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Abstract: Report by the International Food Policy Research Institute highlights that Nigeria

Received: 27-05-2025 loses approximately 0.35% of its total land area estimated at 923,768 km? to desertification
Revised: 06-07-2025 annually. As of the year 2020, about 35% of the country's landmass is under threat, putting
Accepted: 13-07-2025 the livelihoods of over 40 million land dependent individuals at risk. This study employs
published: 16-07-2025 Remote Sensing and Geographic Information System (GIS) techniques to monitor the rate of

desertification in Sokoto State, Nigeria. Multi-temporal satellite imagery, including Landsat
TM (2000), Landsat 4 (2005), Landsat 7 (2010), and Landsat 8 OLI (2015, 2018), was
obtained from the United States Geological Survey (USGS). Geometric and atmospheric
corrections were applied to enhance image accuracy. Supervised classification using the
Maximum Likelihood algorithm was adopted, and desertification indicators precipitation,
temperature, and population were integrated with land use/land cover (LULC) outputs for
comprehensive analysis. Findings reveal a substantial decline in vegetated areas from 33.4%
in the year 2000 to 12.3% in the year 2020, largely driven by urbanization, agricultural
encroachment, and possible climate factors. Built-up areas significantly increased from 15.1%
to 32.3% over the same period, indicating rapid urban development. Bare soil coverage
exhibited fluctuations, with a notable rise from 41.6% in the year 2015 to 52.8% in 2020.
Water bodies declined from 2.6% in 2000 to 1.6% in 2020, raising concerns over water
availability. Projections using Markov cellular automata algorithm for the year 2025 and
2030 indicated continued degradation, with vegetated areas recording a decrease trend
pattern by 8.2% to 10% and built-up areas to record an increasing trend of 40% to 53% by
2030. These trends underscore the urgent need for strategic interventions and policies aimed
at mitigating desertification and restoring degraded lands to sustainable productivity.
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1 Introduction understood as the progressive degradation of land in

] . . . drylands due to unsustainable human activities and
Desertification remains one of the most pressing environmental pressures (Bayati, 2017). This
environmental challenges confronting dryland

complex and multidimensional phenomenon involves
regions globally, with profound implications for

the deterioration of soil quality, loss of vegetative
cover, and a decline in the overall productivity of
ecosystems that were once biologically diverse and

agriculturally viable (Higginbottom and Symeonakis,
humid areas, primarily driven by climatic variations 2014).

and anthropogenic activities (Ibrahim et al., 2022). to
the misconception that it entails the physical
expansion of deserts, desertification is better

ecological sustainability, agricultural productivity,
and human livelihoods. It is broadly defined as the
land degradation in arid, semi-arid, and dry sub-

Several interlinked natural and human-induced
factors contribute to desertification. According to
Carvalho (2024), understanding these causative
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elements is crucial to designing effective mitigation
strategies. Jibrillah et al. (2019) identify climate
change, overgrazing, deforestation, unsustainable
agricultural practices, urban expansion, and mining as
primary drivers. Changes in temperature and
precipitation patterns often result in prolonged
droughts and increased evaporation, accelerating the
degradation of already fragile ecosystems (Trenberth,
2011). Unregulated livestock grazing, for instance,
leads to the excessive removal of vegetation cover,
reducing soil fertility and enhancing erosion risks
(Milazzo et al., 2023; Abdelsalam, 2021).
Deforestation for fuelwood and agricultural land not
only exposes soil surfaces but also disrupts
biodiversity and microclimatic conditions (Olijrra,
2019; World Bank, 2019). Moreover, poor land
management practices such as monocropping,
overuse of agrochemicals, and inefficient irrigation
further exacerbate soil exhaustion and salinization
(Elouattassi et al.,, 2023; Khan et al.,, 2024).
Urbanization and resource extraction also result in the
loss of vegetation and increased susceptibility to wind
and water erosion (Abdul-Rahaman et al., 2016). The
consequences of desertification are far-reaching and
multifaceted. It leads to significant biodiversity loss,
reduction in arable land, depletion of freshwater
resources, and destabilization of socio-economic
systems (Li et al., 2024; Fekadu, 2023). Fertile lands
transform into barren wastelands, forest ecosystems
disappear, and grasslands contract, thereby
undermining ecological functions and habitat
integrity (Anjum et al., 2010). As vegetation cover
diminishes, the topsoil becomes more vulnerable to
erosion, diminishing agricultural outputs and
endangering food security (McLaughlin and
Kinzelbach, 2015). Additionally, reduced vegetation
cover impairs groundwater recharge by limiting
rainfall infiltration, which exacerbates water scarcity
and intensifies competition for dwindling resources
(Jasechko et al., 2024). Mitigating desertification
necessitates a multi-pronged approach, including
land
conservation agriculture, and policy frameworks that

