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ABSTRACT

Iterative methods are just approximate methods, applied in the solution of partial differential
equations (pdes) of elliptic, parabolic and hyperbolic types. In this paper, we analyze the
basic theory, convergence, and other properties of iterative methods for elliptic pdes. We
examine the three basic iterative methods, Jacobi, Gauss-Seidel and Successive
Overrelaxation (SOR) methods, and perform numerical experiments with them, with a view to
establishing the most efficient of the methods in terms of rate of convergence, simplicity, and
ease of implementation on the computer. It was discovered that the SOR has the fastest
convergence rate, followed by the Gauss-Seidel and then the Jacobi method. In terms of
simplicity, however, the Jacobi method is far simpler than the more complicated Gauss-
Seidel and SOR methods, in view of the fact that it involves lesser computational rigour than
them.
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ODUCTION
ilibrium problems are problems of steady state in which the equilibrium configuration i in a domain 2
o be determlned by solving the differential equation
[u = 7 l |
ithin ', subject to certain boundary conditions
5ilul=g¢ {23

the boundary of £, Ames (1977). The mathematlcal modeling of equilibrium problems usually results in
lptlc partial differential equations. Typical of this type of equations is the Poisson equation
u=f 3

ere is the laplace operator, and / and i¢ are real or complex-valued functions on a manifold. For
1sh1ng , equation (3) becomes the Laplace equation

£ =0 4

opchenova and Maron (1981), stated the Dirichlet problem for Poisson equation (3) as the problem of
ding the function =« = ¢{+ ' satisfying inside a certain domain 2 the equation (3), and at the boundary
~ . the condition

~ = gl y) 3

where © v 1 is the given continuous function. Young (1950), asserts that finite difference methods afford
2 powerful tool for obtaining approximate numerical solutions for many differential equations whose
analytic solutions are not known. The differential equation is replaced by a difference equation which must
be satisfied by the values of the unknown function - at a finite set of points in the domain, ”, of the
independent variable. This set of points usually consists of the nodes, or net points, of a square network =
contained-in Z'. The mesh size is denoted by /:' = U ]. The finite difference discretisation of elliptic partial
differential equations normally results in a system of linear algebraic equations with respect to the values of
the function <1 » Vi atpoints (v ")

Bl = & ol

where A7 £<R" and 2 is the unknown column vector. Traditionally, exact solutions to the linear
system (6) are obtained through the application of direct methods such as Gaussian elimination. However,
direct methods have proved to be too laborious, especially when the dimension of the matrix is too large.
Iteration entails repeating a process over and over until an approximation of the solution is reached. An
neratwe method for the solution of the linear system (6) is of the form

o omeos-l -

= - B P

where - is a matrix called the iterative matrix.
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A minimum property for any acceptable 1terat1ve method is that the method converges. Converg

demands that the sequence of vectors S oy = (the solution) as =~ — 7. Saad (2000), stated that
iteration (7) converges for any initial vector - - iff
ESA TS S
where 21 |, referred to as the spectral radius of the iterative matrix -, is the maximum modulus of
eigenvalues of &, i.e.,

G = ma 3
and & 71, referred to as the spectrum of | is the set of eigenvalues of ~
Besides convergence, an iterative method must be seen to converge fast enough for it to be of practi
significance. The Convergence rate : =} of an iterative method is a measure of the speed at whic
converges to the solution. It is defined as

- = —leo 0050 R ERY]

L

RESEARCH METHODOLOGY

All the iterative methods we would consider revolve around a decomposition of the matrix < of the li
system (6) into the form

axl=De{ (11)

where L, ', and I/ are the strictly lower triangular, diagonal and strictly upper triangular matri
respectively. Although many iterative methods are in existence, we present analyse the derivation of
three basic iterative methods, the Jacobi, Gauss-Seidel and Successive overrelaxation (SOR). The Ja
method is derived by substituting the value of A in equation (11) into equation (6) thus:

L3 s ‘.vli_.f

If we iterate the above equation we have the scheme

. g 3 | — %
if = -1 :1..“-;. Tit i 0 M fl,_l

Equation (12) is the Jacobi iterative method. Comparing it with the general linear iterative scheme (7) we
that

= -7 ‘:“i = Uy, r= D",
=3

The matrix & = —D7°{L — I'} is called the Jacobi iterative matrix. We would denote it by .. The Ja
iterative method (12) can be expressed in algebraic form as

_‘a.'; " T:: E= . 13)

. i

Lad

&

where the i: denote the elements of i: and the ¢, the elements of ¢ = 27" 5.

