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 Abstract: Report by the International Food Policy Research Institute highlights that Nigeria 

loses approximately 0.35% of its total land area estimated at 923,768 km² to desertification 

annually. As of the year 2020, about 35% of the country's landmass is under threat, putting 

the livelihoods of over 40 million land dependent individuals at risk. This study employs 

Remote Sensing and Geographic Information System (GIS) techniques to monitor the rate of 

desertification in Sokoto State, Nigeria. Multi-temporal satellite imagery, including Landsat 

TM (2000), Landsat 4 (2005), Landsat 7 (2010), and Landsat 8 OLI (2015, 2018), was 

obtained from the United States Geological Survey (USGS). Geometric and atmospheric 

corrections were applied to enhance image accuracy. Supervised classification using the 

Maximum Likelihood algorithm was adopted, and desertification indicators precipitation, 

temperature, and population were integrated with land use/land cover (LULC) outputs for 

comprehensive analysis. Findings reveal a substantial decline in vegetated areas from 33.4% 

in the year 2000 to 12.3% in the year 2020, largely driven by urbanization, agricultural 

encroachment, and possible climate factors. Built-up areas significantly increased from 15.1% 

to 32.3% over the same period, indicating rapid urban development. Bare soil coverage 

exhibited fluctuations, with a notable rise from 41.6% in the year 2015 to 52.8% in 2020. 

Water bodies declined from 2.6% in 2000 to 1.6% in 2020, raising concerns over water 

availability. Projections using Markov cellular automata algorithm for the year 2025 and 

2030 indicated continued degradation, with vegetated areas recording a decrease trend 

pattern by 8.2% to 10% and built-up areas to record an increasing trend of 40% to 53% by 

2030. These trends underscore the urgent need for strategic interventions and policies aimed 

at mitigating desertification and restoring degraded lands to sustainable productivity. 

Key words: Desertification, Deforestation, Soil Fertility, Urbanization and Remote Sensing and 

Geographical Information System (GIS) 

1 Introduction  

Desertification remains one of the most pressing 

environmental challenges confronting dryland 

regions globally, with profound implications for 

ecological sustainability, agricultural productivity, 

and human livelihoods. It is broadly defined as the 

land degradation in arid, semi-arid, and dry sub-

humid areas, primarily driven by climatic variations 

and anthropogenic activities (Ibrahim et al., 2022). to 

the misconception that it entails the physical 

expansion of deserts, desertification is better 

understood as the progressive degradation of land in 

drylands due to unsustainable human activities and 

environmental pressures (Bayati, 2017). This 

complex and multidimensional phenomenon involves 

the deterioration of soil quality, loss of vegetative 

cover, and a decline in the overall productivity of 

ecosystems that were once biologically diverse and 

agriculturally viable (Higginbottom and Symeonakis, 

2014). 

Several interlinked natural and human-induced 

factors contribute to desertification. According to 

Carvalho (2024), understanding these causative 
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elements is crucial to designing effective mitigation 

strategies. Jibrillah et al. (2019) identify climate 

change, overgrazing, deforestation, unsustainable 

agricultural practices, urban expansion, and mining as 

primary drivers. Changes in temperature and 

precipitation patterns often result in prolonged 

droughts and increased evaporation, accelerating the 

degradation of already fragile ecosystems (Trenberth, 

2011). Unregulated livestock grazing, for instance, 

leads to the excessive removal of vegetation cover, 

reducing soil fertility and enhancing erosion risks 

(Milazzo et al., 2023; Abdelsalam, 2021). 

Deforestation for fuelwood and agricultural land not 

only exposes soil surfaces but also disrupts 

biodiversity and microclimatic conditions (Olijrra, 

2019; World Bank, 2019). Moreover, poor land 

management practices such as monocropping, 

overuse of agrochemicals, and inefficient irrigation 

further exacerbate soil exhaustion and salinization 

(Elouattassi et al., 2023; Khan et al., 2024). 