sustainable management,  afforestation,
promote responsible land use (Islam et al., 2025;
AbdelRahman, 2023). Central to these strategies is
the ability to monitor and detect desertification trends
effectively.

In this regard, remote sensing and Geographic

Information Systems (GIS) offer powerful tools for
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large-scale, cost-effective monitoring. Remote
sensing enables the detection of land cover changes,
vegetation health, and surface water availability,
while GIS facilitates spatial analysis and decision-
making (Dubovyk, 2017; Mashala et al., 2023). Field-
based assessments provide direct observations but are
typically labor-intensive and geographically limited.
Emerging technologies such as unmanned aerial
vehicles (UAVs) and sensor networks now offer high-
resolution data and real-time environmental
monitoring capabilities (Andresen and Schultz-
Fellenz, 2023). A growing body of research has
demonstrated the effectiveness of geospatial
technologies in  assessing and combating
desertification. For instance, Bayati (2017) and Al-
Timimi (2021) applied remote sensing and GIS to
detect vegetation loss and expanding sand dunes in
Iraq. Similarly, Wang (2008) and Kundu (2015)
utilized these tools to investigate the influence of
climate and anthropogenic factors on desertification
in China and India, respectively. These studies
underscore the critical role of geospatial techniques in
generating accurate, timely data to guide intervention
strategies. In the context of Nigeria, particularly
Sokoto State, desertification presents an urgent
threat.
Characterized by an arid to semi-arid climate and
extensive land degradation, Sokoto is increasingly
vulnerable to the adverse impacts of desert
encroachment. These include declining agricultural
productivity, scarcity, and ecological
imbalance all of which compromise food security and

environmental and socio-economic

water

livelihoods. Therefore, a geospatial assessment of
desertification in Sokoto is not only timely but
essential for informing sustainable land use planning
and resilience-building strategies.

2 Study Area

Sokoto is a northwestern state in Nigeria, renowned

for its distinctive cultural heritage, historical

significance, and unique geographical features.
Situated within the Sahelian ecological zone, Sokoto
State experiences a semi-arid climate characterized
by high temperatures, limited and erratic rainfall, and
an extended dry season (Atedhor, 2015). These
environmental conditions render the region
particularly vulnerable to desertification and land
degradation. Geographically, Sokoto State is located
at approximately latitude 13°05’ N and longitude
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5°15" E (Mahmuda et al., 2014), encompassing an
estimated land area of 32,000 km?2 It shares
boundaries with Kebbi State to the southwest,
Zamfara State to the southeast, and the Republic of
Niger to the north. The climate is defined by two
major seasons: a rainy season occurring between May
and September, and a dry season extending from
October to May (Anon, 2001). Relative humidity
levels are typically 20% or lower, while average
temperatures range between 22°C and 43°C (Iloeje,
1971). Figure depict the map of the study area.
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Figure 1.: Map of Sokoto state

3  Methodology

The methodology adopted for this study involves the
integration of Remote Sensing (RS) and Geographic
Information System (GIS) techniques to investigate
the extent and progression of desertification in Sokoto
State, Nigeria. The region’s semi-arid climate
characterized by high temperatures, irregular rainfall
patterns, and extended dry seasons makes it
particularly prone to desertification processes (Ikpe
and Ajiya, 2021; Atedhor, 2015). The step-by-step
workflow of the methodological approach is
illustrated in Figure 2. Additionally, the sources of the
datasets utilized for this research are summarized in
Table 1.

