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Abstract Increased heat intensity in urban climate has serious implications on
human health, contributing to urban liveability and vitality. As a way of mitigating
the effect of excessive heat temperature in the urban area, it is imperative to examine
the level of surface temperature in urban areas over time so that the urban heat
intensity and its attendant consequences can be put into consideration when under-
taking sustainable urban planning. This study examined the spatiotemporal dynamics
of surface urban heat intensity in Bosso Local Government Area of Niger State
using remotely sensed images. Landsat-8 OLI/TIRS images of the year 2015, 2017,
2019, and 2021 for both dry and wet seasons were used to determine the study
area’s Normalized Difference Vegetation Index (NDVI), surface emissivity, land
surface temperature (LLST), and Normalized Difference Built-up Index (NDBI), using
ArcGIS 10.8 software. The result showed that a rise in built-up density, surface emis-
sivity, and a decrease in vegetation density yields an increase in LST, while vegetation
density proved to be of little effect in dry season when compared to the rainy season
because most vegetation experiences draught at this time of the year. The result also
showed that LST is higher in rainy season than it was in dry season because the
wind, which decreases the effect of LST, is weak at this season of the year. The
least value for surface emissivity in dry season was recorded to be 0.98605 while
that of rainy is 0.98698, which implies that the emissivity of materials in the study
area was observed to be higher in the rainy season than dry season. Furthermore, the
result affirmed that a rise in urbanization gives rise to LST, likewise an increase in
vegetation density of an area will lead to a decrease in the area’s urban heat intensity.
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The results also proved that wet periods can be hotter than dry periods of the year
due to the presence of weak winds.

Keywords Normalized difference vegetation index - Land surface temperature -
Surface emissivity - Normalized difference built-up index

Introduction

The atmospheric systems and energy balance of the earth are gradually being altered
as a result of chaotic urbanization, which has a direct impact on human thermal
discomfort. Such issues are exacerbated in the cities, since the urban environment
is the object of man’s most arbitrary landscape-modifying actions (Gomes and
Caracristi 2021). In the light of the challenges of global warming and its charac-
terizing dynamics related to earth’s surface alterations, such as agricultural expan-
sion, desertification, urban development, and so on, examining the surface urban
heat intensity is critical. In this regard, a lot of effort has gone into determining land
surface temperature using remote sensing data (Garouani et al. 2021). The removal
of vegetation within urban areas, changes in urban thermal and physical properties of
construction materials, building, morphology, surface roughness, urbanization and
anthropogenic heat sources, all modifies, alters, or affects local energy and leads to
increase in atmospheric temperature in urban areas compared to their surroundings
(Ayanlade et al. 2021). Adequate and accurate information about the status of the
land surface temperature (LST) of specific areas of interest is required for successful
geo-environmental management, which involves the monitoring and modelling of
the environment (Agbor and Makinde 2018). There are many natural and anthro-
pogenic factors responsible for the increase or decrease in LLST, while the degree of
LST is seasonal and location dependent. Climate change and urbanization have been
reported as one of the critically significant factors responsible for the change in land
use and LST (Argueso et al. 2015:; Elhadi et al. 2020).

The heat intensity effect of solar radiation varies significantly across urban and
rural areas. It has been observed to be higher in urban or metropolitan areas than in
rural areas. The term urban heat island (UHI) is used to describe this phenomenon,
which is primarily impacted by the amount of plant and water pervious surfaces
present in an urbanized area. Because water pervious surfaces and vegetation have
been replaced by impervious surfaces in urban environments, there is less evaporation
to reduce LST (Michael et al. 2012).

In an urban environment, natural vegetation is eliminated and replaced by non-
transpiring and non-evaporating surfaces that have low capacity for solar reflectivity
and high capacity for heat absorption such as concrete, asphalt, and metals in most
cases, resulting in a significant modification of the earth’s surface (Andrew 2012;
Ridwan et al. 2021). This change eventually causes incoming solar energy to be
redistributed, resulting in the rural-urban disparity in air temperatures and surface
radiance (Guiling et al. 2008).