Urbanization and resource extraction also result in the 

loss of vegetation and increased susceptibility to wind 

and water erosion (Abdul-Rahaman et al., 2016). The 

consequences of desertification are far-reaching and 

multifaceted. It leads to significant biodiversity loss, 

reduction in arable land, depletion of freshwater 

resources, and destabilization of socio-economic 

systems (Li et al., 2024; Fekadu, 2023). Fertile lands 

transform into barren wastelands, forest ecosystems 

disappear, and grasslands contract, thereby 

undermining ecological functions and habitat 

integrity (Anjum et al., 2010). As vegetation cover 

diminishes, the topsoil becomes more vulnerable to 

erosion, diminishing agricultural outputs and 

endangering food security (McLaughlin and 

Kinzelbach, 2015). Additionally, reduced vegetation 

cover impairs groundwater recharge by limiting 

rainfall infiltration, which exacerbates water scarcity 

and intensifies competition for dwindling resources 

(Jasechko et al., 2024). Mitigating desertification 

necessitates a multi-pronged approach, including 

sustainable land management, afforestation, 

conservation agriculture, and policy frameworks that 

promote responsible land use (Islam et al., 2025; 

AbdelRahman, 2023). Central to these strategies is 

the ability to monitor and detect desertification trends 

effectively. 

In this regard, remote sensing and Geographic 

Information Systems (GIS) offer powerful tools for 

large-scale, cost-effective monitoring. Remote 

sensing enables the detection of land cover changes, 

vegetation health, and surface water availability, 

while GIS facilitates spatial analysis and decision-

making (Dubovyk, 2017; Mashala et al., 2023). Field-

based assessments provide direct observations but are 

typically labor-intensive and geographically limited. 

Emerging technologies such as unmanned aerial 

vehicles (UAVs) and sensor networks now offer high-

resolution data and real-time environmental 

monitoring capabilities (Andresen and Schultz-

Fellenz, 2023). A growing body of research has 

demonstrated the effectiveness of geospatial 

technologies in assessing and combating 

desertification. For instance, Bayati (2017) and Al-

Timimi (2021) applied remote sensing and GIS to 

detect vegetation loss and expanding sand dunes in 

Iraq. Similarly, Wang (2008) and Kundu (2015) 

utilized these tools to investigate the influence of 

climate and anthropogenic factors on desertification 

in China and India, respectively. These studies 

underscore the critical role of geospatial techniques in 

generating accurate, timely data to guide intervention 

strategies. In the context of Nigeria, particularly 

Sokoto State, desertification presents an urgent 

environmental and socio-economic threat. 

Characterized by an arid to semi-arid climate and 

extensive land degradation, Sokoto is increasingly 

vulnerable to the adverse impacts of desert 

encroachment. These include declining agricultural 

productivity, water scarcity, and ecological 

imbalance all of which compromise food security and 

livelihoods. Therefore, a geospatial assessment of 

desertification in Sokoto is not only timely but 

essential for informing sustainable land use planning 

and resilience-building strategies. 

2 Study Area  

Sokoto is a northwestern state in Nigeria, renowned 

for its distinctive cultural heritage, historical 

significance, and unique geographical features. 

Situated within the Sahelian ecological zone, Sokoto 

State experiences a semi-arid climate characterized 

by high temperatures, limited and erratic rainfall, and 

an extended dry season (Atedhor, 2015). These 

environmental conditions render the region 

particularly vulnerable to desertification and land 

degradation. Geographically, Sokoto State is located 

at approximately latitude 13°05′ N and longitude 
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5°15′ E (Mahmuda et al., 2014), encompassing an 

estimated land area of 32,000 km². It shares 

boundaries with Kebbi State to the southwest, 

Zamfara State to the southeast, and the Republic of 

Niger to the north. The climate is defined by two 

major seasons: a rainy season occurring between May 

and September, and a dry season extending from 

October to May (Anon, 2001). Relative humidity 

levels are typically 20% or lower, while average 

temperatures range between 22°C and 43°C (Iloeje, 

1971). Figure depict the map of the study area.  

Figure 1.: Map of Sokoto state 

3 Methodology  

The methodology adopted for this study involves the 

integration of Remote Sensing (RS) and Geographic 

Information System (GIS) techniques to investigate 

the extent and progression of desertification in Sokoto 

State, Nigeria. The region’s semi-arid climate 

characterized by high temperatures, irregular rainfall 

patterns, and extended dry seasons makes it 

particularly prone to desertification processes (Ikpe 

and Ajiya, 2021; Atedhor, 2015). The step-by-step 

workflow of the methodological approach is 

illustrated in Figure 2. Additionally, the sources of the 

datasets utilized for this research are summarized in 

Table 1. 

