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ABSTRACT 
 
Sybil attacks gravely impair the integrity and dependability of fog computing environments, especially 
when operating in IoT networks. These attacks consist of malicious entities creating multiple identities 
to disrupt authentic operations of a network. Traditional detection mechanisms have been known to 
report very high false-positive rates along with latency issues. This paper is an introduction to an 
advanced feature engineering strategy focused on Sybil attack detection in fog computing 
environments. The proposed strategy, when experimenting with a balanced and engineered dataset, 
achieved an accuracy of 86%, which is an improvement over the result gotten from the original dataset. 
The proposed approach uses the Synthetic Minority Over-sampling Technique (SMOTE) to address 
class imbalance problems in sybil attack simulation datasets. The results illustrate the promise of 
advanced feature engineering on datasets to further protect fog computing infrastructure from Sybil 
attacks especially when integrated with Federated Learning. 
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1. INTRODUCTION 

 
Fog Computing is a new model of computing that geographically extends the  Cloud Computing  
services  to  the  edge  of  the  network and distributes computing architecture with a resource pool 
consisting of one or more ubiquitously connected heterogeneous devices at the edge of network and 
not entirely seamlessly backed by cloud services, to provide collaborative elastic computation, storage 
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and other services either in remote locations or in large number of clients nearby through facilities or 
infrastructures referred to as fog devices (Albdour et al., 2020; Prabhu, 2019). The emergence of the 
cloud model is attached to the surge in internet computation, web expansion, and complexity growth 
due to the rise of new technologies and solutions (Yakubu et al., 2019). Fog gives increased support 
to cloud environment by performing certain local data analysis at the edge of the devices, facilitating 
networking, computing, infrastructure and storage support as backbone for end user computing while 
solving bandwidth, latency, and communications challenges associated with next generation networks 
(Priyadarshini & Barik, 2019). 
 
Federated Learning (FL) is an emerging approach in distributed machine learning where multiple 
clients—such as mobile devices—work together to train a shared model without exposing their personal 
data. In a standard FL framework, a central server manages the global model and coordinates client 
participation. Instead of sharing raw data, each client sends model updates to the central server, which 
aggregates them to refine the global model. Since the data remains on local devices, FL ensures strong 
privacy protection for users and has been widely adopted in areas like edge computing, finance, and 
healthcare. However, the presence of malicious clients poses significant security challenges, hindering 
the real-world implementation of FL systems (Li et al., 2020) 
 
Feature engineering plays a vital role in preparing data for machine learning models. It involves 
creating effective features from existing ones to enhance predictive accuracy. This process includes 
applying various transformation functions, like arithmetic or aggregation operations, to develop new 
features. Such transformations can help rescale features or convert complex non-linear relationships 
between features and the target variable into simpler linear ones, which are generally easier for 
models to learn (Nargesian et al., 2017). 
 
This research aims to develop an automated feature engineering algorithm capable of extracting 
interpretable features from network traffic and augment minority samples to enhance the 
identification of Sybil attack patterns in fog computing environments using SMOTE algorithm. 
 
 
2. REVIEW OF RELATED WORKS 
 
The effectiveness of using feature engineering in enhancing performance of datasets is seen in 
numerous research works.  
 
Hollmann et al., (2023) presents CAAFE- Context-aware automated feature extraction from tabular 
datasets using large language models (LLMs). CAAFE repackages semantically meaningful features 
iteratively based on the description of the datasets, outputting both Python for feature construction 
and justification of value. The approach resulted in improved performance on 11 out of 14 datasets, 
resulting in an increase in mean ROC AUC from 0.798 to 0.822. 
 
Machine learning algorithms, along with feature engineering techniques were used by (Sihombing, 
2024) to predict property prices. Feature importance analysis identified key factors influencing 
property prices, offering valuable insights for property appraisals and investment decisions for 
valuators and property investment decisions. 



