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marine green organisms. Additionally. factors such as the age, size, and metabolic rate of the organ-
ism can also affect the degree of bioaccumulation (Cao et al, 2015).

The mechanisms of bioaccumulation in marine green organisms are complex and can have
significant impacts on the health of marine ecosystems and the organisms that rely on them.
Understanding these mechanisms is important for developing effective strategies to mitigate the

risks associated with exposure to toxic substances in the marine environment (Mondragén et al.,
2023).

2.6.2 NurtrieNT Removat

Marine green algae can absorb excess nutrients such as nitrogen and phosphorus, which are often
present in high concentrations in marine environments duc to human activities such as agricultural
runoff and wastewater discharge. By removing these excess nutrients, the algae can help reduce the
risk of harmful algal blooms and improve water quality (Ramanan et al., 2015).

Green manne plants, including seaweeds, scagrasses, and other aquatic plants, play a critical
role in removing nutrients from marine ecosystems (Ramanan et al., 2015). There are several
mechanisms through which green marine plants remove nutrients, including the following.

2.6.2.1 Uptake by Roots or Thallus

Scagrasses and some species of scaweeds have specialized structures called roots that allow them
to take up nutrients from the sediment and the water column. The roots of seagrasses and some
seaweeds can also release oxygen, which can create an aerobic zone around the plant that enhances
nutricnt uptake. In addition to roots, some species of scaweeds have u thallus that can directly
absorb nutrients from the water. The uptake of nutrients by green marine plants can reduce the
concentration of these nutrients in the surrounding water, which can help prevent eutrophication and
harmtul algal blooms (Mantri et al., 2020).

2.6.2.2 Adsorption

Green marine plants, particularly scaweeds, have a large surface arca relative to their volume, which
makes them efficient at adsorbing nutrients from the water column. Seaweeds have specialized
structures on their surface, such as hairs or ridges, which increase their surface area and enhance

nutrient uptake. Once nutrients are adsorbed onto the surface of the seaweed, they can diffuse
across the ccll membranc and into the plant (E1-Said et al., 2018).

2.6.2.3 Sedimentation

As green marine plants take up nutrients, they incorporate them into their tissues. Over time, this
can lead 1o the accumulation of nutrients in the plant biomass, which can then sink 1o the bottom
of the ocean when the plant dies or sheds its leaves. This process is known as sedimentation, and it
can help remove nutrients from the water column and store them in the sediment. Seagrasses, for
example, can accumulate large amounts of carbon and nutrients in their root systems, which can
help stabilize sediments and prevent crosion (Green et al., 2016; Zhang et al., 2019).

2.6.2.4 Assimilation
Green marine plants can assimilate nutnients into their tissues and use them for growth and
metabolism. This process is particularly important for nitrogen, which is a key limiting nutrient
in many marine ecosystems. As green marine plants take up nitrogen, they can incorporate it into
their biomass and transfer it to higher trophic levels in the food web. Seagrasses, for example, can
assimilate nitrogen into their leaves and stems, which can then be consumed by herbivores and
ultimatcly support higher-level predators (Sutherland and Craggs. 2017).

Green marnine plants play an important role in removing nutrients from marine ecosystems
through a combination of these mechanisms. By reducing the availability of nutrients in the water,
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they help to maintain the balance of the ecosystem and prevent harmful algal blooms and other
negative impacts of nutrient pollution (Zhan et al., 2017).

2.6.2.5 Heavy Metal Removal

Marine green algae can also absorb and remove heavy metals from the water. Heavy metals such
as mercury, lead, and cadmium are toxic to marine life and can accumulate in the tissues of aquatic
organisms. Green algae can absorb these metals and store them in their tissues, reducing the
concentration of heavy metals in the water and reducing the risk of toxicity to marine organisms
(Danouche ct al., 2021; Abioye et al., 2020).

Marine organisms such as algae, bacteria, and some types of shellfich have been found to have the
ability to remove heavy metals from seawater. The mechanisms through which they do this can vary
depending on the organism and the specific metal being removed, but two common mechanisms are
adsorption and biomineralization.

26.2.5.1  Adsorption Or: Adsorption of Heavy Metal lons

Adsorption is the process by which a substance (in this case, a heavy metal ion) is attracted and
adheres (o the surface of another substance (such as the cell surface of an organism). Many marine
organisms have cell surfaces that contain functional groups (such as carboxyl, hydroxyl, or amino
groups) that can bind to heavy metal ions. This process is often selective, meaning that different
organisms may he able to remove different types of heavy metals. Once the metal ions are bound 1o
the organism’s surface, they can be removed from the seawater through sedimentation (settling 1o
the bottom) or filtration (Cheng ct al., 2019).