We derive the Gauss Seidel method in a similar way by employing the following steps

iL=-D=-Ulit =5

LI - O 13l - ‘:J'n =5

! =Dhwu=-Uu-—->5

wu=—(L=D) Wu—-{L-D)y%
Therefore, the Gauss-Seidel iteration formula would be,

=l -V Y - {L=-D) {14}
where & = “%..'- -DY7'U and *= (. -=2)""h. We denote the Gauss-Seidel iterative ma

= L =) U by o
Equation (14) has the fo]lowmg algebraic form
= \ \* g. .t R (15}

= y=i=1
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uss-Seidel iterative method is based upon immediate use of the improved values. To systematize such

putation the order in which one solves for the components of the ~'th approximation :i'~ must be
shed beforehand. Such a sequential arrangement is called an ordering of the mesh points. The
woessive Overrelaxation (SOR) method is a modified version of the Gauss-Seidel method. Axelsson
1. stated the SOR theorem thus:

em 1 Assuming that

= has property (4™

The Jacobi iterative matrix =. has only real eigenvalues

the SOR method converges for any initial vector iff o' G.1 < Land 2 <. « = 2. Furthermore,
; |

= s {16)
L-yi-lae)l

which the spectral radius is given by

&z copr) Twopr — 1 (17}

begin derivation of the SOR by substituting the value of A in equation (11) back into equation (6)

=D -Uiu=6b (13)

; multiply both sides of equation (18) by the relaxation parameter, ¢

=i
- o FENer ew
L i V)i = wn

. 4 F2Ngy = Ay .k
i OF .'__D_'L Wil = L — g

— fhir = Thip o= e Th — Iler s
Aokt = Ll s A LL L W b [
: N - % 21 ,
- = £ 1l—wiD - N R R ¥ 74
-« &
N R BT o . ™ pra=i, A
L oal) [1.3 g} L Wl Jid [ = wi Li?
e A T N 3 - i ga=1 g gy
=iD=wii (1= c)D—lUiu* Y <(D-wli rwub [19)

ation (19) is the SOR iterative method, where G;-z = (2~ wl) ' (1= 1D = U] is the SOR
srative matrix and ~ = 0 - ..l w2, If oo = 1 the method reduces to that of Gauss-Seidel. The SOR

method (19) has the following algebraic form

| e ‘ ]
T 1N B X ) R | 0
v el i

oblem 1: We wish to determine the steady state heat distribution in a thin plate bounded by the lines
=2 » =a > =2and v = . This gives rise to the Laplace’s equation

o i 1 1’;

with boundary conditions

- < P S

Cz‘

§ By = 200

To solve this equation, we construct a net, with 2 rows and 3 columns, over the plane region as follows.

‘{l' Iz - Pt -

-

o
>
ey
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Figure 1 Discretization of plane region with 2 3 net density
From figure 1, we see that we have 2 internal points, i, . and ii-.; and 10 boundary points, .- . .-
Yemp e Hps o ige o Mo o iy s Bvs and g s
We replace equatlon (21) by the followmg finite difference relations

s G — i =
Taie -

where - and = are equal to the horizontal and vertical distances between the nodes, respectively. If we let
= the above equation becomes

. i i ~ T
-l = 1 e § o T B = A L3 {1}

Using equation (24) above, we write the finite difference equations for the 2 interior points .. ; and i to
obtain the following linear system.

Rl TR <7 | HWygs ™ Hya # J e

: £ "7 Mg Gaw o jiag WA ) T

From the boundary conditions (22) wehavethat iy, =iy = bap = hse =Qand iy & i = 200

Hence, equatlons (25) become

&t e i \
¥t s S0
1s i ! e

1,1‘_‘ 1 =N

and in matrix from we have
4 =1 My, —'_'_"i;i e

; | | | =1~

! 3 = :"“-‘ a0

which is the form of equation (6) A

+ -1 a 200
where, = = | L= land ! “n, .
o 4 Hpy 2004
And, from the matrix A = | —-l . ;!, we have
00y 4 0y T e
L—l-,._l Ci :}-:C _;: L_—%G ='\] =9}

We apply the three basic iterative methods to solve system (27) thus:
JACOBI METHOD
Substituting the values of equations (28) in the Jacobi iterative scheme (12) we have

g ~ Ay oy -, w1 i < £
Yo, % ) RO S S S B !‘,aa-{:‘q‘i Lo l.-’! -1"'3'"

1 s

. A He) L -t
frheE 1__;“” = Yif Shyy }_fSQ* .
. TSNE Rl J! il t_‘;m.! 2973

H=q | . U Lidag ! -
where = = [ ,_ ) ) is the Jacobi iterative matrix, and » = | = ii

; X o S

From equation (29) we obtain the following relations to be solved iteratively.
v 3 T 5o =31 50 )

i1 T 3 M : o

- (20)

. :;-,l =1 ___:'\}

LRt | —:-131 ..Jk.f. R -
We fix the initial approximations to be ¢y, = = -y ~ 2. Ten iterations of the Jacobi method

performed for problem 1, the results of which are presented in Table 1, for comparison with results of o
methods. The spectral radius of the Jacobi iterative matrix is also calculated as,
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1l
e | e