Journal, Advances in Mathematical & Computational Sciences 
 Vol.  13  No. 2, 2025 Series

 www.isteams.net/mathematics-computationaljournal
 

 
 
 
 

 
 

 
  
 
  

17 
 

Sultana et al., (2024)  identified that Vehicular Ad Hoc Networks (VANETs) face significant security 
threats, particularly from Sybil attacks, which compromise the trustworthiness of information by 
enabling attackers to create multiple fake identities. The proposed approach analyzes RSSI time series 
as vehicular speech to compare similarities among received series, allowing for independent detection 
without centralized support. Extensive simulations and real-world experiments demonstrate that the 
Voiceprint method effectively detects Sybil attacks while considering cost, complexity, and 
performance, enabling detection on Service Channels (SCH) to reduce observation time. Existing RSSI-
based methods often rely on absolute positioning or statistical testing, which can be limited in 
effectiveness, highlighting the need for a lightweight, fully distributed detection mechanism that does 
not depend on predefined radio propagation models and advised that future research could focus on 
enhancing the Voiceprint method with additional features through feature engineering to improve 
detection accuracy and exploring its application in various vehicular environments and conditions. 
 
3. MATERIALS AND METHODS 
 
In carrying out this research three steps were involved: Dataset Preparation, Pre-Processing and 
Application of Two machine learning classifiers Support Vector Machine (SVM) and Random Forest 
(RF)) to evaluate the performance in sybil attack detection.  
 
A. Dataset Preparation, Pre-Processing and Algorithm Application  
The Sybil Attack Simulation dataset (Muhammad Zunnurain Hussain, 2024) gotten from the IEEE 
Dataport was used. The dataset has 6 features (ID, Timestamp, User_ID, Action_Type, Is_Sybil, 
IP_Address) in 50,000 records. 

 
B. Feature Engineering  
Feature engineering constitutes a critical phase in the development of robust Sybil attack detection 
systems, serving as the bridge between raw data and effective machine learning models. Given the 
sophisticated and evolving nature of Sybil attacks, which exploit multiple fake identities to manipulate 
networked systems, it is imperative to extract meaningful and discriminative features that capture 
both behavioural nuances and network-level anomalies. This stage involves the systematic 
transformation of raw user activity logs and network metadata into quantifiable metrics that reflect 
underlying patterns indicative of malicious behaviour. 
 
By grounding the detection framework in carefully crafted features, this stage lays the foundation for 
subsequent modelling efforts, enabling classifiers such as Support Vector Machines and Random 
Forests to leverage rich, multidimensional representations of user behaviour and network interactions. 
Four principal features were engineered for this purpose, each designed to capture distinct facets of 
user activity and network characteristics relevant to Sybil attack identification. The additional features 
produced are discussed in detail: 
 
i. Frequency of User Actions 
The first feature focuses on the frequency of user actions, which serves as a fundamental indicator of 
user behaviour patterns. This feature quantifies how often a particular user performs actions within 
the system, mathematically represented as: 
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Given a Dataset 𝐷 with user actions, the frequency of user actions 𝐹௎஺ for each user 𝑈 can be 
calculated as: 
 
𝐹௎஺(𝑈) = ∑ 𝕀(𝑎௜

ே
௜ୀଵ ∈ 𝑈)          (3.1) 

 
Where 𝑁 is the total number of actions, 𝑎௜ is the 𝑖௧௛ action, and 𝕝 is the indicator function that 
returns 1 if the action belongs to user 𝑈, otherwise 0. 
 
By aggregating the total number of actions, this metric captures the intensity and volume of user 
engagement. In the context of Sybil attack detection, abnormal activity frequencies-such as unusually 
high or low numbers of actions-can be indicative of malicious behavior, since Sybil accounts often 
generate excessive or patterned activities to manipulate the system. This feature thus establishes a 
baseline for normal user activity, enabling the identification of outliers that may correspond to Sybil 
entities. 
 
ii. IP Address Frequency 
The second feature examines the frequency distribution of IP addresses associated with user 
activities, expressed Mathematically as: 

 
𝐹ூ௉(𝐼𝑃) = ∑ 𝕀(𝑖𝑃௜

ெ
௜ୀଵ = 𝐼𝑃)         (3.2) 

 
Where 𝑀 is the total number of IP addresses, 𝑖𝑃௜ is the 𝑖௧௛ IP address and 𝕝 is the indicator function 
that returns 1 if 𝑖𝑃௜ matches 𝐼𝑃 otherwise 0. 
 