3.1 Data Acquisition

Landsat satellite imagery acquired for the years 2000
(Landsat TM), 2005 (Landsat 4), 2010 (Landsat 7
ETM+), and 2015 and 2018 (Landsat 8 OLI) were
sourced from the United States Geological Survey
(USGS) database. The scenes covered multiple
Landsat paths and rows, specifically Path 191/Row
050, Path 191/Row 051, Path 191/Row 052, and Path
190/Row 051.
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Figure 2. Conceptual Design
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All images were orthorectified and provided in
GeoTIFF format, referenced to the WGS 84/UTM
Zone 32N coordinate system (Minna Datum). The
pre-processing stage involved mosaicking the
satellite scenes and clipping them using the Sokoto
State administrative boundary shapefile as a
reference. The selected spectral bands for each

Landsat sensor were optimized to detect changes in
land cover, vegetation condition, and surface soil
moisture across the study period. This approach
enabled a consistent temporal analysis of
desertification trends. A summary of the datasets,
including sensor type, acquisition dates, spatial
resolution, and sources, is presented in Table 1.

Table 1. Data Characteristics and Sources

S/N Data name Data Type Epochs Resolution Data Sources
1 Landsat Satellite Imagery Raster data 2000, 2005, 30m USGS Earth Explorer

2010, 2015
&2020

2 Climate parameters Vector Data 2000-2020 Nigeria Meteorological

Agency (NIMET)
3 Administration Map Vector data 20years 1:300,000 OSGF
4 Demographic Vector 20years NPC&INEC

The details of the satellite datasets used in this study
are presented in Table 1. For land use/land cover
(LULC) classification, bands 2, 4, 5, and 6 were
utilized for Landsat 8 OLI, while bands 1, 3, 4, and 5
were applied for Landsat 4-5 ETM imagery. In
addition to the satellite data, supplementary
geospatial datasets were integrated to examine other
contributing factors to desertification in Sokoto State.
These included rainfall, temperature, and population
data. The climatic parameters were sourced from the
Nigerian Meteorological Agency (NiMet), while
demographic data were obtained from both the
National Population Commission (NPC) and the
Independent National Electoral Commission (INEC).
To prepare the satellite image data for postprocessing,
geometric correction was carried out to mitigate
terrain-induced distortions and restore the true spatial
representation of surface features. This step addressed
the effects of terrain displacement, Earth curvature,
and sensor rotation, thereby ensuring accurate
geometric  alignment (Green et al, 2014).
Radiometric correction was also performed by
converting digital number (DN) values into radiance.
To reduce atmospheric noise and enhance spectral
quality, top-of-atmosphere (TOA) correction was
applied across all Landsat bands. This process
transformed DN values into surface reflectance, as
recommended by Baba et al. (2025) and validated by
earlier studies (Kobayashi and Sanga-Ngoie, 2008;
Paolini et al., 2006).

Land use/land cover change maps for the study area
were generated through supervised classification,
employing the maximum likelihood algorithm, which
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is widely recommended for Sub-Saharan African
landscapes due to its robustness. The classification
was executed using QGIS 3.4 and categorized the
landscape into five major classes: wetland, farmland,
built-up areas, bare land, and vegetation.

3.2 Land Cover Mapping and Accuracy

Assessment

Due to prevailing security challenges in the study
area, field data collection is both logistically difficult,
costly, and potentially hazardous. To overcome these
constraints, recent studies have increasingly relied on
auxiliary sources such as high-resolution Google
Earth imagery for training and validation purposes,
with documented success (Hu et al., 2013; Burke et
al., 2021). These secondary data sources have proven
invaluable in supporting the development and
validation of remote sensing-based land cover maps,
particularly within the Nigerian context (Mengistu
and Salami, 2008; Ishaya and Ifatimehin, 2009).