The influence of urbanization is tremendous, and it affects or alters the natural
ecosystem; therefore, understanding UHI is vital for a variety of applications in earth
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and physical sciences as well as environmental management techniques (Aneeqa
et al. 2016). The demand for agricultural production, food, and shelter is increasing
as the global population grows. As a result of anthropogenic activities, land cover
characteristics are shifting to satisfy rising population need and replacing vegetated
areas with impermeable surfaces, inadvertently leading to climate change (Imran
et al. 2021). Increased heat intensity in the urban climate has major consequences on
human health and the usage of outdoor areas, as well as many activities that contribute
to the liveability and vitality of cities. It causes different multifaceted issues such
as skin cancer and greater energy consumption because air conditioners are often
required (Michael et al. 2012; Naserikia et al. 2019).

LST is defined by how hot the “surface” of the earth would feel when touched
in a particular region (Przyborski 2021) while the surface in this context and as
used in satellite remote sensing refers to whatever a satellite observes as its signal
pierces through the atmosphere to the earth. Surface heat fluxes, which are affected by
urbanization, influence the LST in an area (Dousset and Gourmelon 2003). Therefore,
understanding the spatiotemporal distribution of LST will aid in deciphering its
mechanism and determining possible mitigation techniques (Sun et al. 2009).

Apart from the LST, other indices that have been reported to contribute to the
urban heat island of a location include vegetation which is often measured using the
Normalized Difference Vegetative Indices (NDVI), urbanization or built-up areas
which is often measured using the Normalized Difference Building Indices (NDBI),
surface emissivity, etc.

The NDVI is an index used to detect and ascertain the existence or presence
of live green vegetation. Most visible light (0.4—0.7 m) is absorbed by healthy
vegetation, whereas most near-infrared light (0.7—1.1 m) is reflected. In contrast,
unhealthy or sparse vegetation will reflect less near-infrared light and more visible
light (Weirer and Herring 2010). As a result, greater radiation that is reflected in the
near-infrared wavelengths than the visible wavelengths indicates the existence of
green vegetation, while minimal variation in intensity between the two wavelengths
suggests the existence of either non-vegetated surfaces or sparse vegetation (Weirer
and Herring 2010). The built-up density for each area is described by the NDBI,
which is synonymous to the vegetation density described by the NDVI. The ratio of
short red infrared (SWIR) to near infrared (NIR) is calculated as NDBI, with indices
ranging from —1 to 1 (Kshetri 2018).

The impact of the relationship or connection between the NDVI and LST, espe-
cially in locations where the urban heat intensity phenomenon is more prevalent and
mitigating efforts are required, cannot be overemphasized. This is primarily because
denser vegetation lowers LST by ensuring the transfer of latent heat to the atmo-
sphere from the surface via evapotranspiration. The NDVI is used to investigate this
relationship and, as a result, provides insight into how plants or vegetation’s natural
cooling mechanism can be exploited to improve urban thermal settings. In general,
it is expected that lower LSTs are recorded or observed in locations or places with
a high NDVI, implying that the two have an indirect relationship. However, surface
evapotranspiration and soil moisture levels may significantly alter or modify the
dynamics of this relationship (Yuan and Bauer 2007).
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A property or attribute of a surface that determines the volume of energy that
is emitted by an object at a particular temperature when compared to a blackbody
at the same temperature is known as surface emissivity (EXERGEN 2021). It can
also be described as the ability of a surface or an object to convert heat energy it
receives into radiant energy (Sekertekin and Bonafoni 2020). The emissivity is gotten
from NDVI after the fractional vegetation (Pv) cover has been estimated and then
calculated from the reflectance values of the materials on the earth surface based on
the results of the NDVI. The emissivity of materials on the earth’s surface reflects
how well they absorb all incident radiation and convert it to internal energy before
emitting (re-radiating) the received energy at the highest rate feasible per unit area
(Isa et al. 2016).

