

Environ

JOURNAL OF ENVIRONMENTAL STUDIES

Vol. 5 No. 1 NOVEMBER 2023

ISSN: 1110 - 457X

FACULTY OF ENVIRONMENTAL DESIGN
AHMADU BELLO UNIVERSITY, ZARIA-NIGERIA

ENVIRON
JOURNAL OF ENVIRONMENTAL STUDIES

EDITORIAL BOARD

Editor

Prof. K.J. Adogbo, Department of Quantity Surveying, Ahmadu Bello University, Zaria

Dean/Managing Editor

Prof Abdullahi Abubakar

Editorial Board Members

Prof. Hamza Babangida, Department of Architecture, Ahmadu Bello University, Zaria

Dr. Jamilu Usman, Department of Building, Ahmadu Bello University, Zaria

Prof. Caleb Samuel, Department of Fine Art, Ahmadu Bello University, Zaria

Dr. Mefe Moses, Department of Geomatics, Ahmadu Bello University, Zaria

Jummai T. Tagwoi, Department of Glass & Silicate Technology, Ahmadu Bello University, Zaria

Prof. Joseph Azi, Department of Industrial Design, Ahmadu Bello University, Zaria

Dr. Fatima Muhammad Bello, Department of Quantity Surveying, Ahmadu Bello University, Zaria

Dr. Abdulmajeed Olaremi Shittu, Department of Urban & Regional Planning, Ahmadu Bello University, Zaria

Editorial/Advisory Committee

Prof. A. Abdullahi, Department of Architecture, Ahmadu Bello University, Zaria

Prof. S.N. Oluigbo, Department of Architecture, Ahmadu Bello University, Zaria

Prof. M.M. Garba, Department of Building, Ahmadu Bello University, Zaria

Prof. A.D. Abdulazeez, Department of Building, Ahmadu Bello University, Zaria

Prof. J. Jari, Department of Fine Art, Ahmadu Bello University, Zaria

Prof. Fatima M. Palmer, Department of Fine Art, Ahmadu Bello University, Zaria

Prof. L.M. Ojigi, African Regional Institute for Geospatial Information Science and Technology (AFRIGIST), Obafemi Awolowo University Campus, Ife.

Prof. Taiye Adewuyi, Nigerian Defence Academy, Kaduna

Prof. C.M. Gonah, Department of Glass & Silicate Technology, Ahmadu Bello University, Zaria

Prof. A.D. Garkida, Department of Glass & Silicate Technology, Ahmadu Bello University, Zaria

Prof. U.A.A. Sullayman, Department of Industrial Design, Ahmadu Bello University, Zaria

Prof. W.B. Gwari, Department of Industrial Design, Ahmadu Bello University, Zaria

Prof. A.D. Ibrahim, Department of Quantity Surveying, Ahmadu Bello University, Zaria

Prof. O.A. Awodele, Department of Quantity Surveying, Ahmadu Bello University, Zaria

Prof. Adamu Ahmed, Department of Urban & Regional Planning, Ahmadu Bello University, Zaria

Dr. Y.A. Bununu, Department of Urban & Regional Planning, Ahmadu Bello University, Zaria

Scientific Review Committee

Dr Wasiu Mayowa Raheem	Department of Urban and Regional Planning University of Ilorin, Kwara State. Nigeria
Dr Akeem Bayonle Ola	Department of Urban and Regional Planning University of Ilorin, Kwara State. Nigeria
Dr. T.T. Youngu	Department of Geomatics, Ahmadu Bello University, Zaria, Nigeria
Dr. S. Azua	Department of Geomatics, Ahmadu Bello University, Zaria, Nigeria
Dr. Sunday K.Habila	Department of Urban and Regional Planning, Bayero University Kano
Dr. Funmilola Omoniwa	Department of Quantity Surveying, First Technical University, Ibadan. Oyo State Nigeria
Dr. Yusuf Yunusa Badiru	Department of Architecture, Ahmadu Bello University, Zaria, Nigeria
Dr. Muawiyah Abubakar	Department of Building, Ahmadu Bello University, Zaria, Nigeria
Dr. Joseph S. Oladimeji	Department of Urban and Regional Planning, Ahmadu Bello University, Zaria, Nigeria
Prof. Babangida Hamza	Department of Architecture, Ahmadu Bello University, Zaria, Nigeria
Dr. Ibrahim Abubakar Alkali	Department of Architecture, Bayero University Kano

Dr.M.H. Mukhtar	Department of Architecture, Ahmadu Bello University, Zaria, Nigeria
Prof. Joy J. Maina	Department of Architecture, Ahmadu Bello University, Zaria, Nigeria
Dr. Sani Ali	Department of Architecture, Bayero University Kano
Dr. Aminu M. Bashir	Department of Quantity Surveying, Bayero University Kano
Dr. Hassan Adavriku Ahmadu	Department of Quantity Surveying, Ahmadu Bello University, Zaria, Nigeria
Dr. Anita AdamuDzikwi	Department of Quantity Surveying, Federal University of Technology, Minna Niger State
Dr. Abubakar Sodangi Usman	Department of Urban and Regional Planning, Ahmadu Bello University, Zaria, Nigeria
Prof. P.G Chindo	Department of Quantity Surveying, Ahmadu Bello University, Zaria, Nigeria
Dr.Nafiu Abdullahi Zadawa	Department of Quantity Surveying, Ahmed Tafawa Balewa University Bauchi State
Prof. Suleiman Shika Aliyu	Department of Building, Ahmadu Bello University, Zaria, Nigeria
Dr. Umar Bello	Department of Building, Ahmadu Bello University, Zaria, Nigeria
Dr. A. AbdulAzeez	Department of Urban and Regional Planning, Bayero University Kano
Idris IsahIlyasu	Department of Urban and Regional Planning, Ahmadu Bello University, Zaria, Nigeria
Prof. Abdullahi Abubakar	Department of Architecture, Ahmadu Bello University, Zaria, Nigeria
Dr. Sani Ibrahim Khalil	Department of Architecture, Bayero University Kano
Prof. Lasisi Lamidi	Department of Quantity Surveying, Ahmadu Bello University, Zaria, Nigeria
Dr. Fatima Muhammad Bello	Department of Quantity Surveying, Ahmadu Bello University, Zaria, Nigeria
Laminu Ibrahim	Department of Quantity Surveying, Federal University Birnin Kebbi, Kebbi State
Prof. Mustapha Abdulrazaq	Department of Quantity Surveying, Ahmadu Bello University, Zaria, Nigeria
Muhammad Aliyu Yamusa	Department of Quantity Surveying, Ahmadu Bello University, Zaria, Nigeria
Dr. MudashirGafar	Department of Architecture, Ahmadu Bello University, Zaria, Nigeria
Prof. Rukayya B. Tukur	Department of Architecture, Ahmadu Bello University, Zaria, Nigeria
Dr. Olubunmi Ade-Ojo	Department of Quantity Surveying, Federal University of Technology, Akure
Dr. Gali Zarewa	Department of Quantity Surveying, Bayero University Kano
Prof. Samuel Caleb	Department of Fine Arts, Ahmadu Bello University, Zaria
James Ohambele	Department of Fine Arts, Ahmadu Bello University, Zaria

ISSN: 1110-457X

© 2023 Environ: Journal of Environmental Studies

Copyright

Cover design and Text Layout: Dr. E.M. Alemaka, Department of Glass and Silicate Technology, ABU – Zaria

This journal is typeset on MS Word (Times New Roman 11/12/14) at the Faculty of Environmental Design. Articles published in this journal represent neither the views of the Editorial Board nor the Faculty of Environmental Design. Responsibility for opinions expressed and for the accuracy of facts rests solely with the individual authors.