3.1 Data Acquisition  

Landsat satellite imagery acquired for the years 2000 

(Landsat TM), 2005 (Landsat 4), 2010 (Landsat 7 

ETM+), and 2015 and 2018 (Landsat 8 OLI) were 

sourced from the United States Geological Survey 

(USGS) database. The scenes covered multiple 

Landsat paths and rows, specifically Path 191/Row 

050, Path 191/Row 051, Path 191/Row 052, and Path 

190/Row 051. 

 

Figure 2. Conceptual Design 
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All images were orthorectified and provided in 

GeoTIFF format, referenced to the WGS 84/UTM 

Zone 32N coordinate system (Minna Datum). The 

pre-processing stage involved mosaicking the 

satellite scenes and clipping them using the Sokoto 

State administrative boundary shapefile as a 

reference. The selected spectral bands for each 

Landsat sensor were optimized to detect changes in 

land cover, vegetation condition, and surface soil 

moisture across the study period. This approach 

enabled a consistent temporal analysis of 

desertification trends. A summary of the datasets, 

including sensor type, acquisition dates, spatial 

resolution, and sources, is presented in Table 1. 
 

Table 1. Data Characteristics and Sources 

S/N Data name Data Type  Epochs Resolution Data Sources  

 1 Landsat Satellite Imagery Raster data  2000, 2005, 

2010, 2015 

&2020 

30m USGS Earth Explorer  

2 Climate parameters  Vector Data 2000-2020   Nigeria Meteorological 

Agency (NIMET) 

3 Administration Map Vector data 20years 1:300,000 OSGF 

4 Demographic  Vector  20years  NPC&INEC 

 

The details of the satellite datasets used in this study 

are presented in Table 1. For land use/land cover 

(LULC) classification, bands 2, 4, 5, and 6 were 

utilized for Landsat 8 OLI, while bands 1, 3, 4, and 5 

were applied for Landsat 4–5 ETM imagery. In 

addition to the satellite data, supplementary 

geospatial datasets were integrated to examine other 

contributing factors to desertification in Sokoto State. 

These included rainfall, temperature, and population 

data. The climatic parameters were sourced from the 

Nigerian Meteorological Agency (NiMet), while 

demographic data were obtained from both the 

National Population Commission (NPC) and the 

Independent National Electoral Commission (INEC). 

To prepare the satellite image data for postprocessing, 

geometric correction was carried out to mitigate 

terrain-induced distortions and restore the true spatial 

representation of surface features. This step addressed 

the effects of terrain displacement, Earth curvature, 

and sensor rotation, thereby ensuring accurate 

geometric alignment (Green et al., 2014). 

Radiometric correction was also performed by 

converting digital number (DN) values into radiance. 

To reduce atmospheric noise and enhance spectral 

quality, top-of-atmosphere (TOA) correction was 

applied across all Landsat bands. This process 

transformed DN values into surface reflectance, as 

recommended by Baba et al. (2025) and validated by 

earlier studies (Kobayashi and Sanga-Ngoie, 2008; 

Paolini et al., 2006). 

Land use/land cover change maps for the study area 

were generated through supervised classification, 

employing the maximum likelihood algorithm, which 

is widely recommended for Sub-Saharan African 

landscapes due to its robustness. The classification 

was executed using QGIS 3.4 and categorized the 

landscape into five major classes: wetland, farmland, 

built-up areas, bare land, and vegetation. 

3.2 Land Cover Mapping and Accuracy 

Assessment  

Due to prevailing security challenges in the study 

area, field data collection is both logistically difficult, 

costly, and potentially hazardous. To overcome these 

constraints, recent studies have increasingly relied on 

auxiliary sources such as high-resolution Google 

Earth imagery for training and validation purposes, 

with documented success (Hu et al., 2013; Burke et 

al., 2021). These secondary data sources have proven 

invaluable in supporting the development and 

validation of remote sensing-based land cover maps, 

particularly within the Nigerian context (Mengistu 

and Salami, 2008; Ishaya and Ifatimehin, 2009). 

