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Abstract 

 

This work is focused on the examination of the effect of thermal radiation on the heat and 

mass transfer characteristics of an incompressible electrically conducting fluid squeezed between 

two parallel plates in the presence of a transverse magnetic field. Using the similarity 

transformation, the governing system of nonlinear partial differential equations is transformed 

into similarity equations which are solved numerically using the Nachtsheim and Swigert 

shooting iteration technique together with the Runge–Kutta sixth-order integration scheme. 

Numerical results are presented through graphs and tables for pertinent parameters to show 

interesting aspects of the solution.  

 

 

1. Introduction 

The squeezing flow of Newtonian and non-Newtonian fluids has received considerable 

attention from researchers because of numerous applications in different engineering disciplines, 

such as polymer processing, transient loading of mechanical components, compression, injection 

molding, and squeezed films in power transmission. These flows are induced by two approaching 

parallel surfaces in relative motion. The application of a magnetic field in these flows makes it 

possible to prevent the unpredictable deviation of lubrication viscosity with temperature under 

certain extreme operating conditions. Stefan [1] was the first to initiate pioneering works on the 

squeezing flow by invoking a lubrication approach. Two-dimensional and axisymmetric 

squeezing flows between parallel plates have been addressed by Rashidi et al. [2]. Siddiqui et al. 

[3] discussed the effects of a magnetic field in the squeezing flow between infinite parallel plates 

due to the normal motion of plates. Domairry and Aziz [4] provided an approximate analytic 

solution for the squeezing flow of a viscous fluid between parallel disks with suction or blowing. 

Hayat et al. [5] extended the work presented in [4] to analyze the squeezing flow of non-

Newtonian fluids taking second grade fluids. The homotopy perturbation method (HPM) has 

been applied in [3, 5] for the presentation of analytic solutions of the arising nonlinear problems.  

In recent years, the study of heat and mass transfer of viscous fluids in a squeezing flow 

has increased due to their applications in many branches of science and engineering. A few 

representative fields of interest in which a combined heat and mass transfer effect plays an 
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important role are the design of chemical processing equipment, the formation and dispersion of 

fog, and the distribution of temperature and moisture over agricultural fields and groves of fruit 

trees. Heat transfer characteristics in a squeezing flow between parallel disks were studied by 

Duwairi et al. [6]. Khaled and Vafai [7] analyzed the hydromagnetic effects on flow and heat 

transfer over a horizontal surface placed in an externally squeezed free stream. Squeezing flows 

and heat transfer over a porous plate were investigated by Mahmood et al. [8]. Mustafa et al. [9] 

considered the combined effects of heat and mass transfer in a viscous fluid squeezed between 

two parallel plates. Chamkha [10] investigated the problem of heat and mass transfer by a steady 

flow of an electrically conducting fluid past a moving vertical surface in the presence of a first 

order chemical reaction. Kandasamy et al. [11] studied the nonlinear MHD flow with heat and 

mass transfer of an incompressible viscous electrically conducting fluid on a vertically stretching 

surface with chemical reaction and thermal stratification effects. Patil and Kulkarni [12] 

considered the effects of chemical reaction on the free convection flow of a polar fluid through a 

porous medium in the presence of internal heat generation. 

However, the effect of thermal radiation on the flow and heat transfer has not been taken 

into account in most of the investigations. The radiation effect on an MHD flow and the heat 

transfer problem have become more important for industry. Cogley et al. [13] showed that, in an 

optically thin limit, the fluid does not absorb its own emitted radiation but the fluid does absorb 

radiation emitted by the boundaries. Raptis [14] investigated the steady flow of a viscous fluid 

through a porous medium bounded by a porous plate subject to a constant suction velocity in the 

presence of thermal radiation. Makinde [15] examined the transient free convection interaction 

with thermal radiation of an absorbing emitting fluid along a moving vertical permeable plate. 

Ibrahim et al. [16] discussed the case of a mixed convection flow of a micropolar fluid past a 

semi-infinite steady moving porous plate at varying suction velocity normal to the plate in the 

presence of thermal radiation and viscous dissipation. Das [17] analyzed the problem analytically 

to consider the effect of a first order chemical reaction and thermal radiation on a micropolar 

fluid in a rotating frame of reference. Recently, Das [18] has investigated the impact of thermal 

radiation on an MHD slip flow over a flat plate with variable fluid properties. The present study 

focuses on an unsteady MHD squeezing flow and heat transfer between two parallel plates in the 

presence of a transverse magnetic field and thermal radiation.  