Copyrights:

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical or otherwise without the written permission of the Faculty of Environmental Design. Limited copies (other than for resale or commercial distribution) may be made for personal and or academic use on condition that the copyright holder is fully acknowledged.

ENVIRON
JOURNAL OF ENVIRONMENTAL STUDIES

Published by
FACULTY OF ENVIRONMENTAL DESIGN
AHMADU BELLO UNIVERSITY, ZARIA – NIGERIA

ENVIRON
JOURNAL OF ENVIRONMENTAL STUDIES

NOTES FOR CONTRIBUTORS

Submission of Manuscripts

ENVIRON Journal of Environmental Studies is published by the Faculty of Environmental Design, Ahmadu Bello University, Zaria. This journal is a scholarly peer reviewed publication and welcomes original articles exploring topics including but not limited to, any of the following areas:

Architecture, Innovative and Sustainable Design Solutions; Art and the Design of Resilient Infrastructure; Artificial Intelligence; Building Information Modelling; Building Services and Technology; Fine and Applied Arts; Gender-based Issues in Construction and Environmental Management; Geomatics and Surveying; Glass & Silicate Technology; Global Construction Education in Environmental Management; Housing affordability and Sustainable Development Problems; Industrial Design (Ceramics, Graphics and Textiles)

Industry 4.0 and 5.0; Innovative Design Thinking; Procurement Management; Quantity Surveying; Urban & Regional Planning; Urban Ekistics; Urban Management and Sustainable Development.

This journal guide aims to provide authors with a comprehensive overview of the standard practices and expectations when preparing and submitting a manuscript for publication in ENVIRON. Following these guidelines will enhance the chances of your manuscript being considered for publication and ensure a smooth and efficient review process.

Manuscript Structure and Formatting:

Title

The title should be concise, informative and should accurately reflects the content of your manuscript (preferably not longer than twenty words).

Author information

- The full name(s) of the author(s) (first name-middle name-surname)
- The affiliation(s) of the author(s), i.e., institution/organisation, full postal address (including e-mail if available), should be provided.
- A clearly indicated and actively used email address of the corresponding author should be provided.
- If authors are currently not affiliated with any institution, they should include their city and country of residence.

Abstract

Kindly submit an abstract consisting of 150 to 200 words. Ensure that the abstract does not include any abbreviations without proper definitions or references that are not specified.

Keywords

Please provide 4 to 5 keywords suitable for indexing the manuscript.

Competing Interests: Authors are required to disclose financial or non-financial interests that are directly or indirectly related to the work submitted for publication.

Text Formatting

- Manuscripts should be submitted in Microsoft Word format.
- The manuscript should be formatted with double spacing, Times New Roman font size 12, and typically span between 15 and 20 pages when typed on A4-sized paper.
- Use the equation editor or for equations.
- Equations should be written using MS Word equation editor or MathType and numbered consecutively using Arabic numerals in parenthesis in the right-hand margin. All units shall be in SI.

Headings

Please limit the use of displayed headings to a maximum of three levels.

Abbreviations

Ensure that abbreviations are defined upon their first mention and consistently used throughout the manuscript.

Acknowledgments

Acknowledgments of people, grants, funds, etc. should be placed in a separate section on the title page. The names of funding organizations should be written in full.

References

The APA format of citation within the text should be adopted thus; as Okeke (2001) points out, Ahmed and Bola (2001) or a recent study (Okeke, 2001) shows... while references should be listed alphabetically without numbering. In situations where manuscripts have been accepted but not yet published yet, such should be referred to as being "in press" as a referencing format.

Books:

Strunk, W., Jr., & White, E.B. (1979). *The elements of style* (3rd ed.). New York: Macmillan
Psychiatric Association (1990). *Diagnostic and statistical manual of mental disorders* (3rd ed.). Washington, DC: Author.

(Note: "Author" is used as above when author and publisher are identical)

Freud, S. (1961). The ego and the id. In J. Stachey (Ed. and Trans.), *The standard edition of the complete psychological works of Sigmund Freud* (Vol. 19, pp. 3-66). London: Hogarth Press. (Original work published 1923) In text this would be cited as (Freud, 1923/1961)

Journal article

Spitch, M.L., Verzy, H.N., & Wilkie, D.M. (1993). Subjective shortening: A model of pigeons' memory for event duration. *Journal of Experimental Psychology: Animal Behaviour Processes*, 9, 14-30

Article in an Internet-only Journal

Fredrickson, B.L. (2000, March 7). Cultivating positive emotions to optimize health and well-being. *Prevention & Treatment*, 3, Article 0001a. Retrieved November 20, 2000, from <http://journals.apa.org/prevention/volume3/pre0030001a.html>

Internet articles based on a print source

VandenBos, G., Knapp, S., & Doe, J. (2001). Role of reference elements in the selection of resources by psychology undergraduates [Electronic version]. *Journal of Bibliographic Research*, 5, 117-123.

Referencing an online article that you have reason to believe has changed (e.g. the format differs from the print version or page numbers are not indicated) or that includes additional data or commentaries, will require that the date the material was retrieved be added to the document and the universal resource locator [URL], e.g., VandenBos, G., Knapp, S., & Doe, J., (2001). Role of reference elements in the selection of resources by psychology undergraduates [Electronic version]. *Journal of Bibliographic Research*, 5, 117-123. Retrieved October 13, 2001, from <http://jbr.org/articles.html>

Discussion list (listserv) archives

Friedman, K (2000) 'Eight theses on advising and supervising the PhD. *DRS Mailbase Archives*. Date: 25th April 2000. Available at <http://www.mailbase.ac.uk/lists/drs/2000-04/0105.html> (Accessed 2nd May, 2000)

CD-ROMS

Steers, J (2000) 'InSEA: Past, Present and Future' [CD-ROM] Congress proceedings of 30th World congress of InSEA, Brisbane, Australia. Elsternwick, Victoria: AIAE.

Reference list

The references should consist solely of cited works that have been published or accepted for publication, while personal communications and unpublished works should only be acknowledged within the text.

Tables

- Arabic numerals should be used for numbering all tables.
- Tables should be cited in the text in consecutive numerical order.

- Please provide a table caption (title) for each table, explaining its components.
- If any material in the table has been previously published, include the original source as a reference at the end of the table caption.

Figure Captions

- Ensure that each figure is accompanied by a succinct caption that precisely describes its content.
- The caption of each figure should commence with the bolded term "Figure," followed by the corresponding figure number in bold as well.
- When referring to previously published material, provide a reference citation at the conclusion of the figure caption, indicating the original source.

Manuscript Submission

By submitting a manuscript, the author(s) affirm the following: the described work has not been previously published, it is not being considered for publication elsewhere, all co-authors (if applicable) and responsible authorities at the institute where the research was conducted have approved its publication either explicitly or implicitly. The ENVIRON bears no legal responsibility for any claims of compensation that may arise.

Permissions

Authors must seek permission from the copyright owner(s) for any previously published figures, tables, or text passages they wish to include in their manuscript. This permission is required for both the print and online formats. If material is received without the necessary evidence, it will be assumed that the material originated from the authors themselves.

Guidelines for the submission of papers:

Please submit your full manuscript to The Editor at: environjournal@abu.edu.ng with evidence of payment of a non-refundable assessment fee of N6,000 (Six Thousand Naira Only) to the United Bank for Africa (UBA) Account number: **2304533864** Account name: **ENVIRON Journal of Environmental Studies**. Authors of accepted manuscripts will be required to submit reviewed manuscripts with evidence of payment of a non-refundable publication fee of N24,000 (Twenty-Four Thousand Naira Only). All submitted manuscripts will be double-blind peer-reviewed to ensure academic rigour, integrity and ethical soundness.