One of the important features or characteristics that can be observed by satellite
remote sensing is the surface temperature of an area. This data (surface tempera-
ture) has a wide range of applications in ecology, environmental studies as well as
spatial data modelling, which is frequently employed in web-based GIS applications
(Sameen and Al Kubaisy 2014).

Recently, the connection and correlation between LST and other factors or indices
have received significant research attention (Peng et al. 2020). Researchers frequently
look into the individual interaction between LLST, vegetation, surface emissivity, and
water, as well as the impact of urban land growth on temperature change, while little
known effort has been invested in the combined effects of some of these interactions,
a gap this research seeks to fill. The fundamental goal of this study is to investi-
gate the combined effect and interdependence of vegetation (using the Normalized
Difference Vegetation Index (NDVI)), built-up area (using Normalized Difference
Built-up Index (NDBI)), surface emissivity, and the LST in the assessment of urban
heat intensity using Bosso Local Government Area of Niger State, Nigeria, as a case
study.

Materials and Methods

Bosso, which is the project site of this study, is one of the Local Government Areas
(LGA) in Niger State, Nigeria (see Fig. 14.1). With its administrative headquarters
situated in Maikunkele, it covers an area of about 1592 km? and a population of about
147,359 according to the 2006 census. Bosso LGA has a high heat flow (Mohammed
et al. 2019) which could be as a result of increased urban activities, hence, making
it a suitable location for this study.

The study area experiences both wet (rainy) and dry seasons annually, and an
attempt was made to assess the effect of seasonal variation of the LST or the heat
intensity of the study area. Therefore, two images were downloaded for each year:
one at dry season (February) and the second at rainy season (September), for the
years 2015, 2017, 2019, and 2021, making a total of eight images. The properties of
the Landsat-8 images, generated from their metadata, are presented in Table 14.1.
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Fig. 14.1 Cartographic description of the study area

Table 14.1 Characteristics of the used Landsat-8 OLI images

Data Sensor | Bands | Resolution/grid cell size | Season | Date obtained | Year
Landsat-8 | OLI 11 30m Dry 25-02-2015 2015
Landsat-8 | OLI 11 30m Rainy | 21-09-2015 2015
Landsat-8 | OLI 11 30 m Dry 14-02-2017 2017
Landsat-8 | OLI 11 30 m Rainy | 26-09-2017 2017
Landsat-8 | OLI 11 30m Dry 20-02-2019 2019
Landsat-8 | OLI 11 30 m Rainy | 27-05-2019 2019
Landsat-8 | OLI 11 30m Dry 25-02-2021 2021
Landsat-8 | OLI 11 30m Rainy | 21-09-2021 2021

OLI = Operational land imager

The step-by-step or detailed procedure adopted for the execution of this study is
presented in Fig. 14.2. The used Landsat-8 OLI/TIRS C2 L1 band images for 2015,
2017, 2019, and 2021 were downloaded from https://earthexplorer.usgs.gov/.

Radiometric and Atmospheric Correction

On satellite images, radiometric and atmospheric correction is frequently used to
reduce the atmosphere’s absorption and scattering effects. As the electromagnetic
(EM) energy travels from the sun to the earth and back to the sensor, through the
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atmosphere, absorption diminishes the intensity of EM energy resulting in haziness,
while the energy is redirected in the atmosphere by scattering resulting in an adja-
cent effect in which neighbouring pixels are shared and thus affecting image quality
(GISgeography 2021). Radiometric and atmospheric correction removes the effect of
sensor influence and atmospheric effect on the reflectance value of satellite images.
Radiometric and atmospheric correction was done by computing the Top of Atmo-
spheric (TOA) spectral reflectance (Eq. 14.1), followed by the correction of sun angle
(Eq. 14.2) for all the satellite images downloaded for this study.

Procedure for Obtaining LST

LST can be estimated using the Landsat-8 OLI/TIRS C2 L1 thermal bands by
applying Eqgs. (14.1)—(14.8) (Rosado et al. 2020) presented in the simplified
procedure described by the following five (5) steps.

