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Abstract 

We proposed an Mathematical Model of Yellow Fever Disease Dynamics Incorporating Special Saturation 

Process functions, obtained the equilibrium states of the model equations and analyzed same for stability. 

Conditions for the elimination of the disease in the population are obtained as constraint inequalities on the 

parameters using the basic reproduction number 0R . Graphical simulations are presented using some 

demographic and epidemiological data.  
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1.        Introduction 

We present a model of five ordinary differential equations representing the dynamics of Yellow Fever 

Infection in a host population of humans enabled by vector populations of mosquitoes which facilitate the 

transmission of the causative virus. We obtain the Disease Free Equilibrium state and analyze same for 

stability using the Reproduction number.  

In the urban Yellow Fever infection dynamics, the virus incubation period in the host is from 3 to 6 days after 

an effective interacting bite of a virus carrying vector. The host is humans while the vector is the aedes egypti 

specie of mosquitoes. The Yellow Fever infection is characterized by the sudden onset of fever, chills, intense 

headache, lumbosacral and generalized muscular pain, nausea, vomiting and lethargy. All these result in a 

short remission of the fever, and the development of haemorrhagic signs, jaundice, bleeding from the nose 

and gums, black vomit and stool, anuria (failure to pass urine), hypertension, shock and death within 10 days 

if not treated, (Tomori, 1988). It is worthy of note that after surviving a Yellow Fever infection, the host will 

have a life-long immunity. Also, the infant have natural immunity for the first nine months of birth so all the 

offspring of the host are born as susceptible. The dynamics of Yellow Fever though has some similarity with 

Malaria yet has its own peculiarity as outlined above. 

According to Monath (1989), Van der et al. (1999), Figueiredo (2000), Souza (2010) and Auguste et al. (2010), 

Yellow fever virus (YFV) is the prototype species for the genus Flavivirus. Historically, YFV is one of the most 

important human arboviral pathogens. It continues to cause large sporadic epidemics in Africa but typically 

emerges as epizootics among nonhuman primates in South America with or without associated human cases. 

Several phylogenetic studies have shown that YFV is locally maintained during these interepizootic periods 

in Peru, Bryant et al. (2003), Brazil, Vasconcelos et al. (2004), and Auguste et al. (2010). Yellow fever virus 
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undergoes regionally independent evolution within some countries, (Bryant et al. 2003). The sporadic 

emergence of YFV in the Americas has been strongly associated with infection of red howler monkeys Alouatt 

aseniculus, which are particularly susceptible to disease, (Auguste et al. 2015).  

In section 3, the notations and definitions of parameters and variables together with the set of the model 

equations are presented. In section three, we obtain the Disease Free Equilibrium state of the model 

equations, obtained the Reproduction number and analyze the state for stability or otherwise. The 

concluding remark is presented in section 5.     

2. Literature Review 

Yellow fever virus (YFV) is mainly transmitted through the bite of the yellow fever mosquito Aedes aegypti, 

but other mosquitoes such as the tiger mosquito (Aedes albopictus) can also serve as a vector for this virus. 

Like other Arboviruses which are transmitted via mosquitoes, the yellow fever virus is taken up by a female 

mosquito when it ingests the blood of an infected human or other primate. Viruses reach the stomach of the 

mosquito, and if the virus concentration is high enough, the virus can infect epithelial cells and replicate there, 

(Fontenille et al. 1997). 

Akinwande (1996), formulated a model of yellow fever epidemics, which involves the interactions of two 

principal communities; hosts (humans) and Vectors (aedes aegypti mosquitoes). The host community was 

divided into three compartments of Susceptible )(tS , Infected )(tI  and Recovered )(tR  while the vector 

community was partitioned into two compartments of Susceptible )(tN  and Infective or virus carriers 

)(tM  where 0t is the time. He analyzed the local stability of the model using Jacobian matrix and implicit 

function.  