(31)

| =0.60205$5514 132)

ing the values of equatlons (28) in the Gauss-Seldel method (14) gives

.- ')z_[io ‘, ] (c —1,(

_l G ,u =9
ro 0 4 0,17 ,200,
=1k J""\ ! i ~ l
—1 0 O 4 200/
above equation simplifies to
% (0 Ly, x-1y (50
= - ( = )_(125) (33)
N0 =/ Nug YT S
1£ e * 2
fo = 50
- ( 5 1 ) is the Gauss-Seidel iterative matrix, and © = ( 13 |
= .
L . 3
et | 1 T = SO ’
A {34)
1 % ‘
=iy S0 _
, © =ii-, " = O.Results of the first ten iterations of the Gauss-Seidel method are presented in
able | alongside other methods
o =\ i
A4 -j ) = jg L35}
K ‘-: ! =
v T
1
o061 = =8 ;l—|—~l:’.‘+ 16933 36

CCESSIVE OVERRELAXATION (SOR) METHOD
e matrix form of the SOR method is obtained from equation (19) thus:

-1 m=1
iy o R ‘_f-l .. € Ll [ ;. (= Cl e —i-.('-'~1- i
Bl Atg TN @l TP N 4 o o\, e
-4 ~ - -‘l -
{4 % ;@ -3-| /200,
| T H
'o 4 -1 0 1200
It implies
! 50
i = =1 Z-1 y S0 -
1 | 4 \| 1 1 | +c \ 5
J Mg 371
F 1 i = A =l ) b — s = BQu
& Vw1 - ) we o= 1 =y =4 : '
e 1o
) 1
L= -
where ~--- = | ] ) ]lsthe SOR iterative matrix
— il — —w = 1=
29




African Journal of Physical Sciences, Volume 3, Number 2, 2010

and " = 2 2 ea

R

From equation (16) the value of ' is calculated as it = i equally obtain the spectral

radius *. - from equation (17) thus:

o Geng wpe=) = wape — 1=0,016133231 138

- = —=logoiGemz) = —logl0.016133231) = 1792275043 39)
FINDINGS

Table 1 illustrates results of the 1st ten iterations of the Three methods applied to solve problem 1.

Table 1 Ten iterations of the three basic iterative methods

Iteration | @ . 4 Moy

= 3333333553 _ 3333333333

- SCOgud ; £ag 0o

Jacobi Gauss-seidel SOR Jacobi Gauss-Seidel SOR

i 50 50 50.80666155 | 50 62.5 63.71324584
™ 62.5 65.62500000 | 66.17227253 | 62.5 66.40625000 | 66.58872231]
3% 65.625 66.60156250 | 66.65484238 | 65.625 66.65039062 | 66.66492040
4" 66.40625 | 66.66259766 | 66.66641382 | 66.40625 | 66.66564942 | 66.66663061
3" 66.601562 | 66.66641236 | 66.66666158 | 66.601562 | 66.66660309 | 66.66666596
6 66.65039 | 66.66665077 | 66.66666657 | 66.65039 | 66.66666269 | 66.666666635
™ 66.662598 | 66.66666567 | 66.66666666 | 66.662598 | 66.66666642 | 66.66666666
3" 66.66565 | 66.66666660 | 66.66666666 | 66.66565 | 66.66666665 | 66.66666666
9" 66.666412 | 66.66666666 | 66.66666666 | 66.666412 | 66.66666666 | 66.66666666
10" 66.666603 | 66.66666666 | 66.66666666 | 66.666603 | 66.66666666 | 66.66666666
DISCUSSION OF RESULTS ‘

The spectral radii of all the three iterative methods satisfy the necessary condition for convergence, i.e..
21 G0 < 1 (equations (31), (35) and (38)). This is further corroborated by the results of Table 1, i.e., the
results converge to the exact solutions. From the results of equations (32), (36) and (39), it is observed t

. the Gauss-Seidel method has a convergence rate approximately twice as fast as the Jacobi method, whi
convergence rate of the SOR method is approximately one and a half times faster than the Gauss-Sei
method.

CONCLUSION
The SOR method converges faster than the Jacobi and Gauss-Seidel methods, even though the Gauss-Sei

method exhibits a faster convergence rate than the Jacobi method. In terms of simplicity, however, we
that the Jacobi method is far simpler than the more complicated Gauss-Seidel and SOR methods, in the
that it involves lesser computational rigour than them. Although, we may sacrifice this computational ri
by virtue of the fact that almost all the methods need to be implemented on the computer, especially
one has to deal with very large linear systems, say for example, a 500 * 500 matrix. In such situati
manual computation is almost an impossible task. Generally, we conclude that the SOR is the most effi
of the three basic iterative methods.
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