I. Top of Atmospheric (TOA) spectral reflectance.

On a given surface, the ratio of reflected solar radiation to incident solar radiation
is often referred to as the ratio of TOA radiance (Eq. 14.1), which is a unitless
measurement. The mean solar spectral irradiance and the solar zenith angle derived
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from satellite-measured spectral radiance are used for the estimation of TOA (Rosado
et al. 2020).

TOA(L) = ML % Qcal + AL (14.1)

where M is the band-specific multiplicative rescaling factor from the metadata, Qg
corresponds to band 10, and Ay is the band-specific additive rescaling factor from
the metadata.

II. Calculation of Brightness Temperature

The thermal band detectors record TOA’s brightness temperature in the form of
digital numbers (DNs), which is then converted to surface temperature using the
single channel algorithm. Surface temperatures obtained with Eq. (14.3) are deemed
to be highly accurate (Michael et al. 2012).

BT = (K2/(n(K1/L) + 1)) — 273.15 (14.2)

where K, and K> are the band-specific thermal conversion constant from the metadata
and L is the TOA. In order to obtain the results in degree Celsius, absolute zero is
added to the radiant temperature as presented in Eq. (14.3).

BT = (1321.0789/Ln((777.8853/"%T OA%") + 1)) — 273.15 (14.3)

III. Extracting the NDVI

Reflectance data of Landsat-8 images, i.e. the visible red (Red) and the near-infrared
(NIR) bands (bands 4 and 5, respectively) were used to extract the NDVI.
The NDVI was extracted using the expression presented in Egs. (14.4) and (14.5).

NDVI = (Band 5 — Band 4)/(Band 5 + Band 4) (14.4)

It should be noted that calculating the NDVI is crucial since it is necessary to esti-

mate the proportion of vegetation (Pv), which is related to the NDVI, and emissivity
(e), which is related to the proportion of vegetation.

NDVI = Float(Band 5 — Band 4) /Float(Band 5 + Band 4) (14.5)

I'V. Estimating vegetation proportion (Pv)

The proportion of vegetation was estimated using Eq. (14.6) (Carlson and Ripley
1997).

Pv = Square((NDVI — NDVImin)/(NDVImax — NDVImin)) (14.6)

The minimum and maximum values of the NDVI are gotten from the properties
of NDVI under the source tab or the highest and lowest value range in ArcGIS 10.8.
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V. Estimating Surface Emissivity (g)

The effectiveness of a material’s surface in emitting energy as thermal radiation is
known as its emissivity. Thermal radiation is electromagnetic radiation that includes
both visible (light) and infrared (infrared) wavelengths that are invisible to the human
eye (Sobrino et al. 2013). The mathematical expression used for the estimation of
emissivity is presented in Eq. (14.7).

e=m=* Pv+n (14.7)

where m = emissivity of vegetation (0.004), Pv = percentage of vegetation, and n
= soil emissivity value (0.986).
VI Estimating the Land Surface Temperature

Equation (14.8) presents the mathematical expression used for the estimation of LST.
LST = (BT/(1 4+ (0.00115 % BT /1.4388) * Ln(e))) (14.8)

where BT = Brightness temperature and € = Emissivity.

Estimating the NDBI

The NDBI was extracted using the reflectance data (short red infrared (SWIR) and
near infrared (NIR) bands) of Landsat-8 images. The NDBI is estimated as the ratio
between short red infrared (SWIR) and near infrared (NIR) and has indices ranging
from —1 to 1. Generally, the mathematical expression for estimating the NDBI for
an area is shown in Eq. (14.9), while Eq. (14.10) presents the equation used to extract
the NDBI specifically from Landsat-8 image.

NDBI = (SWIR — NIR)/(SWIR + NIR) (14.9)

NDBI = float(band 6 — band 5) /float(band 6 + band 5) (14.10)
where band 6 is a SWIR band and band 5 is a NIR band. Built-up areas were

extracted from the built-up density in the form of point features for clear depiction
of urbanization.