In this study, a combination of expert knowledge and
Google Earth imagery was employed to generate
training and reference data for the years 2000 and
2020. Accuracy assessment was conducted using
stratified random sampling and a set of reference
points. The 2020 classification epoch, which was
validated against high-resolution Google Earth
imagery, achieved an overall accuracy of 89%,
demonstrating the reliability of this approach in the
absence of extensive field data.
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3.3 Image Classification

Supervised
employed to categorize land cover types within the

image classification technique was

study area. This process involves training the
classifier using reference data (ground truth points)
that represent specific land cover classes (e.g., bare
soil, vegetation, water). Maximum Likelihood
algorithm was utilized based on data characteristics
and its ability to classify pixel efficiently even at
lower resolution. Change detection techniques were
applied to Landsat imagery acquired for different
time periods. This will enable the identification and
quantification of land cover changes that have
occurred over time. Commonly used methods include
post-classification change detection and spectral
change analysis.

3.4 Time Series and Forecasting

A cross-tabulation analysis was carried out to
estimate the gains and losses across each land cover
class and to assess the spatio-temporal trends of land
cover change. The analysis began by comparing land
cover maps from 2000 to 2020, providing an
overview of the cumulative changes over the 20-year
study period. To gain further insights into the
progression of land wuse/land cover (LULC)
transitions, change detection was also conducted
between individual time intervals. 2000-2005, 2005—
2010,2010-2015, and 2015-2020. Forecasting future
LULC dynamics has been approached using various
modeling techniques in the literature. One of the most
widely adopted models is the Cellular Automata—
Markov Chain (CA-Markov) model, which is
particularly effective due to its incorporation of
spatial interactions, unlike other models that
primarily emphasize temporal or seasonal patterns
(Asifetal., 2023; Luan et al., 2024). The CA-Markov
model has demonstrated strong predictive capabilities
in numerous case studies. For instance, Hamad et al.
(2018) illustrated its robustness under varying
scenarios; Karimi et al. (2018) successfully applied it
to monitor land dynamics in Ravansar County, Iran;
and Rahnama (2021) used the model for LULC
forecasting in Mashhad Metropolitan. Similarly,
Khawaldah et al. (2020) integrated CA-Markov with
GIS and remote sensing tools to simulate future land
cover changes, while El Haj et al. (2023) confirmed
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its effectiveness in projecting long-term LULC
trends.

The CA-Markov modelling process begins with the
normalization of land cover data, converting
categorical data into proportional and probabilistic
values. This step generates the transition probability
matrix, which quantifies the likelihood of land cover
types converting from one class to another. The
Cellular Automata (CA) transition function is then
applied to incorporate spatial dependencies, using the
transition probabilities to simulate future land cover
states predefined time intervals. The
mathematical relationships among the transition

over

probability matrix, state vector, and future state
prediction are expressed in Equations 1, 2, and 3,
respectively.

3.4.1 Markov Chain Components
Transition Probability Matrix (P)

P11 Pin
p=1]: :
pTlTl

Pn1
Where p;; Represent the probability of transitioning

(M

from state 1 (Iand use type I) to state j (land use type
j) over a specified period.

State Vector:

S10)

Se = [720] @
Sn(t)

St-1) = P. S A3)

Where Sj(¢) represent the proportion of land in the
state 1 at time t, Future State Prediction

4 Results and Data Analysis.

4.1 Discussion and Analysis of LULC Change

Data in Sokoto State, Nigeria

The land use/land cover (LULC) analysis of Sokoto
State from 2000 to 2020 reveals significant spatial
and temporal changes in key land cover types,
including vegetation, bare soil, built-up areas, and
water bodies. These shifts serve as critical indicators
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for assessing the extent and progression of
desertification in the region. The results underscore
patterns that merit detailed evaluation and discussion.
Table 2 presents the classification accuracy achieved
during the image classification process, while land
cover changes over the 20-year period are expressed
in both square kilometers and percentage of total land
area. The study area encompasses a total landmass of
approximately 26,493.83 km? (see Table 1). Over this
period, vegetation cover experienced a sharp decline,
reducing from 8,826.01 km? (33.4%) in 2000 to just
3,245.45 km? (12.3%) in 2020. This represents a
substantial reduction of approximately 63%,
signalling an alarming trend consistent with severe
desertification processes. This decline is likely driven
by a combination of factors, including overgrazing,

deforestation, and the impacts of climate variability.
The loss of vegetative cover not only threatens
biodiversity but also increases soil erosion and
diminishes soil fertility, with significant implications
for agricultural productivity in the region (Doso Jnr,
2014; Telo-da-Gama, 2023).