This feature captures the network-level access patterns by counting how often a specific IP address is 
used across the dataset. Legitimate users tend to access the system from a limited and relatively 
stable set of IP addresses, reflecting consistent geographic or network origins. In contrast, Sybil 
attackers often employ multiple IP addresses, including proxies or VPNs, to obscure their identity and 
evade detection. By analyzing the frequency and variability of IP addresses, this feature helps in 
identifying suspicious access patterns that are characteristic of Sybil attacks, such as rapid switching 
between IPs or use of IP addresses known to be associated with malicious activity. 
 
iii. Interaction Patterns (Action Type Ratio) 
The third feature characterizes user behavior through the ratio of different action types performed by 
a user, formulated as: 
 
The ratio of a specific action type T for each user 𝑈 can be calculated as: 

 

𝐹஺்(𝑈, 𝑇) =
∑ 𝕀(௔೔

ಿ
೔సభ ୀ்∧ ௔೔∈௎)

∑ 𝕀(௔೔
ಿ
೔సభ ∈௎)

            (3.3) 

 
Where 𝑁 is the total number of actions, 𝑎௜ is the 𝑖௧௛ actions, and 𝕝 is the indicator function that 
returns 1 if the action matches type  𝑇 and belongs to user 𝑈 otherwise 0. 
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This ratio measures the proportion of a specific action type TT relative to the total actions performed 
by user UU. Legitimate users typically exhibit diverse and organic distributions of action types that 
reflect genuine interests and interactions within the system. Conversely, Sybil accounts often display 
skewed or constrained action type distributions, as they are programmed to perform repetitive or 
narrowly focused actions to achieve their malicious goals. By capturing these behavioral signatures, 
this feature enhances the detection framework’s ability to distinguish between authentic and synthetic 
user profiles based on the semantic composition of their activities. 
 
iv. Network Features 
The fourth feature integrates network-centric metrics by quantifying the diversity of IP addresses and 
actions associated with each user. Specifically, it measures the cardinality of unique IP addresses and 
the number of distinct actions. 
Unique IPs per User: 
 
𝑈ூ௉௦(𝑈) = |{𝑖𝑝௜: 𝑖𝑝௜ ∈ 𝑈}|        (3.4) 
 
Where |∙| denotes the cardinality of the set of unique IP addresses associated with user 𝑈.  
Unique Actions per User: 
 
𝑈஺௖௧௦(𝑈) = |{𝑎௜: 𝑎௜ ∈ 𝑈}|       (3.5) 
 
Where |∙| denotes the cardinality of the set of unique actions associated with user 𝑈. 
 
These features enhance the dataset by incorporating user behavior patterns, IP address usage, and 
network interaction metrics, which can be crucial for detecting sybil attacks. These set-based features 
provide insights into the relational and contextual properties of user accounts within the network. 
Authentic users generally demonstrate a balance between consistency and diversity in their network 
footprints, accessing the system from a limited yet varied set of IPs and engaging in multiple types of 
actions.  
 
In contrast, Sybil accounts may exhibit either overly narrow or excessively broad network 
characteristics, such as using a single IP for many accounts or an unusually high number of IPs to 
mask identity. By combining behavioral and network diversity metrics, this feature enriches the 
detection model’s capacity to identify Sybil attacks through comprehensive profiling of user activity 
and network behavior. 
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C. Data Augmentation 
Synthetic Minority Over-sampling Technique (SMOTE)  is an advanced statistical method designed to 
address class imbalance problems in machine learning datasets. SMOTE works by generating 
synthetic samples for the minority class rather than simply duplicating existing instances, which 
distinguishes it from traditional oversampling methods. 
 
The core mechanism of SMOTE is captured in the mathematical model presented given as: 
 
𝑥௦௬௡௧௛௘௧௜௖ = 𝑥 + 𝜆 ∙  ൫𝑥௡௘௜௚௛௕௢௥ − 𝑥൯       (3.6) 
 
where: 

a. x represents an existing minority class sample 
b. x_neighbor is one of the k-nearest neighbors of x within the minority class 
c. λ (lambda) is a random factor in the range 1 
d. x_synthetic is the newly generated synthetic instance 

 
This formula creates new samples along the line segments connecting a minority instance to its 
neighbors in feature space. The randomization factor λ ensures diversity among the synthetic samples. 
 