Interpretation of NDBI and NDVI

Generally, the value of the NDBI and NDVI calculation ranges from —1 to 1. The
representation of the values within the range for NDVI is presented in Table 14.2,
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Table 14.2 NDVI value

NDVI value range Feature represented
range and feature represented
(Kshteri 2018) —1-0 Water bodies
—0.1-0.1 Snow, barren rocks, or sand
0.2-0.5 Senescing crops, grasslands, or shrubs
0.6-1.0 Tropical rainforest or dense vegetation

Table 14.3 NDVI value NDVI value range | State of plant

range and the represented

state of plant’s health —1-0 Inanimate objects or plants that are dead
0-0.33 Plants that are unhealthy
0.33-0.66 Plants that are moderately healthy
0.66—1 Plants that are very healthy

while Table 14.3 presents the range of index values representing the state of plant
health (EOS 2019). For the NDBI, while negative values represent non-urban land
areas, urban land areas are represented by positive values.

Results and Discussion

For clearer presentation, the results were presented and discussed in two subsections.
While the results obtained in the seasonal dynamics of the surface heat intensity of
the study area in the dry season were presented in subsection “Surface Heat Intensity
of the Area in the Dry Season”, the result obtained for the same analysis in the rainy
season was presented in subsection “Surface Heat Intensity of the Area in the Rainy
Season”. The relationships and effects of the combined indices (NDVI, NDBI, and
LST) on the surface urban heat intensity are also presented.

Surface Heat Intensity of the Area in the Dry Season

Maps depicting the spatial distribution of NDVI, NDBI, and the spatial variation of
LST wvalues of the study area for the dry season are presented in Figs. 14.3, 14.4 and
14.5, respectively, while Table 14.4 contains the estimated maximum values of the
NDBI, NDVI, and LST obtained for 2015, 2017, 2019, and 2021 for the dry season.
From the results, it was observed that in dry season, the highest maximum value of
LST was recorded in the year 2017 (51 °C) which also yielded the highest NDVI
and NDBI values of 0.388 and 0.577, respectively, while the lowest maximum value
of LST was recorded in the year 2015 (33 °C).
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Fig. 14.3 Spatial distribution of NDVI in dry season

Also, the value for LST is lowest in the year 2015, but its value for NDBI (0.425)
is higher than the values recorded for the years 2019 and 2021 which are 0.414
and 0.320, respectively, while the vegetative index value for the year 2021 (0.278) is
higher than that of the year 2015 (0.257). Therefore, the lowest LST in the dry season
over the years understudied is justifiably expected to be reported in the year 2021
since vegetation reduces the effect of LST, and the value of the NDBI recorded for
the year 2021 is the least compared to other years. Also, since NDVI value below 0.5
indicates the presence of shrubs, rocks, sand, unhealthy plants, grasses (unhealthy or
moderately healthy), etc., and the highest maximum value for NDVI in dry season
is 0.388 as recorded in the year 2017, it evidently shows that most plants within the
study area have already dried up at this time of the year; therefore, the effect of NDVI
in dry season is minimal.

Also, since surface emissivity contributes to surface temperature in an area along
with built-up index, the surface emissivity of the study area was examined for each
of the years understudied for the dry season, and the obtained result is presented
in Fig. 14.6. The maximum surface emissivity recorded in the years 2017 and 2021
illustrates the extent to which various materials, such as bare land or soils, engineering
structures, metal, concrete, and tar, absorb all incident radiation completely, and
convert it to internal energy. The absorbed energy is then emitted (re-radiated) into



14 Mapping and Assessing the Seasonal Dynamics of Surface Urban Heat ... 271

el o ey very

NDBI of study area 2015

»
o
e

Fig. 14.4 Spatial distribution of NDBI in dry season

the atmosphere and thereby contributing to LST. The recorded surface emissivity in
the years 2017 and 2021 is higher than that of the year 2015 for the dry season which
explains why the least value of LST for dry season was recorded in the year 2015
and not in 2021. It also explains why LST in the year 2021 is higher than what it was
in the year 2019.