In this study, a combination of expert knowledge and 

Google Earth imagery was employed to generate 

training and reference data for the years 2000 and 

2020. Accuracy assessment was conducted using 

stratified random sampling and a set of reference 

points. The 2020 classification epoch, which was 

validated against high-resolution Google Earth 

imagery, achieved an overall accuracy of 89%, 

demonstrating the reliability of this approach in the 

absence of extensive field data. 
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3.3 Image Classification 

Supervised image classification technique was 

employed to categorize land cover types within the 

study area. This process involves training the 

classifier using reference data (ground truth points) 

that represent specific land cover classes (e.g., bare 

soil, vegetation, water). Maximum Likelihood 

algorithm was utilized based on data characteristics 

and its ability to classify pixel efficiently even at 

lower resolution. Change detection techniques were 

applied to Landsat imagery acquired for different 

time periods. This will enable the identification and 

quantification of land cover changes that have 

occurred over time. Commonly used methods include 

post-classification change detection and spectral 

change analysis. 

3.4 Time Series and Forecasting  

A cross-tabulation analysis was carried out to 

estimate the gains and losses across each land cover 

class and to assess the spatio-temporal trends of land 

cover change. The analysis began by comparing land 

cover maps from 2000 to 2020, providing an 

overview of the cumulative changes over the 20-year 

study period. To gain further insights into the 

progression of land use/land cover (LULC) 

transitions, change detection was also conducted 

between individual time intervals. 2000–2005, 2005–

2010, 2010–2015, and 2015–2020. Forecasting future 

LULC dynamics has been approached using various 

modeling techniques in the literature. One of the most 

widely adopted models is the Cellular Automata–

Markov Chain (CA-Markov) model, which is 

particularly effective due to its incorporation of 

spatial interactions, unlike other models that 

primarily emphasize temporal or seasonal patterns 

(Asif et al., 2023; Luan et al., 2024). The CA-Markov 

model has demonstrated strong predictive capabilities 

in numerous case studies. For instance, Hamad et al. 

(2018) illustrated its robustness under varying 

scenarios; Karimi et al. (2018) successfully applied it 

to monitor land dynamics in Ravansar County, Iran; 

and Rahnama (2021) used the model for LULC 

forecasting in Mashhad Metropolitan. Similarly, 

Khawaldah et al. (2020) integrated CA-Markov with 

GIS and remote sensing tools to simulate future land 

cover changes, while El Haj et al. (2023) confirmed 

its effectiveness in projecting long-term LULC 

trends. 

The CA-Markov modelling process begins with the 

normalization of land cover data, converting 

categorical data into proportional and probabilistic 

values. This step generates the transition probability 

matrix, which quantifies the likelihood of land cover 

types converting from one class to another. The 

Cellular Automata (CA) transition function is then 

applied to incorporate spatial dependencies, using the 

transition probabilities to simulate future land cover 

states over predefined time intervals. The 

mathematical relationships among the transition 

probability matrix, state vector, and future state 

prediction are expressed in Equations 1, 2, and 3, 

respectively. 

3.4.1 Markov Chain Components  

Transition Probability Matrix (P) 

𝑃 = [

𝑝11 ⋯ 𝑝1𝑛

⋮ ⋱ ⋮
𝑝𝑛1 ⋯ 𝑝𝑛𝑛

]               (1) 

Where 𝑝𝑖𝑗 Represent the probability of transitioning  

from state i (land use type I) to state j (land use type 

j) over a specified period. 

State Vector:              

𝑆𝑡 = [

𝑆1(𝑡)

𝑆2(𝑡)
⋮

𝑆𝑛(𝑡)

]                          (2) 

𝑆(𝑡−1) = 𝑃. 𝑆(𝑡)                     (3) 

Where 𝑆𝑖(𝑡) represent the proportion of land in the 

state i at time t, Future State Prediction  

 

4 Results and Data Analysis. 

4.1 Discussion and Analysis of LULC Change 

Data in Sokoto State, Nigeria  

The land use/land cover (LULC) analysis of Sokoto 

State from 2000 to 2020 reveals significant spatial 

and temporal changes in key land cover types, 

including vegetation, bare soil, built-up areas, and 

water bodies. These shifts serve as critical indicators 
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for assessing the extent and progression of 

desertification in the region. The results underscore 

patterns that merit detailed evaluation and discussion. 

Table 2 presents the classification accuracy achieved 

during the image classification process, while land 

cover changes over the 20-year period are expressed 

in both square kilometers and percentage of total land 

area. The study area encompasses a total landmass of 

approximately 26,493.83 km² (see Table 1). Over this 

period, vegetation cover experienced a sharp decline, 

reducing from 8,826.01 km² (33.4%) in 2000 to just 

3,245.45 km² (12.3%) in 2020. This represents a 

substantial reduction of approximately 63%, 

signalling an alarming trend consistent with severe 

desertification processes. This decline is likely driven 

by a combination of factors, including overgrazing, 

deforestation, and the impacts of climate variability. 