The SMOTE algorithm follows these steps: 

1. For each minority class sample, identify its k-nearest neighbors from the same class 
2. Randomly select one of these neighbors 
3. Calculate the feature-space difference vector between the sample and its selected neighbor 
4. Multiply this difference vector by a random number λ between 0 and 1 
5. Add this weighted difference to the original sample to create a new synthetic sample 
6. Repeat until the desired balance between classes is achieved 

 
The k parameter (typically 5) controls locality sensitivity - lower values create synthetic samples closer 
to existing minority samples, while higher values allow for more generalization. 
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4. RESULTS 
 
The sample of the original dataset used and the result from feature engineering and augmentation 
are presented in Table 4.1 – 4.3. The comparison of performance in terms of Accuracy, Precision, 
Recall and F1 – score is summarised here. 
 
 
Table 4.1: Original Sybil Attack Dataset 
ID Timestamp User_ID Action_Type Is_Sybil IP_Address 

1 '01/01/2023 00:00' 7219 1 'FALSE' 3232275849 
2 '01/01/2023 00:01' 856 3 'FALSE' 3232279682 
3 '01/01/2023 00:02' 5353 3 'FALSE' 3232282638 
4 '01/01/2023 00:03' 5155 4 'FALSE' 3232286889 
5 '01/01/2023 00:04' 5692 1 'FALSE' 3232267203 
6 '01/01/2023 00:05' 6219 5 'FALSE' 3232236226 
7 '01/01/2023 00:06' 464 4 'FALSE' 3232290372 
8 '01/01/2023 00:07' 4396 5 'FALSE' 3232236261 
9 '01/01/2023 00:08' 5539 2 'FALSE' 3232242539 

10 '01/01/2023 00:09' 8261 1 'FALSE' 3232275577 
11 '01/01/2023 00:10' 1680 4 'FALSE' 3232293113 
12 '01/01/2023 00:11' 765 4 'FALSE' 3232257273 
13 '01/01/2023 00:12' 6898 2 'TRUE' 3232300381 
14 '01/01/2023 00:13' 2424 2 'FALSE' 3232287518 
15 '01/01/2023 00:14' 5274 2 'FALSE' 3232243373 
16 '01/01/2023 00:15' 5015 4 'FALSE' 3232286572 
17 '01/01/2023 00:16' 6372 3 'FALSE' 3232294018 
18 '01/01/2023 00:17' 1179 5 'FALSE' 3232295283 
19 '01/01/2023 00:18' 4523 5 'FALSE' 3232284360 
20 '01/01/2023 00:19' 3366 2 'FALSE' 3232248622 
21 '01/01/2023 00:20' 6348 3 'TRUE' 3232274152 
22 '01/01/2023 00:21' 8603 3 'FALSE' 3232288166 
23 '01/01/2023 00:22' 9208 2 'FALSE' 3232297681 
24 '01/01/2023 00:23' 2548 1 'FALSE' 3232271272 
25 '01/01/2023 00:24' 7793 4 'FALSE' 3232255450 
26 '01/01/2023 00:25' 2039 1 'FALSE' 3232279520 
27 '01/01/2023 00:26' 2736 3 'FALSE' 3232239990 
28 '01/01/2023 00:27' 9102 2 'FALSE' 3232284224 
29 '01/01/2023 00:28' 9923 4 'FALSE' 3232292819 
30 '01/01/2023 00:29' 190 5 'FALSE' 3232251171 
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4.1 Feature engineered dataset 
The dataset shown in Table 4.2 represents a sample of engineered features designed to enhance Sybil 
attack detection by capturing user behavior and network characteristics. Each row corresponds to a 
unique user interaction instance characterized by several attributes: User_ID, Action_Type, 
IP_Address, User_Action Count, IP_Frequency, Action_Type_ratio, User_Unique_IP, 
User_Unique_Action, and a binary Label indicating whether the instance is benign (0) or Sybil (1). 
 