26.2.52 Biomineralization

Biomineralization is the process by which organisms form minerals within their tissues. Some
marine organisms have the ability to precipitate heavy metals into biominerals such as carbonates,
sulfides, or phosphates. This process can be a detoxification mechanism to prevent the metal ions
from accumulating in the organism’s tissues, or it can be a way to sequester the metals in a form that
is Jess toxic 10 the environment. For example, some types of bacteria can produce sullide minerals
that can bind and remove heavy metal ions from scawater (Cheng ct al., 2023).

2.7 ABILITIES OF MARINE GREENS IN REMEDIATION OF CONTAMINANTS

Algae play an important role in returning an environment that has been altered by various
contaminants to its original state (Singhal et al,, 2021). Phycoremediation is an algal-based
emerging technology applied 10 remove varnious pollutants from water (Abioye et al,, 2020). It
is a low-cost, eco-friendly, and casily manageable remediation strategy. In this technique, algac
are used as agents of remediation, and so far, a number of algae have been identified with high
potential to detoxify various Kinds of pollutants, such as nutrients, heavy metals, radionuclides,
herbicides, and pesticides (Shackira et al., 2022). Both micro- and macroalgae are widely exploited
to detoxify various contaminants from water bodies. Algae are a source of green energy. serve
as a sink for CO,, and are also a rich resource of economically important components, making
phycoremediation a promising technology. Even though the detailed mechanism behind the
phycoremediation technigque is yet to be unraveled, processes like biosorption, accumulation,
degradation, volatilization, and complexation have been proved to be operating in most of the
species (Shackira et al, 2022).

This process can be carried out easily without disturbing human life or the environment during
conduction and transportation. In algae-based bioremediation, algae fix carbon dioxide, release ony-
gen by photosynthesis, and increase biological oxygen demand in contaminated water (Singhal et
al., 2021). They are highly adaptive, i.e.. they can grow autotrophically, heterotrophically, or mixo-
trophically in the environment depending on the availability of substrate and light. Algae absorb
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TABLE 2.1

Classification of Phaeophyta

Domain Eukaryota
Kingdom Prutista

Phylum Heterokoatophyta (has chlorophy 1l a amd ¢)

Class Phacophyceae (has przment fucoranthin)

Order Laminarales, Fucalkes, Fomncarpales, Dictyceales
Family Fucaceae

Genus Fucus

Species servaras, distichus, vesicutonus, spiralis

Searve: Mibleving, hupaihiologywise coaphacophiyta brown algae, 2000.

FIGURE 2.2  Green algae (Chlorophyta) (Becker, 2013)

Carbohydrates, lipids, and oils found in higher plants make up the bulk of the reserves. The earli-
est known forms of plant life on Earth were probably green algae (Freitas and Loverde-Oliveira,
2013).

2.4.1 CHrororHYTA CLASSIFICATION

The taxonomic class Chlorophyta has its roots in the kingdom Plantac. It could be a reference to a
group under the kingdom Plantae that contains all known types of green algae. Chlorophyta and
Charophyta are two separate phyla that were initially considered to be one giant group of green
algae species (charophytes) (Cremen et al, 2019).

Green algac species that do well in salt water are called chlorophytes (members of the Chlorophyia),
whereas their freshwater counterparts are called charophytes (i.e., belonging to Charophyta). Yet, chlo-
rophytes can thrive in a wide variety of environments. Both freshwater and saltwater environments
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host these organisms. Some chlorophytes are adapted to survive in extreme conditions, such as species
found in deserts, hypersaline areas, and polar regions (Cremen et al., 2019).

According to the original taxonomic system, the genus Chlorophyta contains over 7000 recog-
nized species of green algae. By the second definition of taxonomy, only about 4300 species belong
to the Chlorophyta, while the rest are now called charophytes (Cormaci et al.,, 2014). Chlorophyta
is a division of kingdom Plantae that includes all green algae categorized into classes such as
Bryvopsidophyceae, Chlorophyceae, Cladophorophyceae, Charophyceae, Dasyvcladophyeeae,
Klebsormidiophyeeae, Prasinophyceae, Pleurastrophyceae, Trentepohliophyceae, Ulvophyceae,
and Zvgne (Cormaci et al, 2014). According to more recent taxonomies, such as that of Leliaert et
al. (2012). charophyte algae are distinct from chlorophytes and instead are classified as Streprophyta
within the Viridiplantae (together with the embryophytes). It is important to stress, however, that
new ways of classifying organisms will inevitably emerge as more rescarch is conducted on a wider
range of specics (Cremen ct al,, 2019).