Fernandez et al. (2013), formulated a model and incorporated the biology of the urban vector of yellow fever, 

the mosquito Aedes aegypti, the stages of the disease in the host (humans). From the epidemiological point 

of view, the mosquito follows a SEI sequence (Susceptible, Exposed, Infective). In their, model the adult 

populations are subdivided according to their status with respect to the virus. They assumed that there is no 

vertical transmission of the virus and eggs, larvae, pupae and non parous adults are always susceptible. The 

humans are subdivided in sub-populations according to their status with respect to the illness as: susceptible 

(S), exposed (E), infective (I), in remission (r), toxic (T) and recovered (R). 

Hui-Ming et al. (2008), considered an epidemic model of a vector-borne disease which has direct mode of 

transmission in addition to the vector-mediated transmission. The incidence term is assumed to be of the 

bilinear mass-action form. They include both a baseline ordinary differential equation (ODE) version of the 

model, and, a differential-delay model with a discrete time delay. The delay in the differential-delay model 

accounts for the incubation time the vectors need to become infectious. They studied the effect of that delay 

on the stability of the equilibria.  

3.      Methodology 

3.1   Model Formulation 

At time instant 0t  the host community is separated into three disjoint compartments namely Susceptible 

)(tS , the Infected )(tI  and Recovered/Immune )(tR while the vector community is partitioned into two 

compartments namely virus carriers )(tM  and non-virus carriers )(tN . 

http://en.wikipedia.org/wiki/Aedes_aegypti
http://en.wikipedia.org/wiki/Aedes_albopictus
http://en.wikipedia.org/wiki/Vector_%28epidemiology%29
http://en.wikipedia.org/wiki/Arbovirus
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An effective bite among the interacting compartments is defined as the bite that results in the transmission 

of virus; essentially between )(tN  and )(tI  on one hand and )(tM  and )(tS  on the other. Using the 

method adopted by Sowunmi (1987), we construct the interaction functions as follow: 

3.2    Construction of Virus Transmission Interaction Saturation Functions 

Let 

p  = the probability that a member of the Susceptible hosts )(tS is effectively bitten by a        virus 

carrier member from the )(tM  compartment.    

q  = the probability that a member of the Infected hosts )(tI is effectively bitten by a        non-virus 

carrier member from the )(tN compartment.    

ap  1)1(  ,  bq  1)1(  ; 1,0  qp  and  ba,1 .                           (3.1)     

Thus p1 is the probability that no effective bite takes place between )(tS  and )(tM  while 

q1 is the probability that no effective bite takes place between )(tI and )(tN . 

          Then 

  )(
1

tM
p  gives the proportion of the susceptible host members who are not bitten effectively at 

time 0t , and 

  )(
1

tI
q  gives the proportion of the non-vector carrier members which did not bite effectively at 

time 0t . 

Let 

  )](exp[1 1

)(
tMp

tM
 , alog1                                                             (3.2)   

The proportion of the susceptible class who are effectively bitten at time 0t  will be given by  

 )](exp[1))(( 1,1 tMtMB                                                                                     (3.3)             

Also 

  )](exp[1 2

)(
tIq

tI
 , blog2                                                                 (3.4)    

 the proportion  of the non-virus carrier class which effectively bite at time 0t  will be given by  

  )](exp[1))(( 2,2 tItIB                                                         (3.5)   

The virus transmission interaction function between )(tS and )(tM is thus given by 
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 )()])(exp[1()())((),( 1,11 tStMtStMBMSf                        (3.6)    

And between )(tN and )(tI is given by  

)()])(exp[1()())((),( 2,22 tNtItNtIBINf                   (3.7)  

These functions are saturation functions, we have that 

0),0()0,( 11  MfSf  

0),0()0,( 22  NfIf  

Also 

SMSf ),(1 , as M  

NNIf ),(2 , as I  

 

3.3      Definition of Parameters & Variables  

 

1 = natural per capita birth rate for the host population. 

1 = natural per capita death rate for the host population. 

 = per capita immunization rate 

 = per capita recovery rate 

 = per capita death rate from infection in the host population. 

w = per capita loss of immunity rate in the Recovered/Immune host compartment.  

2 = natural per capita birth rate for the vector population. 

2 = natural per capita death rate for the vector population. 

 = proportion of the infants/eggs of )(tM  with virus 

)(tS = Susceptible host compartment. 

)(tI = Infected host compartment. 