Ethical Responsibilities of Authors

- Submitting the manuscript to multiple journals simultaneously is not permissible.
- The submitted work must be original and should not have been previously published in any form or language, except in cases where it represents an expansion of earlier work. Please provide transparency regarding the reuse of material to avoid concerns of text-recycling or self-plagiarism.
- It is not acceptable to divide a single study into multiple parts and submit them to different journals or submit them sequentially to the same journal (also known as salami-slicing or publishing).
- Results should be presented transparently and accurately, without any fabrication, falsification, or improper manipulation of data, including images. Authors should follow discipline-specific guidelines for data collection, selection, and processing.
- Plagiarism, which involves presenting someone else's data, text, or theories as one's own, is strictly discouraged. Authors must appropriately acknowledge and give credit to other works, whether through direct quotations, close copying, summarization, or paraphrasing. Permission is necessary for the use of copyrighted material (Please beware that the journal may employ the use of plagiarism detection software during the review process)

Role of the Corresponding Author

It is possible to delegate the task of managing communication between the journal and co-authors during submission and proofing to a designated Contact or Submitting Author. In such instances, it is essential to clearly indicate the Corresponding Author in the manuscript.

The responsibilities of the Corresponding Author include:

- Securing approval from all listed authors, including their names and order, before manuscript submission.
- Overseeing all communication between the Journal and co-authors, both pre- and post-publication.
- Transparently indicating any re-use of material and mentioning unpublished material (e.g., manuscripts in press) in a cover letter to the Editor.
- Ensuring the inclusion of appropriate disclosures, declarations, and data statements from all authors in the manuscript (as described above).

Enquiries:

Please address all enquiries to: 08091859400; 08069229320; 08031530228

Professor Kulomri J. Adogbo
ENVIRON Editor-in-Chief

CONTENTS

Page

PART I: CONSTRUCTION AND INFRASTRUCTURE

Appraisal of Readiness of Nigerian Construction Organizations to Adoption of Design for Safety
Hassan A. Ahmadu, Kabiru O. Nasiru, Muhammad A. Yamusa, & Mustapha Abdulrazaq

1

Perception of University Students on the Campus Hostel Security: A Case Study of University of Maiduguri, Borno State

Gafar Olaiya Mudashir & Benjamin Moral

14

Cultural Design Elements of Public Spaces for Social Cohesion in Kaduna, Nigeria

Amina Batagarawa

39

Innovation in Measuring Quantities by Nigerian Quantity Surveyors

Solomon M. Ojo, Yakubu G. Musa-Haddary, Peter G. Chindo, Abdul A. Ali.

54

Significant Demographic Indicators Influencing Innovativeness of Quantity Surveying Firms in Nigeria

Solomon M. Ojo, Yakubu G. Musa-Haddary, Peter G. Chindo, Abdul A. Ali

67

Contractors' Tender-Related Risks Influence on Cost and Time Delivery of Construction Projects in Abuja, Nigeria

Ganiyu, B.O., Eyong, O.P., Ola-awo, A.W., Oyewobi, L.O. and Jimoh, R.A.

82

An Assessment of the Awareness and Implementation of Material Management Practices in Small and Medium Construction Firms in Nigeria

Abdulmutalib A. Salihu, Muhammad B. Aliyu, Muawiya Abubakar & Ziyad H. Ishaq

104

A Unified Knowledge-Based Design Notion for Research and Application

Danfulani Babangida Idi

115

Evaluating Building Performance of Educational Buildings: A Case Study of Department of Architecture, Bayero University, Kano, Nigeria

Ali, S. M. and Aisara, A.

131

Developing a Framework for the Implementation of Engineering Procurement and Construction Contracts in the Transport Sector of Nigeria

Aluko-Olokun B. Adenike, Baba Adama Kolo, Mustapha Abdulrazaq, & Peter Gangas Chindo

145

Assessing Macroeconomic Indicators Influencing Construction Material Prices in Nigeria

Hassan A. Ahmadu, Yahaya M. Ibrahim, Rilwan S. Abdulrahman,

Usman S. Jibril & Muhammad A. Yamusa

163

A Critical Assessment of the Influence of Shared Leadership on Team's Performance in Construction Projects in Developing Nations

Agada V. O., Adogbo K. J., Kolo B. A. Ayeni O., & Bashir A. S.

175

PART II: CREATIVE, INDUSTRIAL AND MATERIAL ARTS

An Appraisal of Colour Choice, Applications and Psychological Effects on Residents in Jos Metropolis

Maryamu D. Abubakar & Ezra R. Samuila

188

Phylogeny of Beads Embellishment Techniques on Garments in the Twenty First Century Southwestern Nigeria

Mohammed Isiaka Adeleke

203

PART III: GEO-SPATIAL AND URBAN PLANNING

Assessment of Operational Performance of Inland Water Transport in Borgu Local Government Area of Niger State

Dere, I.G., Ahmad, G.B.M., Oduleye, O.O., Ojekunle, J.A., & Sulaiman, M.A.

213

Spatial Distribution of Climate Parameters and Trend Pattern Analyses across the South Eastern Part of Niger State, Nigeria

Baba, M., Akinpelu A. A., Faruna S.O., Olaniyi, A. M

231

Assessment of the Causes and Effect of Traffic Congestion on Road Users in Major Road Intersection in Minna Metropolis

Abubakar M. Ndayako, Muhammed E. Ohida, Olarinkoye A. Ajiboye, Yusuf N. Baba, Abdulmalik M. Mustapha & Shekwobagwu P. Galadima

245

Assessment of the Spatiotemporal Changes in Land Use and Land Cover in Dutsin-MA L.G.A, Katsina State, Nigeria

Abdulhakim W. Hassan, Ahmed Abdulrazak, Ahmad Y. Zakari, Ibrahim U. Jallo, Muhammad Saidu & Abdulkummin S. Umar

263

Determinants and Implications of Travel Time and Delay along Sokoto Road, Zaria

Shittu A.O. & Rufai H.

284

EDITORIAL

Advancing the frontiers of knowledge and innovation is a prerogative of academic journal publications and this is clearly evident in ENVIRON Journal of Environmental Studies which aims to create an avenue for the dissemination of academic researches which cover the creation of built environments and landscapes that are designed to improve the artistic, natural, socio-cultural and physical quality of life and the natural environment.

ENVIRON is an inter-disciplinary scholarly peer reviewed publication and welcomes original articles exploring wide range of topics in the built environment discipline. This issue of the journal covers interesting and thought-provoking topics in Urban Management of transport systems, urban drainage system, land use, climate studies and building performance in educational institutions. The articles explored challenges and advancements in the field of construction project management, contract management, safety management and risk management. The trends in use of artistic and creative colour choices and materials are also explored with the view to capturing latest trends in the Fine Arts domains.

On behalf of the Editorial Board, I wish to express our profound gratitude to the distinguished academics who have sacrificed their time to review these articles. The Authors who conducted researches and submitted articles for publications have made this issue rich in content and we are most appreciative of your faith and trust in the Journal as a medium for disseminating your researches.

Moving forward, the Journal hopes to publish articles which explore ground-breaking research or projects on the importance of sustainable design/development, emerging technologies such as Industry 4.0/5.0; the application of Data analytics and Artificial Intelligence in the Built Environment, and perhaps touch on Industrial Design (Ceramics, Graphics and Textiles), Innovative Design Thinking and Quantity Surveying.