Conversely, while bare soil initially declined in
earlier epochs, a marked increase was observed
between 2015 and 2020, rising from 10,972.19 km?
(41.6%) to 13,972.25 km? (52.8%). This upward trend
in bare soil, particularly within the last decade, serves
as a strong indicator of escalating land degradation. It
suggests that previously vegetated areas are
becoming increasingly barren, likely due to
unsustainable land use practices and the advancing
effects of desertification.

Table 2. Vector Data from Map of Sokoto State from The Year 2000 to 2020

2000 2005 2010
Category UA CE UA CE UA CE
Bare Land 0.89 0.11 0.88 0.12 0.85 0.15
Builtup areas 0.93 0.07 0.88 0.12 0.93 0.07
Vegetation 0.84 0.16 0.88 0.12 0.87 0.13
Water bodies 0.83 0.17 0.84 0.006 0.88 0.12
OA 86% 88% 85%

2015 2020

UA CE UA CE

Bare Land 0.85 0.15 0.86 0.14
Built up areas 0.83 0.17 0.9 0.1
Vegetation 0.78 0.22 0.83 0.17
Water bodies 0.79 0.21 0.82 0.18
OA 76% 79%
UA User accuracy
CE Commission error
OA Overall accuracy

Built-up areas exhibited a consistent expansion across
all epochs analyzed, increasing from 3,999.48 km?
(15.1%) in 2000 to 8,563.67 km? (32.3%) in 2020.
This steady growth reflects the ongoing trend of
urbanization within Sokoto State. While urban
expansion is often indicative of socio-economic
development, it also poses several challenges,
including the loss of arable land, increased pressure
on food supply and natural resources, and the
potential for environmental degradation (Marzuki
and Jais, 2020). Figure 3 illustrates the land use/land
cover (LULC) change maps for Sokoto State between
2000 and 2005, highlighting the spatial distribution
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and transition of various land cover types during this
period

The expansion of built-up areas often results in the
displacement of natural habitats and contributes to the
urban heat island effect, which can alter local climatic
conditions and further accelerate desertification
processes (Han et al., 2023). In contrast, water bodies
exhibited minor fluctuations over the study period,
showing a net decline from 700.16 km? (2.6%) in
2000 to 412.45 km? (1.6%) in 2020 (see Table 3). This
reduction may be attributed to factors such as
declining rainfall, increased evaporation rates driven
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by rising temperatures, and the over-extraction of
water resources for agricultural and urban demands.
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Figure 3. land used land cover Classification map of Sokoto state, Nigeria from the year 2000

to the year 2005

+availability but also poses significant risks to
aquatic  ecosystems and local biodiversity.
Collectively, these land cover changes marked by
decreasing vegetated areas and increasing urban and
bare soil extents reflect a profound environmental
transformation likely driven by climate variability
and human land use practices. Importantly, the
accuracy assessment of the land cover classification
results across the four epochs demonstrates a high

level of reliability. The lowest overall accuracy was
recorded in 2015 at 76%, while all other classification
years exceeded 80% accuracy, underscoring the
robustness and validity of the classification outputs.
Figures 4 and 5 present the classified land use/land
cover maps for the years 2010, 2015, and 2020,
illustrating the spatial patterns and transitions across
different land cover types

Table 3. Vector Data for the LULC Change Maps for the year 2000 to 2020

Land 2000 % 2005 % 2010 % 2015 % 2020 %
Cover

Vegetation 8826.005 33.4 8216.021 31.1 7026.116 26.6 7351.28 279 324545 12.3
Bare Soil 12668.19 47.9 11888.19 450 11668.19 442 10972.19 41.6 13972.253 52.8
Built-Up 3999.475 15.1 5349.523 20.2 6869.365 26.0 7369365 279 8563.671 32.3
Area

Water 700.1631 2.6  740.1 2.8 630.1631 24 5000992 19 412453 1.6
Total 26493.83 100 26493.83 100 26493.83 100 26493.83 100 26493.83 100
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Figure 4. LULC change classification maps of Sokoto state, Nigeria from the year 2010 to the year 2015.