)(tR = Recovered/Immune host compartment. 

)(tN = Non-Virus-Carrying vector compartment. 
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)(tM = Virus-Carrying vector compartment. 

t = time 

 

3.4      The Model Equations 

 

 

                               )()())(,(
)(

111 twRtStMB
dt

tSd
                           (3.8)      

                 

                               )()())(,(
)(

11 tItStMB
dt

tId
                                       (3.9)           

 

                               )()()(
)(

1 tRwtStI
dt

tRd
                                                (3.10)  

 

                             )())(,()(
)(

222 tNtIBtM
dt

tNd
                                       (3.11)           

 

                             )())(,()()1(
)(

222 tNtIBtM
dt

tMd
                            (3.12)                    

 

                              ))(exp(1))(,( 11 tMtMB                                                   (3.13)    

 

                             ))(exp(1))(,( 22 tItIB                                                        (3.14)   

 

 

3.5      Computation of the Reproduction Number  

In this section we compute the Reproduction number for the system of equations (3.8) – (3.14). 
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The basic reproduction number is the average number of secondary infections caused by a single infectious 

individual during his/her entire infectious life time. Applying next generation matrix operator to compute the 

Basic Reproduction Number of the model as used by Diekmann et al, (1990) and improved by Driessche and 

Watmough (2002). The basic reproduction number is obtained by dividing the whole population into n

compartments in which there are nm  infected compartments. Let mixi .,..,3,2,1,   be the numbers of 

infected individuals in the 
thi  infected compartment at time t  .  The largest eigenvalue or spectral radius of 

1FV is the basic reproduction number of the model. 

 

At equilibrium state let 

           xtS )( , ytR )( , ztI )( , ptN )( , qtM )(               (3.15)      

Now, 0R is the spectral radius (highest eigen value) of 
1FV  , where F (infection terms) and V (transition 

terms) are Jacobian matrix obtained from the infected classes of the model equations, i.e. equations (3.9) 

and (3.12). 

Thus, 
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And 

 







 
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2

1

0
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So that, 

   
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


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         (3.18) 

 

i.e. 

http://en.wikipedia.org/wiki/Eigenvalue
http://en.wikipedia.org/wiki/Spectral_radius
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Then, 
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i.e. 
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Now, to get the eigenvalues, we have 

01  FV
 

i.e. 
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which gives 

 








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            (3.23)   

 

Thus, Reproduction number oR  is given by the highest eigenvalue, i.e. 
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         (3.24)   
 

Setting 0 qz in (3.15) at Disease Free State, we have 

 






12

21
0

xp
R                                          (3.25)    

 

 If 1oR  we have that 

 
max1

2

12
1 




 




xp
                                   (3.26)   

 

The inequality (3.17) gives an upper bound on the susceptible hosts infection per capita which guarantees 

the stability of the Disease Free State resulting in the imminent removal of the infection from the population.   

 

 

4    Results and Discussion 

4.1 Graphical Profiles 
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Figure 4.1: Effect of High Immunization Rate   

 

Figure 4.1, is the effect of high immunization rate on the entire human population.  It was observed that, the 

susceptible population decreases while the recovered/immune increases, this is because the susceptible 

individuals that are successfully immunized moved to recovered class. The increase of infected population 

was not high because only few susceptible were infected. 
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Figure 4.2: Effect of Low Immunization Rate 


 

Figure 4.2, is the effect of low immunization rate on the entire human population.  It was observed that, the 

susceptible population decreases while the recovered/immune increases. But the decrease and increase on 

susceptible and recovered are not the same as that of high immunization rate. It was also shown that, the 

increase of infected population was high compare to that of figure 4.1, this is because only more susceptible 

were infected with low immunization rate. 

5 Conclusion  

The basic reproduction number 0R  was computed and used to determine an upper bound for the 

biting/infection rate 1  . For the effective control of the disease, the biting/infection rate max11   . The 

effect of high and low immunization rate   on the entire human population was presented graphically, and it 

was observed that with high immunization rate the susceptible human population decreases and the 

recovered/immune population increases. Therefore the immunization rate  should be kept high in order to 

eliminate the disease from the population. 
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