At ENVIRON Journal of Environmental Studies, we highly value your opinions and insights. We invite you to engage with us by sharing your feedback, comments, and suggestions on the articles published, the topics covered, and ideas for future research areas. Your thoughts are invaluable in shaping the future discourse of our Journal. We are committed to fostering knowledge exchange and innovation within the built environment community and we believe strongly that the articles in this, and future issues, will provide readers with relevant reference resources.

Professor Kulomri Jipato Adogbo
Editor-in-Chief

SPATIAL DISTRIBUTION OF CLIMATE PARAMETERS AND TREND PATTERN ANALYSES ACROSS THE SOUTH EASTERN PART OF NIGER STATE, NIGERIA

Baba, M¹, Akinpelu A. A², Faruna S.O³, Olaniyi, A. M⁴

1,3,4. Department of Surveying and Geoinformatics,
Federal University of Technology, Minna, Niger State

2. Department of Building Technology,
Lagos State University of Science &Technology, Ikorodu, Lagos²

Corresponding email: Mahmud.baba@futminn.edu.ng

Abstract

The magnitude of climate variability varies according to location. Hence, examining the spatiotemporal dynamics of meteorological variables in the context of climate change which have influence on the agricultural, social economy activities of human lives is imperatives. This study thus seeks to present the spatial distributions of climate parameters (temperature, precipitation, surface pressure and wind speed) and trend pattern analyses across the nine local government areas (LGAs) in the eastern part of Niger state using Mann-kendell and Sen's slope statistical test. Merra2 meteorological dataset is processed directly from the National Aeronautical Space Administration (NASA) in affiliation with global modelling Assimilation office using the principles of retrospective analysis in refining earth data. The climate data (Merra2) covered the range of ten years (2010-2019), which was further filtered and sorted before been used. The Merra2 was validated using Nigeria Meteorology Agency (NiMET) dataset and it indicated that there was a strongly correlation with the climate parameters dataset apart from wind speed (WS) which had a poor correlation. The trend pattern analyses were computed for the ten years using Mann-Kendall and Sen's slope estimator statistical template at the 95% confidence level. Temperature (T), precipitation (P) and WS indicated a negative trend pattern while surface pressure (SP) indicated positive trend pattern for the study area. This might lead to unexpected changes in the weather conditions and subsequently have extended effect on the social and economic activities in the study area. Therefore, further study should be carried out to investigate such situation in order to provide adopted strategies to mitigate the extended effect.

Keywords: Climate change, Mann-Kendall, Precipitation, Surface Pressure, Temperature, Wind Speed

INTRODUCTION

Variability is a key innate feature of climate change and it occurs across all time spans. The current public and scientific interest in climate parameter variability, as well as the potential contribution of human activities to observed climate change, have been significant (Braganza *et al.*, 2003). Instead of analysing climate variability or extremes, global scale assessments of the influence of climate change on livelihood

and economic aspects frequently rely on averages assumptions (Adams *et al.*, 1990). However, observations indicate that the influence of climate change on society is mostly due to extreme occurrences and their variability (Bernstein *et al.*, 2007). This is due to the fact that, climate variability including the frequency and intensity of extreme events is anticipated to rise in some places in the future (Bernstein *et al.*, 2007). Some have suggested that climate extremes will

affect agricultural yield more negatively than just climate averages (Tubiello *et al.*, 2007).

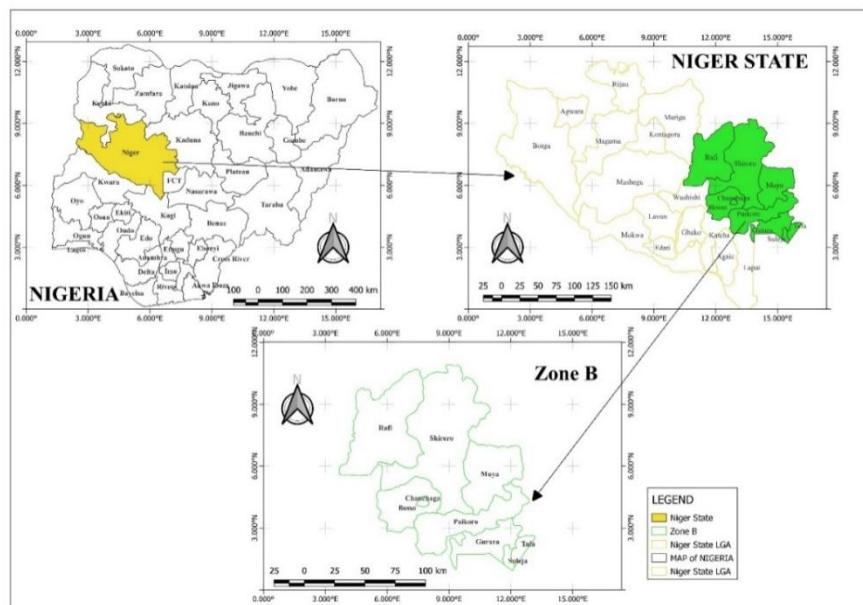
The structure and dynamics of the Earth's climate system are studied by climatologists or climate science. Understanding the processes through which local, regional, and global climates are maintained, as well as how they change over time, is the goal of this discipline. The average weather over an extended period is referred to as the climate. The atmosphere interacts with a variety of different components, such as the sea ice, seas, land, and its characteristics, to create variations in the climate on the surface of the Earth (Jeremy *et al.*, 2018).

The Earth's rotation, the geometry surrounding the Earth and Sun, the Earth's orbital gradual perturbation, and solar radiation are examples of external forces that have an impact on climate (Kevin *et al.*, 2000). According to this notation, the parameters that make up the climate vary based on the associated factors. Climate comprises trends of temperature, precipitation (rain or snow), humidity, wind, and seasons, (Awadet *et al.*, 2013). In a larger sense, the World Meteorological Organization (WHO) (2020) defined important climate variables (ECV) or parameters as physical, chemical, or biological variables, or a combination of related variables, that significantly influence how the Earth's climate is characterized. They determined that the atmosphere, land, and ocean are dependent on the region of the Earth. Surface and higher categories of the ECV atmosphere matrix were also considered (Howard, 2013).

Climate parameters in the surface atmosphere include Precipitation (Rainfall), Surface Pressure, Surface Radiation Budget, Surface Wind Speed and Direction, Temperature and Water vapour. Earth Radiation Budget, Lightning, Temperature (upper-air), cloud properties and Wind Speed and Direction (upper-air) were identified as elements of the upper-atmosphere ECV. ECV-Land matrix was associated with river discharge, lakes, groundwater, and soil moisture (Bernard *et al.*, 2022). While Ocean related essential climate, parameters include ocean surface heat flux, sea ice, sea surface salinity, sea surface temperature, subsurface currents, subsurface temperature and surface stress (Monjur, 2015). This study however is concerned with the atmospheric (surface) climatic parameters specifically temperature, rainfall, pressure, and wind speed.

One cannot overstate the importance of measuring and evaluating climatic factors due to their wide range of applications or their spatiotemporal variance. Humanity depends heavily on local weather conditions to survive, so it is crucial for both our economy and society to comprehend and predict what the upcoming winter might bring as well as how the climate will evolve over the next century (NCAS, 2019). Understanding and evaluating climatic characteristics is becoming more and more important. Concerns about the effects of climate change on food production have recently spread around the globe. Agriculture is constantly under risk from unfavourable weather and climatic changes. Weather and climate continue to be important variables in agriculture productivity even in the face of technological advancements

like better crop types and irrigation systems (Jemma *et al.*, 2010).