Table 4.2: Newly Generated Sybil Attack Data with New Features 

User_ID Action_Type IP_Address User_Action Count IP_Frequency 
Action 

Type_ratio 
User 
Unique_IP 

User_Unique 
Action 

Label 

7219 1 3232275849 2 2 0.5 2 2 
0 

856 3 3232279682 6 2 0.333333333 6 4 
0 

5353 3 3232282638 6 1 0.166666667 6 4 
0 

5155 4 3232286889 8 3 0.625 8 3 
0 

5692 1 3232267203 4 3 0.25 4 4 
0 

6219 5 3232236226 8 1 0.25 8 4 
0 

464 4 3232290372 7 1 0.142857143 7 4 
0 

4396 5 3232236261 8 1 0.25 8 4 
0 

5539 2 3232242539 8 2 0.125 8 5 
0 

8261 1 3232275577 2 1 0.5 2 2 
0 

1680 4 3232293113 8 1 0.25 8 3 
0 

765 4 3232257273 5 1 0 5 3 
0 

6898 2 3232300381 5 1 0 5 2 
1 

2424 2 3232287518 5 1 0 5 3 
0 

5274 2 3232243373 10 1 0 10 4 
0 

5015 4 3232286572 10 1 0.2 10 4 
0 

6372 3 3232294018 10 1 0.3 10 5 
0 

1179 5 3232295283 10 1 0.3 10 5 
0 

4523 5 3232284360 9 3 0.333333333 9 4 
0 

3366 2 3232248622 5 3 0 5 2 
0 

6348 3 3232274152 6 2 0.5 6 3 
1 

8603 3 3232288166 5 1 0 5 3 
0 

9208 2 3232297681 8 2 0.125 8 5 
0 

2548 1 3232271272 4 5 0.25 4 4 
0 

7793 4 3232255450 8 1 0.125 8 4 
0 

2039 1 3232279520 5 1 0.4 5 3 
0 

2736 3 3232239990 8 2 0.125 8 4 
0 

9102 2 3232284224 7 1 0.285714286 7 4 
0 

9923 4 3232292819 6 1 0.166666667 6 4 
0 

190 5 3232251171 4 1 0 4 2 
0 
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4.1.1 Feature descriptions 
i. User_Action Count: This feature quantifies the total number of actions performed by a user, 

reflecting the user's activity level. For example, User_ID 5353 has performed 6 actions, while 
User_ID 5274 has 10 actions. 

ii. IP_Frequency: This measures how often a particular IP address appears in the dataset, 
indicating the commonality of the IP usage. For instance, IP 3232275849 has a frequency of 
2, suggesting limited reuse, whereas IP 3232271272 appears 5 times, indicating a more 
frequent access point. 

iii. Action_Type_ratio: This ratio represents the proportion of a specific action type relative to the 
total actions performed by the user. Values range from 0 (no occurrence of that action type) to 
0.5 or higher, showing the dominance of certain action types in user behavior. For example, 
User_ID 7219 has an action type ratio of 0.5, indicating half of their actions are of the specified 
type. 

iv. User_Unique_IP: This denotes the number of unique IP addresses associated with a user, 
capturing the diversity of network access points. Values vary, with some users like 5539 having 
5 unique IPs, while others like 8261 have only 2. 

v. User_Unique_Action: This indicates the count of distinct action types performed by the user, 
reflecting behavioral diversity. Most users show diversity between 2 and 5 unique action types. 

vi. Label: The binary target variable classifies instances as benign (0) or Sybil (1). In this sample, 
Sybil instances are rare, e.g., User_IDs 6898 and 6348 are labeled as Sybil. 

 
4.1.2 Statistical Analysis of Generated Features 
 
i. Descriptive Statistics: 

a. User_Action Count: The mean action count is approximately 6.3, with a range from 2 to 10, 
indicating moderate variability in user activity levels. 

b. IP_Frequency: Most IP addresses have low frequency (1 or 2), with a few outliers reaching up 
to 5, suggesting most users access the system from relatively few IPs. 

c. Action_Type_ratio: The values are skewed towards lower ratios (many zeros), with some users 
exhibiting ratios as high as 0.75, showing that some users focus heavily on specific action 
types. 

d. User_Unique_IP: The average number of unique IPs per user is around 3.5, indicating 
moderate network diversity. 

e. User_Unique_Action: The average number of unique actions per user is about 3.5, reflecting a 
reasonable spread of behavior types. 
 

ii. Correlation Analysis: 
a. Positive correlation is expected between User_Action Count and User_Unique_Action, as more 

active users tend to perform a wider variety of actions. 
b. IP_Frequency may negatively correlate with User_Unique_IP, since higher IP frequency implies 

repeated use of fewer IPs. 
c. The Action_Type_ratio could inversely correlate with User_Unique_Action, as users focusing on 

fewer action types will have higher ratios for those actions. 
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iii. Class Distribution and Feature Differences: 
a. The dataset is imbalanced with a majority of benign labels (0) and a few Sybil labels (1). 
b. Preliminary observation suggests Sybil users (e.g., User_ID 6898, 6348) tend to have lower 

action type ratios and fewer unique IPs, which aligns with the hypothesis that Sybil accounts 
exhibit less diverse and more repetitive behavior. 