4.2 Land Cover Projection and Forecast For

the year 2025 and 2030.

The transition matrix, incorporating average growth
rates and forecasted land cover values for the years
2025 and 2030, offers valuable insights into projected

Categories Grow rate 2025 2030
Vegetation 0.8184 2656.255 2174.026
Built-up Area  1.2141 10397.399 12623.782
Water Bodies  0.8816 363.658 320.683
Bare Soil 1.0334 14439.264 14921.888

changes across the study area. The model predicts a
continued decline in vegetation cover, with an
average growth rate of 0.818455, decreasing from
2,656.26 km? in 2025 to 2,174.03 km? by 2030. This
trend underscores the persistence of vegetation loss,
likely due to ongoing anthropogenic pressures and
climatic stress. In contrast, built-up areas are
projected to experience substantial growth, reflecting
a growth rate of 1.214129, increasing from 10,397.40
km? in 2025 to 12,623.78 km? in 2030. This notable
expansion is indicative of sustained urbanization
trends in the region. Water bodies are expected to
decline modestly, with a growth rate of 0.881697,
shrinking from 363.66 km? in 2025 to 320.68 km? by
2030, likely due to continued climatic variability and
water resource exploitation.
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Similarly, bare soil is projected to increase slightly,
with a growth rate of 1.033424, rising from 14,439.26
km? in 2025 to 14,921.89 km? in 2030. These
projections, presented in Table 4, highlight critical
environmental trends, the expansion of urban areas at
the expense of vegetation and water resources,
accompanied by a gradual increase in bare soil.
Figure 6. Depicts the graphical representation of the
patches trend pattern to the year 2030. Together, these
changes suggest a trajectory of increasing land
degradation, habitat loss, and reduced ecological
resilience in the study area

Table 4. Projection Transition Matrix

g B ore Land == Builtup areas
—d— Vegetation Water bodies
S0000
40000 a
0000

20000
10000

200020052010 2015 20202025 2030

Figure 6. LULC change trend Pattern from the year
2000 to 2020 using CA-Markov

4.3  The Integration of LULCC of the Study

Area to Desertification Parameter.



Baba et al., 2025

BJET, 2025, Vol. 20 (1), 64-76

4.3.1 Relationship Between Vegetation and
Rainfall

Figure 7 presents a comparative chart illustrating total
annual rainfall and the percentage of vegetation cover
in Sokoto State from 2000 to 2020. During this
period, a notable declining trend in rainfall is
observed remaining at 700 mm in both 2000 and
2005, then decreasing to 550 mm in 2010, showing a
slight increase to 560 mm in 2015, before further
dropping to 490 mm in 2020. In parallel, the
percentage of vegetation cover also declined
significantly, from 33.69% in 2000 to 12.39% in
2020. This consistent reduction in vegetative cover
appears to correlate with the decreasing trend in
rainfall, suggesting a potential relationship between
precipitation variability and vegetation dynamics.
The observed pattern supports the hypothesis that
declining rainfall may be a key factor contributing to
the loss of vegetation cover, further exacerbating
desertification processes within the region.

Total Rainfall and Percentage Vegetation Over Time
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Figure 7. Relationship between total rainfall and
percentage vegetation from 2000 and 2020

4.3.2 Relationship Between Vegetation and
Population

The chart presented in Figure 48 illustrates the
relationship between population growth and the
percentage of vegetation cover in Sokoto State from
2000 to 2020. Over this two-decade period, the
population increased steadily from approximately
1,050,000 in 2000 to 2,167,834 in 2020. In contrast,
the proportion of land covered by vegetation declined
markedly, decreasing from 33.69% to 12.39% over
the same timeframe. This inverse relationship
suggests that population growth may be a significant
driver of vegetation loss in the region. The increasing
population likely exerts pressure on land through
urban expansion, agricultural encroachment, and
other human-induced land use changes, contributing
to the degradation of natural vegetation. The observed
trend underscores the environmental consequences of
demographic growth, particularly its impact on
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natural resources, land cover, and ecosystem
integrity.
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Figure 8. Relationship between percentage vegetation
and population from the year 2000 to 2020