The loss of vegetative cover not only threatens 

biodiversity but also increases soil erosion and 

diminishes soil fertility, with significant implications 

for agricultural productivity in the region (Doso Jnr, 

2014; Telo-da-Gama, 2023). 

Conversely, while bare soil initially declined in 

earlier epochs, a marked increase was observed 

between 2015 and 2020, rising from 10,972.19 km² 

(41.6%) to 13,972.25 km² (52.8%). This upward trend 

in bare soil, particularly within the last decade, serves 

as a strong indicator of escalating land degradation. It 

suggests that previously vegetated areas are 

becoming increasingly barren, likely due to 

unsustainable land use practices and the advancing 

effects of desertification. 

 

Table 2.  Vector Data from Map of Sokoto State from The Year 2000 to 2020 

 2000 2005 2010 

Category UA CE UA CE UA CE 

Bare Land 0.89 0.11 0.88 0.12 0.85 0.15 

Builtup areas 0.93 0.07 0.88 0.12 0.93 0.07 

Vegetation 0.84 0.16 0.88 0.12 0.87 0.13 

Water bodies 0.83 0.17 0.84 0.006 0.88 0.12 

OA 86%  88%  85%  

 2015 2020   

 UA CE UA CE   

Bare Land 0.85 0.15 0.86 0.14   

Built up areas 0.83 0.17 0.9 0.1   

Vegetation 0.78 0.22 0.83 0.17   

Water bodies 0.79 0.21 0.82 0.18   

OA 76%  79%    

UA User accuracy     

CE Commission error    

OA Overall accuracy     

 

Built-up areas exhibited a consistent expansion across 

all epochs analyzed, increasing from 3,999.48 km² 

(15.1%) in 2000 to 8,563.67 km² (32.3%) in 2020. 

This steady growth reflects the ongoing trend of 

urbanization within Sokoto State. While urban 

expansion is often indicative of socio-economic 

development, it also poses several challenges, 

including the loss of arable land, increased pressure 

on food supply and natural resources, and the 

potential for environmental degradation (Marzuki 

and Jais, 2020). Figure 3 illustrates the land use/land 

cover (LULC) change maps for Sokoto State between 

2000 and 2005, highlighting the spatial distribution 

and transition of various land cover types during this 

period 

The expansion of built-up areas often results in the 

displacement of natural habitats and contributes to the 

urban heat island effect, which can alter local climatic 

conditions and further accelerate desertification 

processes (Han et al., 2023). In contrast, water bodies 

exhibited minor fluctuations over the study period, 

showing a net decline from 700.16 km² (2.6%) in 

2000 to 412.45 km² (1.6%) in 2020 (see Table 3). This 

reduction may be attributed to factors such as 

declining rainfall, increased evaporation rates driven 
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by rising temperatures, and the over-extraction of 

water resources for agricultural and urban demands. 

The decline in surface water not only compromises 

human water 

 
Figure 3. land used land cover Classification map of Sokoto state, Nigeria from the year 2000 

to the year 2005 

 +availability but also poses significant risks to 

aquatic ecosystems and local biodiversity. 

Collectively, these land cover changes marked by 

decreasing vegetated areas and increasing urban and 

bare soil extents reflect a profound environmental 

transformation likely driven by climate variability 

and human land use practices. Importantly, the 

accuracy assessment of the land cover classification 

results across the four epochs demonstrates a high 

level of reliability. The lowest overall accuracy was 

recorded in 2015 at 76%, while all other classification 

years exceeded 80% accuracy, underscoring the 

robustness and validity of the classification outputs. 

Figures 4 and 5 present the classified land use/land 

cover maps for the years 2010, 2015, and 2020, 

illustrating the spatial patterns and transitions across 

different land cover types 

 

Table 3. Vector Data for the LULC Change Maps for the year 2000 to 2020 

Land 

Cover 

2000 %  2005 % 2010 % 2015 % 2020 % 

Vegetation 8826.005 33.4   8216.021 31.1     7026.116 26.6 7351.28 27.9 3245.45 12.3 

Bare Soil 12668.19 47.9 11888.19 45.0    11668.19 44.2 10972.19 41.6 13972.253 52.8 

Built-Up 

Area 

3999.475 15.1 5349.523    20.2 6869.365 26.0 7369.365 27.9 8563.671 32.3 

Water  700.1631 2.6 740.1    2.8   630.1631 2.4 5000.992 1.9 412.453 1.6 

Total 26493.83 100 26493.83 100 26493.83 100 26493.83 100 26493.83 100 
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Figure 4. LULC change classification maps of Sokoto state, Nigeria from the year 2010 to the year 2015.

