and 
evaluate at some grids points to take care of y’ in 
the method. The schemes compare favorably with 
optimal order four (Fatunla Based) proposed in 
Yahaya (2004). There is anticipated speed up of 
computation as a result of admissible parallelism 
across the method. 
 

(Keywords: general second order, initial value 
problems, parallel/block method, self starting) 

 
 
INTRODUCTION 
 
Linear multistep methods constitute a powerful 
class of numerical procedures for showing a 
second order equation of the form: 
 

( ) ( ) ( ) β=′=′=′′ ayyayyyxfy ,,,, 0   (1)  
 
It has been well known that an analytical solution 
to this equation is of little value because many of 
such problems cannot be solved by analytical 
approach. In practice, the problems are reduced 
to systems of first order equations and any 
methods for first order equations are used to 
solve them. Awoyemi (1999); Fatunla (1988); and 
Lambert (1973) extensively discussed that due to 
dimension of the problem after it has been 
reduced to a system of first order equations, the 
approach waste a lot of computer time and 
human efforts. Some attempts has been made to 
solve problem (1) directly without reduction to a 
first order systems of equations; Brown (1977) 

and Lambert (1991) independently proposed a 
method known as multi derivative to solve second 
order initial value problems type (1) directly. In a 
recent paper of Onumanyi et al. (2008), they 
proposed direct block Adam Molton Method 
(BAM) and hybrid block Adam Molton method 
(IBAM) for accurate approximation to y’ appearing 
in Equation (1) to be able to solve problem (1) 
directly. The aim of this paper is to demonstrate 
using the proposed block method of order (7, 7, 7, 
7, 7, 7)T derived to solve Equation (1) directly and 
compare its performance with the optimal order 
four schemes (Fatunla) based proposed in 
Yahaya (2004). 
 
 
The Multistep Collocation Method 
 
In the spirit of Onumayi et al. (1994) and Yahaya 
(2004), we consider the construction of multistep 
collocation method of constant step size h, 
though h can be variable and give continuous 
expression for the coefficient. The values of K 
and M are arbitrary except for collocation at the 
mesh points where 10 +≤ kmp . 
 
Let jny +  be an approximation to jny +  where: 
 

( ) 1..........0 −== ++ KxYy jnjn  
 
Then a K-step multistep collocation method is 
constructed as follows. We find a polynomial 
( )xy of degree 0,0,1 ff mtmtp −+=  and such 

that it satisfies the conditions: 
 
 ( ) { }kjyxy jnjn .......0, ε++ =       (2) 
 

( ) ( ) 1............0, −==′′ ++ mjxfxy jnjn  (3) 
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Where 11 .............. −mxx  are free collocations 
points, we then take as an approximation to 

( )knknkn xYYy +++ =, . 
 
Let 
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Where jα  and jβ  are assumed polynomial of 
the form, 
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and the collocation point 1+jx in (3) belong to the 
extended set, 
 
 

{ } { }knknknn xxUxxQ +−++= ................................ 1  
      (6)  
 
From the interpolation conditions (2) and the 
expression for ( )xy  in (4) the following conditions 
are imposed on ( ) ( )xandx jj βα , 
 
 

( )
( ) 1.......,0,1......0,0
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2 −=−==
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and  
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Next we write (7) – (8) in a matrix equation of the 
form: 
 
 
DC=I     (9)     
 
 
 
 
 

 
Where I is the identity matrix of dimension  ( )mt +  
The matrices D and C are both of 
dimensions ( ) ( )mtmt +×+ . It follows from (8) that 

the columns of 1−= DC  give the continuous 
coefficient ( ) ( )x and jβα xj  . 
 
 
Derivation of the proposed Method 
 
Consider a power series of a single variable x in 
the form: 
 

 ( ) ∑
∞

=

=
0J

jaxp  

 
Is used as the basis or trial function to produce 
our approximate solution to (1) as: 
 
 

( ) j

J
j xaxp ∑

∞

=

=
0

   (10) 
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tm

J
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From Equations (10) and (12): 
 
 

( ) ( ) ( )yyxfxajjxp j
tm

J
j ′=−=′′ −

−+

=
∑ ,,1 2

1

0
(13) 

 
Where ja is the parameter to be determined, t 
and m are points of interpolation and collocation 
points. We collocate (13) and interpolate (10) 
yields the following systems of non linear 
equations: 
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The continuous scheme (14) was evaluated at 
some selected points it yielded the following 
discrete schemes. Evaluating (14) at x=xn+6, 
x=xn+2, x=xn+3, x=xn+1  and x=xn yield respectively 
four integrator below: 
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See Jain (1984). 
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The block scheme of 15 is of orders (7, 7, 7, 7, 7)T with error constants: 
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The first derivative of Equation 14 at x=xn+6 is used along with the schemes in 15 to start the integration 
process, that is” 
 

546 403204032040320 +++ =−+ nnn yyhz        

 [ ]654321
2 12393552461868919460109213470479 ++++++ ++−+−+− nnnnnnn fffffffh         (16) 

 
Implementation Strategies: To start the IVP integration on the sub interval [ ]60 , xx .We combine (15) 
and(16), when 0=n  i.e the 1-block 6-point method as given in equation (18). Thus produces 
simultaneously values for 54321 ,,,, yyyyy  along with 6y without recourse to any predictor 
 
 
Numerical Experiment: This section deals with the implementation of the algorithm proposed for second 
order initial value problems. Consider the initial value problem  

( ) ( )
( ) xexysolutionAnalytic

yyyy
−=

−=′==′−′′

1:
10,00,0

 

 
 

Table 2:  Accuracy of 6-Step Block Method of Order 7, H=0.1. 
 

 
 
 

Theoretical/Approximate Solutions, h=0.1 
X Exact solution 

            y(x)  
     6 step Block Method 

     y-computed 

Errors
Of Optimal (2004) 

 

          Errors           
          Proposed 
           Method 

0.1 -0.1051709180                   -0.105165192 5.008136E-03 5.7260E-06 
0.2 -0.2214027580 -02213961189 1.101918E-02 6.6391E-06 
0.3 -0.3498588080 -0.3498517797 1.9041146E-02 7.0283E-06 
0.4 -0.4918246980 -0.4918172441 2.8374166E-02 7.4539E-06 
0.5 -0.6487212710 -0.6487133775 4.0041949E-02 7.8935E-06 
0.6 -0.82211880 -0.8221106058 5.339556E-02 8.1942E-06 
0.7 -1.0137527000 -1.013744519 6.9481732E-02 8.1810E-06 
0.8 -1.2255409280 -1.225532747 8.7709919E-02 8.1810E-06 
0.9 -1.4596031110 -1.459594938 1.09158725E-01 8.1730E-06 

1 -1.7182818280 -1.718273663 1.33295713E-01 8.1650E-06 
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CONCLUSION 
 
This paper demonstrated a successful application 
of linear multi-step method to solve a general 
second order ordinary differential equation of the 
form ( )yyxfy ′=′′ ,,  directly without reducing it 
to first order ones. Numerical results show that 
the block method converges better than optimal 
order 4 block method. Furthermore, the proposed 
block method is self starting and does not call for 
special predictor to estimate y′ in the integrators, 
all the discrete schemes used in each of the 
method were derived from a single continuous 
formula and its derivatives making use of grid 
point in the formulation.  
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