4.3.3 Relationship Between
Temperature

Vegetation and

Figure 9 presents a comparative analysis of
temperature trends and the percentage of vegetation
cover in Sokoto State between 2000 and 2020.
Throughout this period, temperature exhibited
notable fluctuations with an overall increasing trend
rising from 33.8°C in 2000 to 36.9°C in 2005, slightly
increasing to 37.0°C in 2010, dropping to 34.5°C in
2015, and peaking at 38.0°C in 2020. Concurrently,
the percentage of vegetation cover declined steadily,
falling from 33.69% in 2000 to 12.39% in 2020. This
inverse relationship observed in Figure 9 suggests
that as temperatures have risen, vegetation cover has
decreased significantly. The decline may be
attributed to the adverse effects of heat stress, altered
precipitation patterns, and other climate-related
stressors that inhibit plant growth and survival. These
findings emphasize the negative impact of rising
temperatures on vegetative health and point to the
broader ecological consequences of climate change
on terrestrial ecosystems.

Percentage Vegetation and Temperature Over Time
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Figure 9. Relationship between percentage vegetation
and temperature from the year 2000 to 2020
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4.4 Discussion

4.4.1 Land Use Land Cover Analysis

The land use/land cover (LULC) analysis for Sokoto
State from 2000 to 2020 reveals critical
environmental trends that warrant in-depth
evaluation. One of the most significant findings is the
continuous decline in vegetation cover over the two-
decade period. In 2000, vegetation covered
approximately 8,826.01 hectares, but by 2020, this
figure had declined by nearly 63%, reducing to just
3,245.45 hectares. This dramatic loss of vegetative
cover indicates a heightened vulnerability to
desertification and environmental degradation in the
region. A similar pattern is observed in the bare soil
category, which initially showed a modest decline
from 12,668.90 hectares in 2000 to 11,888.19
hectares in 2005, and further to 11,668.19 hectares by
2010. However, this trend reversed in subsequent
years, with bare soil areas increasing substantially to
13,972.25 hectares by 2020. This resurgence in
exposed soil may be linked to vegetation loss, poor
land management practices, and increased
anthropogenic pressure. Ahmad et al. (2019), in a
study on desertification in Sokoto State, similarly
identified overgrazing, deforestation, and climate
change as major contributors to vegetation
degradation and the exposure of bare soil.

In contrast, the built-up area exhibited a consistent
upward trend over the study period. From 3,999.48
hectares in 2000, it more than doubled to 8,563.67
hectares in 2020, reflecting the region’s rapid
urbanization and infrastructure development. While
urban growth can signify economic progress, it also
introduces a range of environmental challenges. As
noted by Beckers et al. (2020), urban expansion often
leads to the conversion of agricultural and natural
land, increasing pressure on natural resources and
contributing  to  environmental  degradation.
Moreover, the displacement of vegetative cover due
to urban development can intensify the urban heat
island effect, further exacerbating local climate
conditions.

The trend in water bodies also raises concerns. In
2000, surface water bodies covered approximately
700.16 hectares, but this area declined to 412.45
hectares by the year 2020, a reduction of more than
40%. This substantial loss suggests a decline in
surface water availability, which may be attributed to
factors such as reduced rainfall, increased
evapotranspiration, and excessive withdrawal of
water for agricultural and urban uses. The depletion
of water resources not only threatens local
ecosystems but also poses a serious challenge to
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human water security in a region already vulnerable
to climate variability.

Overall, these land cover dynamics declining
vegetation and water bodies, rising bare soil, and
expanding urban areas reflect the interplay between
environmental stressors and human activities. They
underscore the urgent need for sustainable land
management strategies, reforestation efforts, and
integrated environmental planning to mitigate further
degradation and support ecological resilience in
Sokoto State.