 

4.2 Land Cover Projection and Forecast For 

the year 2025 and 2030. 

The transition matrix, incorporating average growth 

rates and forecasted land cover values for the years 

2025 and 2030, offers valuable insights into projected 

changes across the study area. The model predicts a 

continued decline in vegetation cover, with an 

average growth rate of 0.818455, decreasing from 

2,656.26 km² in 2025 to 2,174.03 km² by 2030. This 

trend underscores the persistence of vegetation loss, 

likely due to ongoing anthropogenic pressures and 

climatic stress. In contrast, built-up areas are 

projected to experience substantial growth, reflecting 

a growth rate of 1.214129, increasing from 10,397.40 

km² in 2025 to 12,623.78 km² in 2030. This notable 

expansion is indicative of sustained urbanization 

trends in the region. Water bodies are expected to 

decline modestly, with a growth rate of 0.881697, 

shrinking from 363.66 km² in 2025 to 320.68 km² by 

2030, likely due to continued climatic variability and 

water resource exploitation. 

Similarly, bare soil is projected to increase slightly, 

with a growth rate of 1.033424, rising from 14,439.26 

km² in 2025 to 14,921.89 km² in 2030. These 

projections, presented in Table 4, highlight critical 

environmental trends, the expansion of urban areas at 

the expense of vegetation and water resources, 

accompanied by a gradual increase in bare soil. 

Figure 6. Depicts the graphical representation of the 

patches trend pattern to the year 2030. Together, these 

changes suggest a trajectory of increasing land 

degradation, habitat loss, and reduced ecological 

resilience in the study area  

 

Table 4.  Projection Transition Matrix 

 
 
Figure 6. LULC change trend Pattern from the year 
2000 to 2020 using CA-Markov 

4.3 The Integration of LULCC of the Study 

Area to Desertification Parameter. 

Categories Grow rate 2025 2030 

Vegetation 0.8184 2656.255 2174.026 

Built-up Area 1.2141 10397.399 12623.782 

Water Bodies 0.8816 363.658 320.683 

Bare Soil 1.0334 14439.264 14921.888 
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4.3.1 Relationship Between Vegetation and 

Rainfall 

Figure 7 presents a comparative chart illustrating total 

annual rainfall and the percentage of vegetation cover 

in Sokoto State from 2000 to 2020. During this 

period, a notable declining trend in rainfall is 

observed remaining at 700 mm in both 2000 and 

2005, then decreasing to 550 mm in 2010, showing a 

slight increase to 560 mm in 2015, before further 

dropping to 490 mm in 2020. In parallel, the 

percentage of vegetation cover also declined 

significantly, from 33.69% in 2000 to 12.39% in 

2020. This consistent reduction in vegetative cover 

appears to correlate with the decreasing trend in 

rainfall, suggesting a potential relationship between 

precipitation variability and vegetation dynamics. 

The observed pattern supports the hypothesis that 

declining rainfall may be a key factor contributing to 

the loss of vegetation cover, further exacerbating 

desertification processes within the region. 

 

 
Figure 7. Relationship between total rainfall and 
percentage vegetation from 2000 and 2020 

 

4.3.2 Relationship Between Vegetation and 

Population 

The chart presented in Figure 48 illustrates the 

relationship between population growth and the 

percentage of vegetation cover in Sokoto State from 

2000 to 2020. Over this two-decade period, the 

population increased steadily from approximately 

1,050,000 in 2000 to 2,167,834 in 2020. In contrast, 

the proportion of land covered by vegetation declined 

markedly, decreasing from 33.69% to 12.39% over 

the same timeframe. This inverse relationship 

suggests that population growth may be a significant 

driver of vegetation loss in the region. The increasing 

population likely exerts pressure on land through 

urban expansion, agricultural encroachment, and 

other human-induced land use changes, contributing 

to the degradation of natural vegetation. The observed 

trend underscores the environmental consequences of 

demographic growth, particularly its impact on 

natural resources, land cover, and ecosystem 

integrity. 