 

 

2. Mathematical formulation of the problem 

 

Consider an unsteady two-dimensional squeezing flow of an incompressible viscous electrically 

conducting fluid between infinite parallel plates. The coordinate system is chosen such that the  

x-axis is along the plate and the y-axis is normal to the plate. The two plates are placed at  

y = ±h(t), where h(t) = H(1 – αt)
1/2

 and α is a characteristic parameter having dimensions of time 

inverse. The two plates are squeezed at a velocity of v(t)= dh/dt until they touch. A uniform 

magnetic field of strength B(t) = B0(1 – αt)
-1/2

 [19] is applied perpendicular to the plate, and the 

electric field is taken as zero. In addition, it is assumed that there exists a homogeneous first-

order chemical reaction with time dependent reaction rate of K1(t) = k1(1 – αt)
–1 

between the 

diffusing species and the fluid. Here, the symmetric nature of the flow is adopted.  

Under the stated assumptions, the governing conservation equations of mass, momentum, 

energy and mass transfer at an unsteady state can be expressed as follows: 
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where u and v are velocity components along the x- and y-axis, respectively,   is the density of 

the fluid,   is the kinematic viscosity, pC  is the specific heat at constant pressure p,   is the 

thermal conductivity of the medium, T is the temperature of the fluid, C is the concentration of 

the solute, and D  is the molecular diffusivity.                     

 Following the Rosseland approximation with the radiative heat flux, rq  is modelled as follows: 
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where *  is the Stefan–Boltzmann constant and *k  is the mean absorption coefficient. Assuming 

that the differences in temperature within the flow are such that 4T  can be expressed as a linear 

combination of temperature, we expand 4T  in Taylor's series about T and neglecting higher 

order terms, we obtain 

     4 3 44 3T T T T                    (7) 

Thus, we have 

   
3 * 2

* 2

16

3

rq T T

y k y

 
 

 
       (8) 

Therefore, Eq. (4) reduces to 
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The appropriate initial and boundary conditions for the problem are  
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for Eqs. (2) and (3) and then eliminating the pressure gradient from the resulting equations, we 

can finally obtain 
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Now Eqs. (9) and (5) take the following forms: 
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Here, 
2
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  is the squeeze number where S > 0 corresponds to the plates moving apart, while 

S < 0 corresponds to the plates moving together (the so-called squeezing flow), 
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  is the 

dimensionless number whose value is fixed throughout the entire study, and 
2

1k H



  is the 

chemical reaction parameter, where 0   represents a destructive reaction, 0   represents a 

generative reaction, and 0   represents no reaction. 

The parameters of interest for our problem are skin friction coefficient Cfr, reduced 

Nusselt number Nur, and reduced Sherwood number Shr. The local dimensionless skin friction 

coefficient is given by  
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The rate of heat transfer in terms of the dimensionless Nusselt number is defined as follows: 

  Nu (1)  where Nu  1r r tNu                           (17) 

Similarly the rate of mass transfer in terms of the dimensionless Sherwood number is given by 

 (1)  where Sh  1r rSh tSh                          (18) 

 

3. Method of solution 

 

  The set of Eqs. (12), (13), and (14) under boundary conditions (15) was solved 

numerically by applying the Nachtsheim and Swigert shooting iteration technique [20] together 

with the Runge–Kutta sixth-order integration scheme. The unspecified initial conditions were 

assumed and then integrated numerically as an initial value problem to a given terminal point. A 

step size of Δη = 0.001 was selected to be satisfactory for a convergence criterion of 10
–6

 in 

nearly all cases. In order to ascertain the accuracy of our numerical results, the present study (in 

absence of a magnetic field and thermal radiation) was compared with the data of Mustafa et al. 

[9]. The  1f  ,  1  and  1  values were calculated for various S values. Excellent agreement 

was found between the results, as shown in Table 1. Thus, the use of the present numerical code 

for the current model was justified. 

 

Table 1. Comparison of the values of Skin friction coefficient, Local Nusselt number, and local 

Sherwood number for various S values at M = Nr = 0 

 Mustafa  et al. [9]  Present  Results  

S  1f    1    1    1f    1    1  

-1.0 2.170090 3.319899 0.804558  2.170091 3.319899 0.804558 

-0.5 2.614038 3.129491 0.7814023  2.614038 3.129491 0.7814023 

0.5 3.336449 3.026324 0.7442243  3.336449 3.026324 0.7442243 

2.0 4.167389 3.118551 0.7018132  4.167389 3.118551 0.7018132 
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4. Numerical results and discussion 

To analyze the effects of different parameters of practical importance on the behaviour of 

the flow, heat and mass transfer characteristics, we plot the velocity, temperature and 

concentration profiles against η for different values of the pertinent parameters. In the simulation, 

the default values of the parameters are considered as M = 5.0, Sc = 1.0, S =1.0, Pr = 0.71,  

γ = 0.5, δ = 0.1, Ec = 1.0, and Nr = 2.0 (Mustafa et al. [9]) unless otherwise specified. For 

illustrations of the results, numerical values are plotted in Figs. 1–6 and Table 2. 