5 Conclusion and Recommendation

5.1 Conclusion

The comprehensive assessment of land cover changes
in Sokoto State, Nigeria, from 2000 to 2020, reveals
substantial environmental transformations driven by
both natural processes and anthropogenic activities.
Over the two-decade period, there has been a
pronounced decline in vegetated areas, reducing from
approximately 8,826.01 km? (33.4%) in 2000 to
3,245.45 km? (12.3%) in 2020. This trend highlights
the profound impacts of urban expansion, agricultural
encroachment, and potentially climate-induced
stressors such as increased temperature and declining
precipitation. Simultaneously, built-up areas have
expanded significantly, more than doubling from
3,999.48 km? (15.1%) to 8,563.67 km? (32.3%),
reflecting the rapid pace of urbanization and
infrastructure development in the region. The bare
soil category experienced initial reductions, followed
by a sharp increase, rising from 10,972.19 km?
(41.6%) in 2015 to 13,972.25 km? (52.8%) in 2020.
This reversal points to increasing land degradation,
potentially due to deforestation, unsustainable land
practices, and desert encroachment. Additionally,
surface water bodies witnessed a gradual decline,
shrinking from 700.16 km? (2.6%) in 2000 to 412.45
km? (1.6%) in 2020, suggesting growing water
scarcity concerns in the face of changing climatic and
land use patterns.

Future projections for 2025 and 2030 reinforce these
findings, with vegetation expected to decline further
to 2,174.03 km?, while built-up areas are anticipated
to reach 12,623.78 km? by 2030. These projections
underscore a continued trajectory of urbanization
occurring at the expense of natural ecosystems,
emphasizing the urgent need for sustainable land
management strategies. This study also examined the
interrelationship between desertification and key
climate and demographic variables, including
rainfall, temperature, and population growth. The
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decline in vegetation from 33.69% in 2000 to 12.39%
in 2020 closely correlates with reduced rainfall and
rising temperatures, illustrating the compounded
effects of climate change on vegetative health and
distribution. Additionally, population growth, which
surged from 1,050,000 in 2000 to 2,167,834 in 2020,
has intensified pressure on land resources,
accelerating deforestation, land degradation, and
habitat loss.

Overall, the findings highlight the intensifying
environmental challenges facing Sokoto State, driven
by a combination of human-induced land use changes
and climatic variability. Addressing these issues
demands immediate policy interventions aimed at

promoting sustainable land wuse, implementing
reforestation and afforestation programs, and
strengthening  environmental governance. The

integration of remote sensing and GIS technologies
has proven invaluable in monitoring and analysing
land cover dynamics, providing a robust scientific
basis for designing effective strategies to mitigate
environmental degradation and ensure the long-term
sustainability and resilience of the region's
ecosystems.

6 Recommendation

The restoration of vegetation through reforestation
and afforestation is a vital strategy for combating
desertification. These interventions contribute
significantly to reducing soil erosion, enhancing
soil  fertility, and supporting biodiversity
conservation. By stabilizing the soil surface,
increasing organic matter, and improving the land's
capacity to retain water and nutrients, reforestation
efforts foster a more resilient and ecologically
stable environment.

The adoption of sustainable land management
practices, including crop rotation, agroforestry, and
conservation tillage, plays a key role in maintaining
soil health and agricultural productivity. These
practices help alleviate pressure on land resources,
enhance soil structure, and increase the land’s
resilience to degradation. Promoting SLM ensures
the long-term viability of productive landscapes,
reducing susceptibility to desertification while
supporting livelihoods.

Effective water resource management is critical in
arid and semi-arid environments. Techniques such
as rainwater harvesting, efficient irrigation systems,
and the protection of natural water bodies are
essential for sustaining both agricultural activities
and ecological functions. By minimizing water loss
and optimizing usage, water conservation practices

help mitigate land stress, reduce degradation risks,
and contribute to climate adaptation and
desertification control.

iv. Enhancing public understanding of desertification
and its environmental implications through
awareness campaigns and educational initiatives is
essential for fostering responsible land stewardship.
Community-based education programs can
empower local populations to adopt sustainable

practices,  actively  protect  their = natural
environment, and contribute to desertification
mitigation efforts. Building a culture of

environmental responsibility at the grassroots level
is crucial for achieving long-term ecological
sustainability.
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