The understanding of climatic parameter variation that represents climate change and its possible effects at the global, regional, and local scales has greatly improved (Takara *et al.*, 2009). The existence of satellites that observe environmental factors in space explains the relevance of remote sensing and its related geospatial approach. Since the introduction of the first meteorological satellite, TIROS (Television Infrared Observation Satellite), in 1960, satellite data have been utilized to estimate climatic parameters and have been recognized as a suitable replacement for point-based weather stations that are not always available (Thies & Bendix 2011)

Study Area

Niger is a state in the North Central region of Nigeria with the largest landmass in the country. Niger state is sub-classified into three geo-political zones namely zone A, B and C relatively based on

the dominated tribe within the zone. Zone A is predominantly the Nupe speaking tribe, Zone Bis the Gbagyi speaking tribe while zone C is mostly dominated by the Hausa. The state is named after the River Niger (NSG, 2012). The LGAs in Zone B lie on latitude $2^{\circ} 45'$ to $4^{\circ} 15'$ north of the Equator, and on longitude $10^{\circ} 50'$ to $12^{\circ} 15'$ east of the Greenwich Meridian, and occupy a total land mass area of about 16868.8km^2 .

Niger East is located at the south eastern part of the state, and it consists of nine local government areas namely Munya, Tafa, Gurara, Shiroro, Suleja, Rafi, Paiko, Bosso and the state capital Chanchaga (Minna). It houses one of the two of Nigeria's major hydroelectric power stations, the Shiroro Dam, along with the newly constructed Zungeru Dam located in Zone B. The main occupation of the people is farming, and the Gbagyi are known for yam cultivation and other cereals crops sorghum, maize etc. (NSG, 2012). Figure 1 depicts the map of the study area

Figure 1. Map of study area: Top left; Map of Nigeria Showing Niger State, Top Right; Map of Niger State Showing the South Eastern Part, and Bottom; Study Location (Zone B)

METHOD

Data Acquisition

The MERRA-2 datasets were introduced to replace the MERRA-1 dataset due to the advances made in the assimilation system that enable assimilation of modern hyper-spectral radiance and microwave observations, along with GPS-Radio Occultation datasets. The spatial resolution is $(0.5^\circ \times 0.625^\circ)$ (latitude & longitude) or approximately 50 km) with temporal resolution up to hourly. The data downloaded was for the span of ten (10) years (2010-2019) which cut across the nine-local government of Niger state, Nigeria.

Data Processing

Merra2 data was processed directly from NASA in affiliation with global modelling Assimilation office. It uses the principles of retrospective analysis in refining earth data. The datasets were further reprocessed by Sorting and filtering, the telemetry data passed through a series of atmospheric reanalysis and adjustment before extraction. The Merra-2 daily data extracted from NASA/GMAO site comprises of four climate parameters (Temperature, Surface Pressure, Wind Speed, and Precipitation). The data was converted to monthly data for the whole of the nine (9) local government areas of Niger east, Nigeria. Mann-Kandel statistical template was used to determine the trend pattern of the data for the nine (9) Local Government Areas for the next ten years while quantum geographical information system (QGIS) software was used to plot the spatial distribution, the plot was divided into two phases at five years interval.

Mann-Kendall's Test

A Known statistical non-parametric tool used for analyzing trends in time series data from climatology and hydrology is the M-K test. The test was proposed by Mann (1945) mainly to evaluate environmental time series data, ever since it has been used to determine trend pattern of other factors. The usage of this test has two main edges over other methods.

- i. It is a nonparametric test; therefore, the data do not need to be normally distributed.
- ii. Inhomogeneous time series; the test is secondarily insensitive to sudden breaks.

When the test assumes that there is no trend, hence the null hypothesis is H_0 , the alternative theory H_1 , which indicate that there is a trend. Here is how to compute the M-K statistic:

$$S = \sum_{i=1}^n \sum_{j=1}^{i-1} sign(x_i - x_j) \quad (1)$$

Where x_i and x_j are two generic sequential data values, n is the entire length of the data, and the following values are assumed for function sign $(x_i - x_j)$

Under this test, the statistic S is approximately normally distributed with the mean $E(S)$ and the variance $Var(S)$ can be computed as follows:

$$E(S) = 0 \quad (2)$$

Where, n is the length of time series, and t is the extent of any given time and $\sum(t)$ denotes the summation of overall tie number of values. The standardized statistics Z for this test can be computed by the following equation (Gilbert 1987):

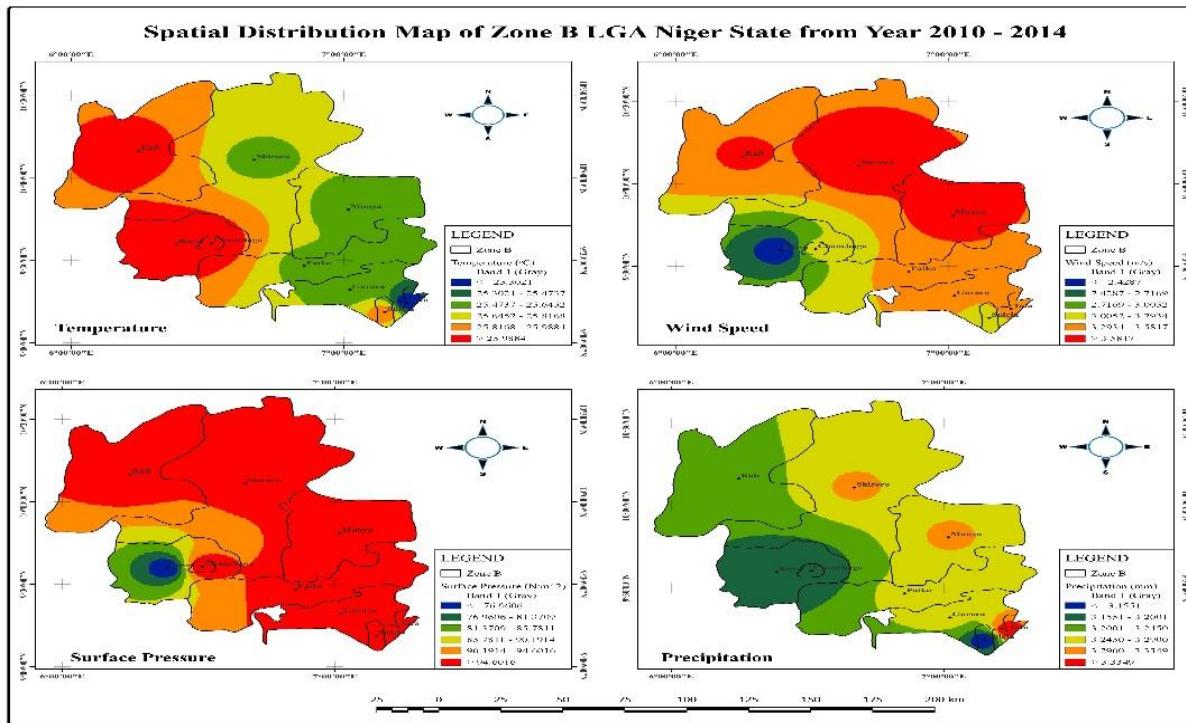
$$var(S) = \frac{1}{n} [n(n-1)(2n+5) - \sum_t t(t-1)(2t+5)] \quad (3)$$

$$Z = \begin{cases} \frac{s+1}{\sqrt{var(s)}} & \text{if } S > 0 \\ 0 & \text{if } S = 0 \\ -1 & \text{if } S < 0 \end{cases} \quad (4)$$