 

 
Figure 8. Relationship between percentage vegetation 
and population from the year 2000 to 2020 

 

4.3.3 Relationship Between Vegetation and 

Temperature 

Figure 9 presents a comparative analysis of 

temperature trends and the percentage of vegetation 

cover in Sokoto State between 2000 and 2020. 

Throughout this period, temperature exhibited 

notable fluctuations with an overall increasing trend 

rising from 33.8°C in 2000 to 36.9°C in 2005, slightly 

increasing to 37.0°C in 2010, dropping to 34.5°C in 

2015, and peaking at 38.0°C in 2020. Concurrently, 

the percentage of vegetation cover declined steadily, 

falling from 33.69% in 2000 to 12.39% in 2020. This 

inverse relationship observed in Figure 9 suggests 

that as temperatures have risen, vegetation cover has 

decreased significantly. The decline may be 

attributed to the adverse effects of heat stress, altered 

precipitation patterns, and other climate-related 

stressors that inhibit plant growth and survival. These 

findings emphasize the negative impact of rising 

temperatures on vegetative health and point to the 

broader ecological consequences of climate change 

on terrestrial ecosystems. 

 

 
Figure 9. Relationship between percentage vegetation 
and temperature from the year 2000 to 2020 
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4.4 Discussion  

4.4.1 Land Use Land Cover Analysis  

The land use/land cover (LULC) analysis for Sokoto 

State from 2000 to 2020 reveals critical 

environmental trends that warrant in-depth 

evaluation. One of the most significant findings is the 

continuous decline in vegetation cover over the two-

decade period. In 2000, vegetation covered 

approximately 8,826.01 hectares, but by 2020, this 

figure had declined by nearly 63%, reducing to just 

3,245.45 hectares. This dramatic loss of vegetative 

cover indicates a heightened vulnerability to 

desertification and environmental degradation in the 

region. A similar pattern is observed in the bare soil 

category, which initially showed a modest decline 

from 12,668.90 hectares in 2000 to 11,888.19 

hectares in 2005, and further to 11,668.19 hectares by 

2010. However, this trend reversed in subsequent 

years, with bare soil areas increasing substantially to 

13,972.25 hectares by 2020. This resurgence in 

exposed soil may be linked to vegetation loss, poor 

land management practices, and increased 

anthropogenic pressure. Ahmad et al. (2019), in a 

study on desertification in Sokoto State, similarly 

identified overgrazing, deforestation, and climate 

change as major contributors to vegetation 

degradation and the exposure of bare soil. 

In contrast, the built-up area exhibited a consistent 

upward trend over the study period. From 3,999.48 

hectares in 2000, it more than doubled to 8,563.67 

hectares in 2020, reflecting the region’s rapid 

urbanization and infrastructure development. While 

urban growth can signify economic progress, it also 

introduces a range of environmental challenges. As 

noted by Beckers et al. (2020), urban expansion often 

leads to the conversion of agricultural and natural 

land, increasing pressure on natural resources and 

contributing to environmental degradation. 

Moreover, the displacement of vegetative cover due 

to urban development can intensify the urban heat 

island effect, further exacerbating local climate 

conditions. 

The trend in water bodies also raises concerns. In 

2000, surface water bodies covered approximately 

700.16 hectares, but this area declined to 412.45 

hectares by the year 2020, a reduction of more than 

40%. This substantial loss suggests a decline in 

surface water availability, which may be attributed to 

factors such as reduced rainfall, increased 

evapotranspiration, and excessive withdrawal of 

water for agricultural and urban uses. The depletion 

of water resources not only threatens local 

ecosystems but also poses a serious challenge to 

human water security in a region already vulnerable 

to climate variability. 

Overall, these land cover dynamics declining 

vegetation and water bodies, rising bare soil, and 

expanding urban areas reflect the interplay between 

environmental stressors and human activities. They 

underscore the urgent need for sustainable land 

management strategies, reforestation efforts, and 

integrated environmental planning to mitigate further 

degradation and support ecological resilience in 

Sokoto State. 

5 Conclusion and Recommendation 

5.1 Conclusion  

The comprehensive assessment of land cover changes 

in Sokoto State, Nigeria, from 2000 to 2020, reveals 

substantial environmental transformations driven by 

both natural processes and anthropogenic activities. 