Surface Heat Intensity of the Area in the Rainy Season

Figures 14.7, 14.8 and 14.9 present the graphical description of the spatial distribution
of NDVI, NDBI, and the spatial variation of LST of the study area for the rainy season,
respectively. The estimated maximum values of the NDBI, NDVI, and LST obtained
for the years 2015, 2017, 2019, and 2021 for the rainy season are presented in Table
14.5. Similar to what was observed in the results obtained for the dry season, the
lowest value of LST was recorded in the year 2021, but its value for built-up index
(0.267) is higher than NDBI values for the years 2017 and 2015 which are 0.259
and 0.243, respectively. Also, the year 2019 had the highest maximum value for LST
(70 °C), while the year also recorded the lowest NDVI value of 0.544 and the highest
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Fig. 14.5 Spatial variation of LST in dry season
Table 14.4 Estimated NDVI, o
NDBI and LST maximum ~ — 2" NDVI NDBI LSTCO)
values for the dry seasons 2015 0.257 0.425 33
2017 0.388 0.577 51
2019 0.232 0414 40
2021 0.278 0.320 47
Fig. 14.6 Surface emissivity 0.9885
in dry season 0988
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Fig. 14.7 Spatial distribution of NDVI in rainy season

NDBI value of 0.421. The implication of this is that in the year 2019, urbanization
rate was very high which had a negative effect on vegetation thereby increasing the
urban heat intensity of the study area in the rainy season. In contrast, for the year
2021, there was a very low heat intensity judging by the recorded lowest maximum
value for LST of 29 °C. This can be attributed to the high NDVI of 0.598 and low
NDBI of 0.267, which implies an improvement in vegetation growth and reduced
urban growth, respectively.

Although the vegetation index for the years 2021 and 2015 is very close, the
lowest value of LST recorded in the rainy season of the year 2015 is justified by the
lowest value for built-up index recorded in the same season and the highest value
of the NDVI recorded in the dry season over the studied time epochs. This suggests
that while there are low or reduced urbanization activities, there were high vegetated
activities which led to the recorded low LST within the period of study.

Also, the surface emissivity of the study area in the rainy season was examined
over the studied years and the result is presented in Fig. 14.10. Similar to the surface
emissivity of the study area in the dry season, the surface emissivity for the years
2015 and 2017 was observed to be considerably higher than what it was in the years
2019 and 2021 in the rainy season, which explains why the least value of LST for
the rainy season was recorded in the year 2021 and not in year 2015.
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Fig. 14.8 Spatial distribution of NDBI in rainy season

Generally, it was observed from the analysis that the surface emissivity values of
the study area obtained in the rainy season were significantly higher than the surface
emissivity values of the study area obtained for dry season across all the years, except
for the results obtained for the year 2019. This is because the strength of wind in the
study area is weak at this season of the year.

Conclusion

This research shows the potential of using Geographic Information System (GIS) and
remote sensing techniques in assessing the surface heat intensity of any location. The
findings of this study affirmed that a rise in surface urban heat intensity is resulted
from an increase in urbanization and a decrease in vegetation. The effect of increased
built-up density and surface emissivity which resulted to an increase in LST proves
that increase in urbanization leads to an increase in surface heat intensity. The study
also proved that a rise in vegetation density leads to a decrease in urban heat intensity
and that the effect is more significant in the rainy season than dry season as vegetation
is usually dry at this season of the year, where soil moisture content is low. In as
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Fig. 14.9 Spatial variation of LST in rainy season
Table 14.5 Estimated NDVI, o
NDBI and LST maximum ¢~ NDVI NDBI LSTCO
values for the rainy seasons 2015 0.610 0.243 31
2017 0.555 0.259 32
2019 0.544 0.421 70
2021 0.598 0.267 29
Fig. 14.10 Surface 0.9878
emissivity in rainy season
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much as vegetation is more effective in rainy season, wet periods are usually periods
of high urban heat intensity because of the high emissivity values associated with
this season. This is because wind, which decreases the effect of urban heat intensity,
is weak at this season of the year. Further studies will attempt to investigate the effect
of other factors such as terrain elevation or topography and presence of water bodies
on the urban heat intensity of the study area.
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