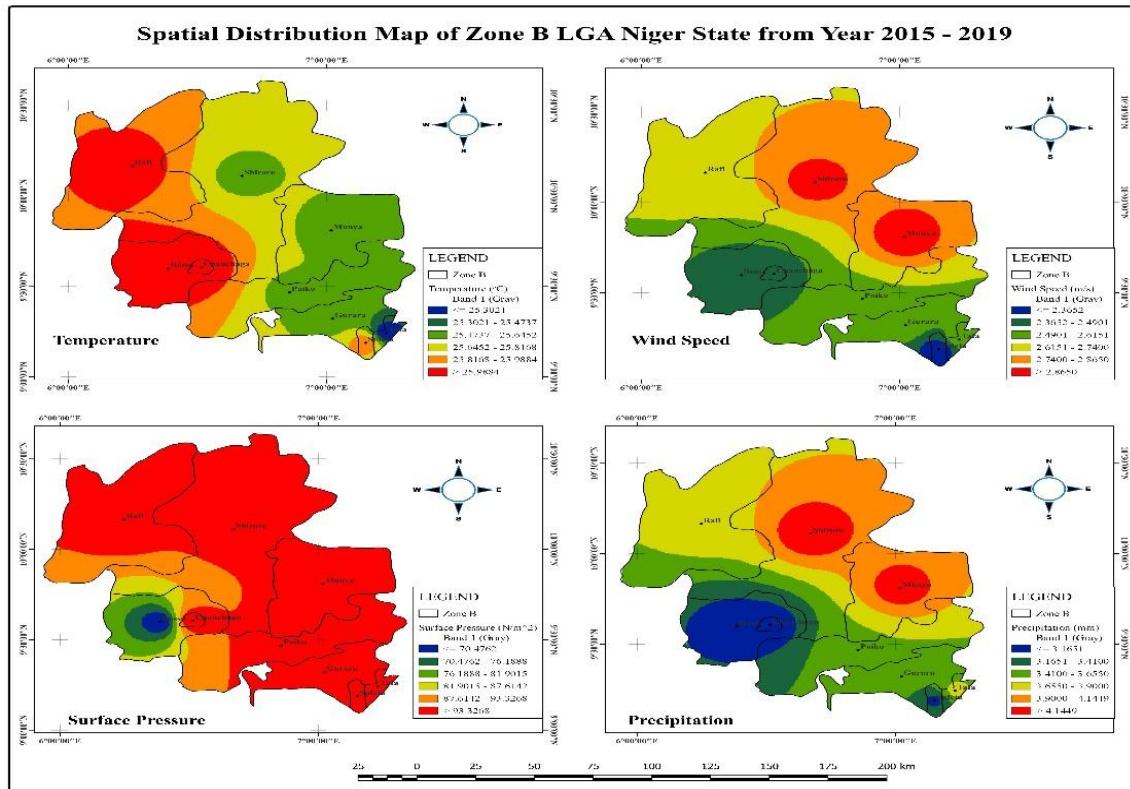
If a data set of non-dependent variables with random distribution does not exhibit any trend with equally likely ordering, the null hypothesis H_0 is rejected in this test. Any value of the test statistic Z that is positive denotes a growing trend, whereas a value of Z that is negative may indicate a sequence of declining trends. In order to determine whether to accept or reject the null hypothesis and the significance of the trend, the computed absolute value of Z is compared with the standard normal cumulative value of $Z(1-p/2)$ at p -% significance level (Partal & Kahya, 2006). Utilizing the XLSTAT 2017 program using NiMET dataset, this particular test was carried out, values that are extremely positive or extremely negative represent a growing or falling trend, respectively.

Sen's Slope Estimator Test

A non-parametric technique called Sen's estimator can be used to calculate the size of a trend in a time series (Sen, 1968). Sen's nonparametric technique is employed, and the test was run using the XLSTAT 2017 program, to determine the true slope of an existing trend, such as the amount of change per year. Sen's slope is


a measure of the trend in a time series; a positive value indicates an upward or increasing trend and a negative value indicates a downward or decreasing trend (Hipel & McLeod, 1994).

Nigeria Meteorological Agency (NiMET) Data


Due to scarcity of climate stations in the study area, Niger State is housing only two climate (NiMET) stations which are located in Borgu LGA and Minna the state capital of Niger State. The NiMET datasets are the primary data used for the validation of the data generated from NASA/GMO (MERRA-2 datasets). It was possible to obtain NiMET datasets for Minna station for a period of ten (10) years (2010 to 2019). Climatic data (NiMET) were carefully processed for missing values and the data quality checked before using them for any analysis.

RESULTS AND DISCUSSION

Figure 2, depicts the spatial distribution of climate parameters for the first phase of five years (2010-2014). Figure 3, depicts the spatial distribution of climate parameters for the second phase (2015-2019) while Table 1 shows values of the highest and lowest climate parameters for the nine LGAs of Niger Zone B.

Figure 2.Spatial distributions of climate parameters between 2010 and 2014

Figure 3.Spatial distributions of climate parameters between 2015 and 2019

Table1.Highest and lowest value of climate parameters in Niger east LGAs

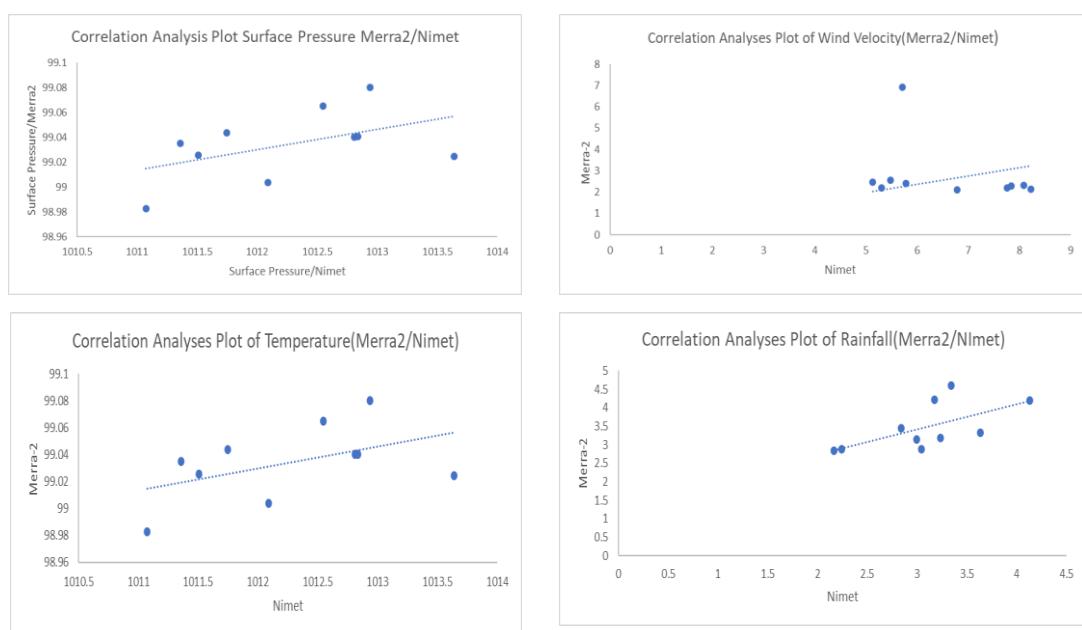
Climate Parameters	Bosso LGA	Gurara LGA	Munya LGA	Paiko LGA	Rafi LGA	Shiroro LGA	Suleja LGA	Tafa LGA	Chanchaga LGA
Temperature (MAX) (°C)	28.05°C	26.93°C	26.46°C	26.93°C	27.08°C	26.45°C	27.93°C	26.14°C	28.05°C
MIN (°C)	25.4	24.92°C	24.74°C	24.92°C	25.48°C	24.73°C	25.09°C	24.47°C	25.40°C
Surface Pressure MAX(KPa)	99.08	97.21	97.21	97.1	98.23	96.46	98.12	95.19	99.07
MIN(KPa)	98.98	97.1	97.1	96.46	98.11	96.34	98.06	94.99	98.84
Precipitation MAX (mm)	4.13	4.27	4.27	4.27	4.33	4.7	4.01	4.52	4.14
MIN (mm)	2.16	2.21	2.21	2.22	2.01	2.21	2.21	2.21	2.17
Wind Speed MAX(m/s)	2.57	2.79	2.79	2.79	2.9	3.19	2.79	2.8	2.48
MIN(m/s)	2.1	2.41	2.41	2.37	2.46	2.68	2.11	2.45	2.10