c. For example, User_ID 6898 has an Action_Type_ratio of 0 and only 2 unique IPs, which may 
be indicative of Sybil behavior. 
 

iv. Feature Distributions by Label: 
a. User_Action Count: Benign users show a wide range, while Sybil users cluster around moderate 

counts. 
b. IP_Frequency: Sybil users tend to have IPs with lower frequency, possibly due to IP hopping to 

avoid detection. 
c. Action_Type_ratio: Sybil users often have lower ratios, indicating less focused or more uniform 

action patterns. 
d. User_Unique_IP and User_Unique_Action: Sybil users generally have fewer unique IPs and 

actions, consistent with constrained behavior.. 
 
Balanced Dataset 
The oversampling results are presented in Table 4.3.  showing the class distribution before and after 
applying the SMOTE method. The data was balanced from 9,940 to 40,060 samples for the minority 
class samples. Table 4.4. shows the samples of the generated data. 
 
Table 4.3: Balanced Data Statistics 
Label Unbalanced Data Balanced Data 

Non-sybil 40,060 40,060 

Sybil 9,940 40,060 

TOTAL 50,000 80,120 
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Table 4.4: Sample of Generated Balanced Data 

 
 
 
 

 

 

User_ID Action_Type IP_Address 

User 

Action Count 

IP 

Frequency 

Action 

Type_ratio 

User 

Unique_IP 

User_Unique 

Action Label 

6898 2 3232300381 5 1 0 5 2 1 

6348 3 3232274152 6 2 0.5 6 3 1 

2991 4 3232256947 8 1 0.25 8 5 1 

4625 4 3232275770 6 1 0.166666667 6 5 1 

8728 1 3232278294 10 2 0.4 10 5 1 

3058 4 3232290612 3 1 0 3 1 1 

162 3 3232242848 5 1 0.2 5 3 1 

7575 4 3232285902 4 3 0 4 3 1 

4824 4 3232235527 2 1 0.5 2 2 1 

65 5 3232299196 7 1 0 7 4 1 

5426 4 3232280550 6 1 0.333333333 6 4 1 

2019 3 3232300914 5 2 0.4 5 3 1 

390 5 3232295428 8 3 0.125 8 5 1 

3539 2 3232298359 10 2 0.2 10 4 1 

3083 4 3232243838 4 1 0.25 4 3 1 

7219 1 3232275849 2 2 0.5 2 2 0 

856 3 3232279682 6 2 0.333333333 6 4 0 

5353 3 3232282638 6 1 0.166666667 6 4 0 

5155 4 3232286889 8 3 0.625 8 3 0 

5692 1 3232267203 4 3 0.25 4 4 0 

6219 5 3232236226 8 1 0.25 8 4 0 

464 4 3232290372 7 1 0.142857143 7 4 0 

4396 5 3232236261 8 1 0.25 8 4 0 

5539 2 3232242539 8 2 0.125 8 5 0 

8261 1 3232275577 2 1 0.5 2 2 0 

1680 4 3232293113 8 1 0.25 8 3 0 

765 4 3232257273 5 1 0 5 3 0 

2424 2 3232287518 5 1 0 5 3 0 

5274 2 3232243373 10 1 0 10 4 0 

5015 4 3232286572 10 1 0.2 10 4 0 
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4.2  Federated Learning Model Results 
The Federated Learning Approach using two machine learning models (Random Forest and support 
Vector Machines) were trained and evaluated for three cases, which are; 

i. Case 1 (Baseline): Raw features, imbalanced data 
ii. Case 2: Engineered features, imbalanced data 
iii. Case 3: Engineered features, balanced data 

 
This is to evaluate the effect of feature engineering and data balancing on the sybil attack detection 
performance.  
 