 
Fig. 1. Velocity profiles for various M values. 

 

Fig. 2. Temperature profiles for various M. values. 
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  The effect of Hartmann number M on the fluid velocity and temperature distribution is 

shown in Figs. 1 and 2, respectively. It is evident from Fig. 1 that the fluid velocity increases with 

increasing M values; therefore, the thickness of the momentum boundary layer for η < 0.4 (not 

precisely determined) decreases. However, an opposite trend is observed for η ≥ 0.4 (not 

precisely determined). The reason behind this phenomenon is that application of a magnetic field 

to an electrically conducting fluid gives rise to a resistive-type force, which is referred to as the 

Lorentz force. This force exhibits a tendency to slow down the motion of the fluid in the 

boundary layer region. Figure 2 clearly indicates that the fluid temperature increases with 

increasing Hartmann number M in the central region and, as a consequence, the thickness of the 

thermal boundary layer decreases. This result qualitatively agrees with the expectations because 

the magnetic field exerts a retarding force on the convection flow and increases its temperature 

profiles. Table 2 presents the Cfr , Nur, and Shr values which are proportional to skin friction, rate 

of heat transfer, and rate of mass transfer from the surface of the plate, respectively, for the 

various M values. It is evident from the table that both the Cfr
 
and

 
Nur values decrease with 

increasing M. On the other hand, the effect of M value on Sherwood number Shr
 
is not significant. 

 

Table 2. Effects of various parameters on skin friction, local Nusselt number, and local 

Sherwood number 

M  Nr   1f    1   1  

0.0 1.0 3.6384 1.7430 0.7287 

0.2  3.6166 1.7410 0.7286 

0.6  3.5730 1.7372 0.7283 

1.0 0.0 3.5296 0.0000 0.7281 

 0.5   - 1.1034  - 

 1.0   - 1.7339  - 

 

Figure 3 demonstrates the effects of thermal radiation parameter Nr on fluid temperature in the 

presence of a magnetic field. It is observed from the figure that temperature increases with 

increasing Nr in the middle region of the parallel plates and is minimal near the surface of the 

plates. Physically, this can be explained as follows: an increase in the radiation parameter means 

the release of heat energy from the flow region; therefore, the fluid temperature decreases as the 

thermal boundary layer becomes thinner. It is evident from Table 2 that with an increase in 

thermal radiation parameter Nr, the Nusselt number increases.  
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Fig. 3. Temperature profiles for various Nr values. 

 

Effects of varying the value of squeeze number S on the velocity, temperature, and 

concentration distribution are illustrated in Figs. 4–6, respectively. With the increase in squeeze 

number S, the fluid velocity decreases first for η < 0.45 (not precisely determined); then it starts 

increasing, as shown in Fig. 4. It is evident from Fig. 5 that the fluid temperature decreases as S 

increases. It is worth mentioning that an increase in S can be associated with a decrease in the 

kinematic viscosity, an increase in the distance between the plates, and an increase in the 

velocities at which the plates move. The concentration distribution increases with increasing S 

values, as depicted in Fig. 6. 

 

Fig. 4. Velocity profiles for various S values. 
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Fig. 5. Temperature profiles for various S values. 

 

Fig. 6. Concentration profiles for various φ values.  

 

5. Conclusions 

 

In the present paper, the effect of a magnetic field and thermal radiation on the unsteady 

squeezing flow in a viscous incompressible electrically conducting fluid between two parallel 

plates has been analyzed using a numerical technique. Numerical results are presented through 

graphs and tables to illustrate the details of the flow characteristics and their dependence on 
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material parameters. Based upon the above-described results, the following conclusions can be 

drawn: 

(i) The results indicate a decrease in the skin friction coefficient with an increase in the magnetic 

field strength. From an industrial point of view, this outcome is desirable since the drag force in 

the fluid squeezing between the plates decreases with increasing magnetic field strength. 

 (ii) With an increase in the thermal radiation parameter, the dimensionless heat transfer rate 

increases. 

 (iii) For an enhanced squeeze number, both the mass transfer coefficient and the heat transfer 

coefficient tend to decrease, while the skin friction coefficient tends to increase. 

(iv) An increase in the relative strength of the magnetic field leads to a decrease in both the wall 

shear stress and the rate of heat transfer. 
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