Variability analysis of meteorological parameters is of great importance for researchers and policy makers in their decision making as climate parameters (temperature, precipitation, surface pressure, wind velocity and relative humidity) play dominant role in deciding the variability of climate and weather conditions in the local government areas. Firstly, Bosso LGA houses the Federal University of Technology, which share close boundary with the state capital Minna. The LGA has the highest average value of temperature recorded for the span of ten (10) years when compared to other LGAs. It recorded about 13.40% of the total temperature across the whole of the zone B, the highest value was observed in the year 2016. The volume of precipitation recorded was 11.83% for the period in view, the surface pressure was 12.75%, and the wind speed recorded was 11.16%.

Gurara LGA shares boundary with Suleja LGA and Abuja to the north while Paiko LGA to the south. It recorded maximum average temperature of about 12.47%,

average surface pressure recorded for the span of 10 years was 12.51%, and the average wind speed recorded was 12.11% while the precipitation was 12.22%. The observed climate parameters of the LGA have justified the reason for the high yield of agriculture products cultivated in the LGA.

Munya LGA shares boundary with Kaduna state to the south, Shiroro and Rafi LGAs to the southeastern part of the state. The maximum average temperature recorded in Munya LGA for the year in view was 12.47%, the surface pressure recorded was 12.51%, The volume of precipitation recorded was 12.22% and the wind speed recorded was 12.11%. The result is an indication of the high yield of cereals crop in the LGA. The main agriculture products are maize, sorghum, soya beans, yam, guinea corn etc.


Paiko LGA shares border with the state capital east and Shiroro LGA to the south part of the state. The maximum average temperature recorded for the period in

review was 12.47%, the volume of rainfall recorded was 12.40% while the surface pressure recorded was 12.38%. The wind velocity of Paiko LGA for the period in-view was 12.11% while the relative humidity percentage recorded was 12.69%. The results show agricultural potential of Niger east (zone B) LGAs should have. According to food and agriculture (FAO) of the United Nations in 2018, with the expansion in population in Nigeria, there is need for the country especially Niger state with a vast land area and amazing climate condition to adequately harness its agriculture potential, for if well harnessed it can feed the whole of the country. Shiroro LGA recorded average maximum temperature of about 12.25%, the surface pressure and precipitation recorded were 12.42% and 13.45% respectively. This account for the highest values recorded compared to other LGAs. Wind speed recorded about 13.85%.

Suleja LGA and Tafa LGA are positioned at the fringes of the state sharing

boundary with the country's capital, Abuja. Suleja LGA recorded average maximum temperature of about 12.92%, surface pressure of about 12.63% and precipitation of about 11.74%. The wind speed recorded was 12.11%. Tafa LGA recorded average maximum temperature of about 12.11%, surface pressure of about 12.24% and precipitation of about 12.94%. The wind speed recorded was 12.16% of the total for the span of ten (10) years.

In order to measure the degree of closeness of Merra2 dataset, validation procedure was carried out using the Nigeria Meteorological (NiMET) dataset for Minna station. Niger state has two NiMET station, Minna station and the second located at Ibi town in Borgu LGA of Niger state. Figure 4 depicts the scatter plots for Merra2 and NiMET dataset for the span of ten years based on correlation analyses. Table 2 present the relationship between Merra2 and NiMET climate datasets.

Figure 4. Correlation analyses index of NiMET dataset and Merra2 dataset

Table 2. Relationship Between Meera2 and NIMET climate dataset

s/n	Climate parameters	Correlation	Remark
1	Precipitation	0.6	Strongly correlated
2	Surface pressure	0.7	Strongly correlated
3	Temperature	-0.3	Poorly correlated
4	Wind speed	0.6	Strongly correlated

The result of Table 2 depicts the degree of closeness of Merra2 data and NiMET climate dataset, which indicates that surface pressure, precipitation, and temperature showed strong correlation index with the NiMET data while wind speed indicates a poor correlation index with the NiMET data. However, the above outcomes depict that the Merra2 data can be used to measure the climate parameter of a place where there is no

coverage of primary means except for wind velocity which requires more verification. Table 3 presents the results of quantitative statistics based on the Mann-Kendell analyses to determine the trend pattern of the climate parameters in view in Minna, the state capital, while Figures 3 (a-d) present Mann-Kendall trend tests/two-tailed tests for temperature, precipitation, surface pressure, and wind speed, respectively.

Table 3. Statistics of Climate Parameters from The Mann-Kendell Analyses

Variable	Observations	Obs. with missing data	Obs. without missing data	Minimum	Maximum	Mean	Std. deviation
temperature	10	0	10	25.393	28.049	26.849	0.912
Precipitation	10	0	10	2.167	4.133	3.081	0.588
Surface pressure	10	0	10	98.983	99.080	99.033	0.029
wind speed	10	0	10	2.106	6.929	2.764	1.471

Table 3a:Mann-Kendall trend test/Two-tailed test (Temperature)

Kendall's tau	0.422
S	19
Var(S)	125.000
p-value (Two-tailed)	0.107
Alpha	0.05

An approximation has been used to compute the p-value.

Test interpretation:

H_0 : There is no trend in the series

H_a : There is a trend in the series

As the computed p-value is greater than the significance level alpha=0.05, one cannot reject the null

hypothesis H_0 .

The continuity correction has been applied.

Sen's slope:

	Value	Lower bound (95%)	Upper bound (95%)
Slope	0.221	-0.059	0.395
Intercept	-419.368	-593.822	-136.279

Table 3b, Mann-Kendall trend test / Two-tailed test (Precipitation):

Kendall's tau	0.067
S	3
Var(S)	125.000
p-value (Two-tailed)	0.858
Alpha	0.05

An approximation has been used to compute the p-value.

Test interpretation:

H_0 : There is no trend in the series

H_a : There is a trend in the series

As the computed p-value is greater than the significance level alpha=0.05, one cannot reject the null hypothesis H_0 .

The continuity correction has been applied.

Sen's slope:

	Value	Lower bound (95%)	Upper bound (95%)
Slope	0.027	-0.199	0.172
Intercept	-50.649	-197.630	176.182

Kendall's tau	0.378
S	17
Var(S)	125.000
p-value (Two-tailed)	0.152
Alpha	0.05

An approximation has been used to compute the p-value.

Test interpretation:

H_0 : There is no trend in the series

Ha: There is a trend in the series

As the computed p-value is greater than the significance level alpha=0.05, one cannot reject the null hypothesis H_0 .

The continuity correction has been applied.

Sen's slope:

	Value	Lower bound (95%)	Upper bound (95%)
Slope	0.005	-0.003	0.012
Intercept	89.662	81.954	97.197

Table 3d. Mann-Kendall trend test / Two-tailed test (Wind speed):

Kendall's tau	0.289
S	13
Var(S)	125.000
p-value (Two-tailed)	0.283
Alpha	0.05

An approximation has been used to compute the p-value.