4.2.1. Confusion Matrix  
Table 4.5 presents a comparative analysis of the confusion matrix results for Support Vector Machine 
(SVM) and Random Forest (RF) classifiers across three experimental cases. Each case represents a 
different combination of feature sets and data balance, allowing us to study how model performance 
evolves under varying conditions. The confusion matrix breaks down the results into True Positives 
(TP), False Negatives (FN), False Positives (FP), and True Negatives (TN), giving a detailed view of 
classification accuracy and error distribution. 
 
Table 4.5: Confusion Matrix 
Model Dataset Case TP FN FP TN 
SVM Normal Case1 0 2982 0 12018 
RF Normal Case1 118 2864 461 11557 
SVM Engineered Case2 3 2979 22 11996 
RF Engineered Case2 28 2954 169 11849 
SVM Engineered & Balanced Case3 7887 4131 2577 9441 
RF Engineered & Balanced Case3 9049 2969 194 11824 

 
i. Case 1: Baseline – Raw Features, Imbalanced Data 
In this case, models were trained using raw features without addressing the imbalance in the dataset. 
The SVM model failed to detect any true positives for the NORMAL class (TP = 0), classifying all positive 
samples incorrectly (FN = 2982), though it did correctly identify 12,018 true negatives. The RF 
classifier performed slightly better, detecting 118 true positives, but still had a high number of false 
negatives (2864) and 461 false positives, indicating difficulty in classifying the minority class under 
imbalanced conditions as shown in Figures 4.1 and 4.2. 
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Figure 4.1: CFM for RF using the original dataset 

 

 
Figure 4.2: CFM for SVM using the Original Dataset 

 
ii. Case 2: Engineered Features, Imbalanced Data 
Feature engineering led to improved performance. For SVM, there was a modest gain, with 3 true 
positives and 22 false positives. RF showed further improvement, identifying 28 true positives with 
169 false positives. However, both classifiers continued to struggle with high false negative counts 
(2979 for SVM, 2954 for RF), showing that while feature engineering helps, class imbalance still 
adversely affects classification, particularly recall as shown in Figures 4.3 and 4.4. 
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Figure 4.3: CFM for SVM using the Engineered Dataset 

 

 
Figure 4.4: CFM for SVM using the Engineered Dataset 

 
iii. Case 3: Engineered Features, Balanced Data 
This configuration yielded the best results. With both feature engineering and class balancing applied, 
SVM significantly improved, correctly identifying 7887 instances of the NORMAL class, though it still 
misclassified 4131 instances (FN). False positives remained notable at 2577. In contrast, the RF 
classifier demonstrated superior performance, correctly classifying 9049 positives with only 2969 
false negatives and just 194 false positives—substantially fewer errors compared to previous cases 
and the SVM model. It also achieved 11,824 true negatives, indicating balanced and accurate 
classification as shown in Figures 4.5 and 4.6. 
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Figure 4.5: CFM for SVM using the Engineered and balanced Dataset 

 

 
Figure 4.6: CFM for RF using the Engineered and balanced Dataset 

 
The confusion matrix results clearly show that the combination of engineered features and data 
balancing (Case 3) leads to substantial gains in classification performance, particularly for the Random 
Forest model. RF outperformed SVM in every scenario, especially when both preprocessing steps were 
applied. The significant reduction in false negatives and false positives in Case 3 highlights the model’s 
ability to generalize well across classes. These findings underscore the importance of proper feature 
selection and data preprocessing in improving model accuracy and reliability, particularly in scenarios 
involving class imbalance. 
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4.2.2 Model Performance Evaluation 
The results in Table 4.6 and Table 4.7 summarizes the performance of the models in terms of the 
performance metrics. 
 
4.2.2.1 Case 1: Normal Dataset (Imbalanced) 
In the first case, both SVM and Random Forest models were evaluated on a highly imbalanced dataset 
where the majority class dominates. The SVM model achieved an accuracy of 80%, which superficially 
appears strong; however, this is misleading because the model failed to identify any positive Sybil 
instances, resulting in zero precision, recall, and F1 score. This indicates that the SVM defaulted to 
predicting all instances as benign, effectively ignoring the minority class due to the overwhelming class 
imbalance. The Random Forest model showed a slightly lower accuracy of 78%, reflecting its attempts 
to identify Sybil instances. It achieved a precision of about 20%, meaning that only one in five positive 
predictions was correct, and a very low recall of approximately 4%, indicating it detected only a small 
fraction of the actual Sybil attacks. The F1 score remained low at 0.066, demonstrating poor overall 
performance in balancing false positives and false negatives. Overall, in this imbalanced setting, both 
models struggled to detect Sybil attacks effectively. While Random Forest showed some ability to 
identify positives, the high false positive rate and extremely low recall limited its practical utility. The 
SVM’s complete failure to detect any positive cases underscores the critical challenge posed by class 
imbalance in cybersecurity detection tasks. 
 