Over the two-decade period, there has been a 

pronounced decline in vegetated areas, reducing from 

approximately 8,826.01 km² (33.4%) in 2000 to 

3,245.45 km² (12.3%) in 2020. This trend highlights 

the profound impacts of urban expansion, agricultural 

encroachment, and potentially climate-induced 

stressors such as increased temperature and declining 

precipitation. Simultaneously, built-up areas have 

expanded significantly, more than doubling from 

3,999.48 km² (15.1%) to 8,563.67 km² (32.3%), 

reflecting the rapid pace of urbanization and 

infrastructure development in the region. The bare 

soil category experienced initial reductions, followed 

by a sharp increase, rising from 10,972.19 km² 

(41.6%) in 2015 to 13,972.25 km² (52.8%) in 2020. 

This reversal points to increasing land degradation, 

potentially due to deforestation, unsustainable land 

practices, and desert encroachment. Additionally, 

surface water bodies witnessed a gradual decline, 

shrinking from 700.16 km² (2.6%) in 2000 to 412.45 

km² (1.6%) in 2020, suggesting growing water 

scarcity concerns in the face of changing climatic and 

land use patterns. 

Future projections for 2025 and 2030 reinforce these 

findings, with vegetation expected to decline further 

to 2,174.03 km², while built-up areas are anticipated 

to reach 12,623.78 km² by 2030. These projections 

underscore a continued trajectory of urbanization 

occurring at the expense of natural ecosystems, 

emphasizing the urgent need for sustainable land 

management strategies. This study also examined the 

interrelationship between desertification and key 

climate and demographic variables, including 

rainfall, temperature, and population growth. The 
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decline in vegetation from 33.69% in 2000 to 12.39% 

in 2020 closely correlates with reduced rainfall and 

rising temperatures, illustrating the compounded 

effects of climate change on vegetative health and 

distribution. Additionally, population growth, which 

surged from 1,050,000 in 2000 to 2,167,834 in 2020, 

has intensified pressure on land resources, 

accelerating deforestation, land degradation, and 

habitat loss. 

Overall, the findings highlight the intensifying 

environmental challenges facing Sokoto State, driven 

by a combination of human-induced land use changes 

and climatic variability. Addressing these issues 

demands immediate policy interventions aimed at 

promoting sustainable land use, implementing 

reforestation and afforestation programs, and 

strengthening environmental governance. The 

integration of remote sensing and GIS technologies 

has proven invaluable in monitoring and analysing 

land cover dynamics, providing a robust scientific 

basis for designing effective strategies to mitigate 

environmental degradation and ensure the long-term 

sustainability and resilience of the region's 

ecosystems. 

6 Recommendation  

i. The restoration of vegetation through reforestation 

and afforestation is a vital strategy for combating 

desertification. These interventions contribute 

significantly to reducing soil erosion, enhancing 

soil fertility, and supporting biodiversity 

conservation. By stabilizing the soil surface, 

increasing organic matter, and improving the land's 

capacity to retain water and nutrients, reforestation 

efforts foster a more resilient and ecologically 

stable environment. 

ii. The adoption of sustainable land management 

practices, including crop rotation, agroforestry, and 

conservation tillage, plays a key role in maintaining 

soil health and agricultural productivity. These 

practices help alleviate pressure on land resources, 

enhance soil structure, and increase the land’s 

resilience to degradation. Promoting SLM ensures 

the long-term viability of productive landscapes, 

reducing susceptibility to desertification while 

supporting livelihoods. 

iii. Effective water resource management is critical in 

arid and semi-arid environments. Techniques such 

as rainwater harvesting, efficient irrigation systems, 

and the protection of natural water bodies are 

essential for sustaining both agricultural activities 

and ecological functions. By minimizing water loss 

and optimizing usage, water conservation practices 

help mitigate land stress, reduce degradation risks, 

and contribute to climate adaptation and 

desertification control. 

iv. Enhancing public understanding of desertification 

and its environmental implications through 

awareness campaigns and educational initiatives is 

essential for fostering responsible land stewardship. 

Community-based education programs can 

empower local populations to adopt sustainable 

practices, actively protect their natural 

environment, and contribute to desertification 

mitigation efforts. Building a culture of 

environmental responsibility at the grassroots level 

is crucial for achieving long-term ecological 

sustainability. 
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