Test interpretation:

H_0 : There is no trend in the series

Ha: There is a trend in the series

As the computed p-value is greater than the significance level alpha=0.05, one cannot reject the null hypothesis H_0 .

The continuity correction has been applied.

Sen's slope:

	Value	Lower bound (95%)	Upper bound (95%)
Slope	0.023	-0.075	0.045
Intercept	-43.134	-65.378	55.363

CONCLUSION

The capital of Niger state is susceptible to climate variability and all the local government areas in Zone B are also experiencing the same. Fluctuations in climatic parameters which have an extended effect on climatic and weather conditions are a recurring phenomenon in

the studied local government areas. The effects of climate variability exacerbate existing social and economic activities across the LGAs, because people here are mainly reliant on resources that are sensitive to climate variability such as agricultural practices. Improved capacity to cope with future climate variability

extremes can lessen the extent of economic, social and human loss. However climatic parameter such as rainfall, temperature, surface pressure, wind speed and relative humidity are relevant variables that define the weather and climatic condition of an area. The present study analyzed the meteorological data extracted from NASA Merra2 dataset and the Nigeria Meteorological station in Minna, Niger state Nigeria. The analysis of the time series dataset was carried out using non-parametric M-K test and Sen's slope estimator, which are widely used tests for conducting trend analysis. The trend pattern was computed at 95% confidence level which indicated that in Rafi LGA, it recorded a positive Sen's slope of 0.013 for temperature, Sen's slope 0.097 for precipitation and Sen's slope (0.006) for surface pressure. Munya LGA recorded negative Sen's slope of - 0.060 for temperature, positive Sen's slope 0.156 for pressure, Sens's slope of 0.007 for surface pressure, Sens's slope of 0.015 for wind speed. Bosso LGA recorded positive Sen's slope 0.0223 for temperature, Sen's slope of 0.027 for precipitation, Sen's slope 0.003 for surface pressure, Sen's slope 0.030 for wind speed. Gurara LGA recorded positive trend pattern of Sen's slope 0.089 for temperature, Sen's slope 0.049 for precipitation, Sen's slope 0.005 for surface pressure, Sen's slope 0.011 for wind speed. Tafa LGA recorded positive trend pattern of Sen's slope 0.080 for temperature, Sen's slope 0.024 for precipitation, Sen's slope 0.007 for surface pressure, Sen's slope 0.007 for wind speed. Suleja LGA recorded positive trend pattern of Sen's slope 0.192 for temperature, Sen's slope 0.016 for precipitation, Sen's slope 0.005 for surface pressure, Sen's slope 0.014 for wind speed. Hence, the correlation of

Meera2 dataset and Nimet dataset have indicated a high reliability on Meera2 data except for wind velocity. Therefore, it can be concluded from both Mann-Kendall and Sen's Slope have indicated both positive and negative trend relative to the climate parameter in review. This could be due to impact of climate change. However, if caution is not taken, it may lead to weather and climate extremes in the study area. It is therefore recommended that the variability of the climate parameters should be monitored in order to minimize its effects on human activities.

REFERENCES

Adams, M., Mohammed, C., Rosenzweig, C., McCarl, B. A., Glyer, J. D., Kenneth J. Boote, Kenneth J., Boote, J. & Curry, R. B. (1990). Global climate change and US agriculture. *Nature Publishing Group*. DOI:10.1038/345219a0

Awad, R., Sherratt, S., & Jefferies, M., (2013). Proposing a New Model for Organizational Change Management. *Change Management: An International Journal*, 12(3), 17-28.

Bernard, F. F., Addo, K., & Frank, M. (2022) Analyses of temperature variability utilising Mann-Kendall and Sen's slope estimator test in the Accra and Kumasi Metropolis in Ghana, *Environmental System Research*. 11, 24, doi.org/10.1186/s40068-022-00269-1

Bernstein, G. A., Bernat, D. H., Andrew, A. D., & Layle, A. E. (2007) symptom presentation and class room functioning in a nonclinical sample of children with social

phobia, *Depression and Anxiety*, 23(9), 752-760

Braganza, K., Karoly, D. J., Hurst, M. E., Mann, P. Stott, R. J. Stowffer, S., & F. B. Tett, (2003). Simple Indices of Global Climate Variability and Change part 1 - 85 variability and correlation structure. *Climate dynamics*, 20: 491-502, DOI:10.1007/s00382-002-0286-

Gilbert, R. O. (1987). Statistical method for Environmental Pollution Monitoring, Wesley, NY.

Howard, D. (2013), The Global Observing System Information Center (GOSIC); a comprehensive and evolving portal for global climate data and information. *Data Journal.*, V (12)

Hipel, K. W., & McLeod, A. I. (1994), Time series Modelling of Water Resources and Environment System. New York: Elsevier Science

Jemma, G, Rechard, B., Eleano, B., Robin, C., Joane C., Kate, W. & Andrew W. (2010). implication of climate for agriculture productivity in the early twenty first century., *Journal of Biological Science*, doi.org/10.1098/rstb.2010.0158

Jeremy, F., Olga, S., Markus, L., Stephen, P., & Jan T. N. L. (2018). An Overview of Interaction and Feedback Between Ice Sheets and the Earth System., *Review of Geophysics*, 56(2) 361-408. http://doi.org/10.1029/2018rg000600

Kevin, E., John, T., Fasullo, G., & Mackaro, J. (2000). Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyzes. *Journal of climate*, 24(18), 4907-4924, DOI: <https://doi.org/10.1175/2011JCLI4171.1>.

Mann, H. B. (1945). Non-Parametric Test against Trend. *Econometrica*, 13, 245-259. <http://dx.doi.org/10.2307/1907187>

Monjur, M. (2015). Climate parameters for building energy applications: A Temporal - Geospatial Assessment of Temperature Indicator. *Journal of Renewable Energy.*, 94, 55-71. <http://dr.doi.org/10.1016/j.jrenene.2015.03.021>

National Centre for Atmospheric Science (NCAS) (2019). Report on climate change by scientist at university of Manchester department of earth and environmental science. www.cas.manchester.ac.uk/nacs

Niger State Government (NSG). (2012 edition). Fact and Figures About Nigeria State, Niger State Bureau of statistics

Partal, T. & Kahya, E. (2006). Trend Analysis in Turkish Precipitation Data. *Hydrological Processes*, 20, 2011-2026. <http://dx.doi.org/10.1002/hyp.5993>

Sen, P. K., (1968). Estimates of the Regression Coefficient based on Kendall's Tau. *Journal of the American Statistical Association*, 63, 1379 - 1389. <http://dx.doi.org/10.1080/01621459.1968.10480934>.

Takara, H., Sakiyama, S. Miyazato, S., & E. Asato, (2009). Electronic Spectral Simulation for Dinuclear Zinc (II) Complexes Bridged by a 2,3,5,6-Tetrahydroxy-1,4-benzoquinonate Ion and by a

Rhodizonate Ion. *Journal of Computer Chemistry* Japan. 12(3):157 DOI:10.2477/jccj.2013-0001.

Thies, B., & Bendix, J. (2011). Satellite based remote sensing of weather and climate: recent achievement and future perspective, *meteorological application*, volume 18(3) doi.org/10.1002/met.288

Tubiello, F. N., Soussana, J. F., & S. M. Howden, (2007). Crop and Pasture Response to Climate Change. *Proceedings of the National Academy of Sciences*. 104(50):19686-90.
DOI:10.1073/pnas.070172810.

World Meteorological Organization (WMO) (2020). Report by the Scientific Assessment Panel (SAP) scientific Assessment on the effect of climate change.