Table 4.6: SVM Performance  

Metric Case 1 Case 2 Case 3 

Accuracy 0.8 0.8 0.72 

Precision 0 0.12 0.753727 

Recall 0 0.001006 0.656266 

F1 Score 0 0.001995 0.701628 

 
 
Table 4.7: RF Performance  

Metric Case 1 Case 2 Case 3 

Accuracy 0.78 0.79 0.865 

Precision 0.2038 0.142132 0.979011 

Recall 0.039571 0.00939 0.752954 

F1 Score 0.066274 0.017616 0.85123 
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4.2.2.2 Case 2: Engineered Dataset (Imbalanced with Feature Engineering) 
In the second case, feature engineering was applied to the imbalanced dataset to improve model 
performance. The SVM model maintained an accuracy of 80%, similar to Case 1, but showed a slight 
improvement in precision (12%) and recall (0.1%). Despite this, the F1 score remained negligible at 
0.002, indicating that the model’s ability to detect Sybil attacks was still practically ineffective. The 
Random Forest model experienced a modest increase in accuracy to 79%, with precision rising to 
14.2% and recall to just under 1%. The F1 score improved slightly to 0.018, reflecting marginal gains 
from feature engineering. However, these improvements were insufficient to overcome the inherent 
difficulties posed by the imbalanced data, as the models still missed the vast majority of Sybil 
instances. 
 
This case highlights that while feature engineering can enhance detection capabilities, it is not enough 
on its own to address severe class imbalance. Both SVM and Random Forest models continued to 
struggle with low recall, emphasizing the need for additional strategies such as data balancing to 
improve Sybil attack detection. 
 
4.2.2.3 Case 3: Engineered & Balanced Dataset 
In the third case, the dataset was both engineered and balanced to address the class imbalance 
problem directly. The SVM model’s accuracy decreased to 72%, reflecting a more realistic evaluation 
without majority class bias. However, precision significantly improved to 75.4%, and recall rose to 
65.6%, resulting in a much stronger F1 score of 0.70. This demonstrates that balancing the dataset 
allowed the SVM to meaningfully detect Sybil attacks while maintaining a reasonable false positive 
rate. The Random Forest model excelled in this balanced scenario, achieving the highest accuracy of 
86.5%. It delivered outstanding precision at 97.9%, indicating that nearly all positive predictions were 
correct, and a robust recall of 75.3%, capturing a substantial portion of Sybil attacks. The F1 score of 
0.85 reflects an excellent balance between precision and recall, making Random Forest the superior 
model in this context. 
 
This case underscores the critical importance of dataset balancing combined with feature engineering 
for effective Sybil attack detection. While SVM showed marked improvement, Random Forest’s 
ensemble approach leveraged the balanced data most effectively, minimizing false positives and 
maximizing detection rates, which is essential for practical deployment in security systems. 
 
Figure 4.7 compares the accuracy of the models for each case while figures 4.8 and 4.9 compares 
the f1-score, precision and recall of the models and cases.  
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Figure 4.7: Accuracy Comparison 

 
 

 
Figure 4.8: F1-score comparison 
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Figure 4.9: Precision and Recall Comparison, 

 
 
5. CONCLUSION  
 
The development and implementation of automated feature engineering algorithm generated extra 
and relevant features for the sybil attack simulation dataset. By integrating the SMOTE technique, the 
dataset was balanced to achieve better performance. The accuracy of sybil attack detection increased 
using Random Forest model excelled in this balanced scenario a high accuracy of 86.5%. It delivered 
outstanding precision at 97.9%, indicating that nearly all positive predictions were correct, and a 
robust recall of 75.3%, capturing a substantial portion of Sybil attacks. The F1 score of 0.85 reflects 
an excellent balance between precision and recall, making Random Forest the superior model in this 
context. Future research should focus on Improving the Federated Learning Technique with genetic 
algorithms for improved performance. 
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