2.5 THE RED ALGAE (RHODOPHYTA)

The red color of these algae comes from the pigments phycoerythrin and phycocyanin, which
obscure the presence of other pigments like chlorophyll a (no chlorophyll b). beta-carotene, and
a variety of xanthophylls (Brawley et al., 2017). Flax seed starch and floridosile are the primary
reserves; true starch, like that foursd in higher plants and green algae, is absent, Long-chained
polysaccharides including ccllulose, agar, and carrageenan are employed to build the walls. There
are a number of unicellular forms from different origins, and more complex thalli are built up of
filaments (Qu et al., 2015) (Figure 2.3).

Red algae called coralline algae dot the ocean floor and secrete calcium carbonate onto their cell
surfaces (Corallina officinalis). Bone regencration therapy has made use of these corallines. The
term Corallina officinalis refers to the old practice of using coralline algae as a vermifuge (Yoou
et al.. 2017).

FIGURE 2,3 Red algac (Rhodophyta) (Freese and Lane, 2017)



nutrients like carbon, phosphate. and heavy metals from wastewater and produce new biomass,
which is useful in the generation of bioenergy (Priya et al., 2022).

This can increase their chances of survival in harsh climates (Singhal et al, 2021) Microalgae
can absorb many pollutants during photosynthesis in water (Nithin et al., 2020) Microalgae increase
oxygen concentration in water, which increases the growth of several degraders, and oxygen pro-
duction also decreases the need for external aeration, which is required for aerobic hiodegradation,
In association with heterotrophic microorganisms, microalgae can perform the degradation of sev-
eral complex pesticides (the complexity of a pesticide depends on its chemical structure) (Chen and
Wang, 2020).

Microalgae, mainly green algae belonging to the genera Selenastrum, Scenedemus, or Chlorella,
have been demonstrated to be effective in the degradation of polycyclic aromatic hydrocarbons,
such us naphthalene, phenanthrene, and pyrene (Ghosal ct al., 2016), and in the immobilization
of metals. The mechanisms enabling microalgae to remove toxic compounds, thus reducing their
bicavailability and toxicity, mainly rely on the production of exopolysaccharides, which can mediate
the uptake of contaminants on the cell surface and/or their complexation into less bioavailable
forms (Casillo et al., 2021), Contaminants attached 10 the membrune or cell wall exopolysacchandes
(depending on the microalgal taxa) can remain adherent or can be internalized and chelated by
molecules belonging to the phytochelatin classes (Kaur and Reddy. 2019).

The possibility of exploiting the activity of microalgae for the degradation of aromatic
compounds such as naphthalene was reported almost hall a century ago. More recently, Lei et al.
(2002) reported pyrene degradation ranging from 34% to 100% during scven days of treatment
using green microalgae (Chlamydomonas, Chlorella, Scenedesmus, Selenastrum) or cyanophytes
(Synechocystis). Similarly, other studies revealed that Skeletonema costatum and Nitschia sp. were
eflective in the removal of phenanthrene and fluoranthrene (Hong et al., 2008),

In addition, the green microalga Chlorella vulgaris displayed high potential in the remediation
of waters contaminated by crude oil, with a bioremediation efficiency between 88 and 94%
(Nweze and Aniebonam, 2009). Das and Deca (2019) identitied Chlorella vulgaris BS1 as capable
of degrading 98% of petroleum hydrocarbons at initial concentrations of 115 mg L' from water
in 14 days (Al-Hussicny ct al, 2020). It was also reported by Al-Hussicny ¢t al. (2020) that five
cyanophytes. namely. Westiellopsis prolifica, Anabaena variabilia, Oscillatoria pranceps,
Phormidium mucicola, and Lyngbva digueti, were capable of reducing the concentrations of
dilferent hydrocarbon compounds from oil refinery waste waters by between 24% and 925,

Marine microalgac-bacteria interactions remain to be further investigated to clanfy the processes
involved in hydrocarbon degradation as well as their actual potential to enhance bioremediation
yields in bio-based approaches for the reclamation of contaminated marine sediments (‘Thompson
et al., 2017).

2.8 CONCLUSION

In conclusion, the ability of marine green algae to remediate contaminants in marine environments
is a promising area of resecarch. While the effectiveness of algae-based remediation methods can
vary depending on the type of contaminant, the species of algae, and the environmental conditions,
there is significant potential for algac-based remediation methods to be used as a low-cost and
environmentally friendly method for improving water quality and protecting marine ecosystems.
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2.3 THE BROWN ALGAE (PHAEOPHYTA)

Phacophyta (Figure 2.1) are a group of brown algae that include fucoxanthin, beta-carotene, and
chlorophyll a and ¢, These algae, which are typically found in the ocean, are the most complex of
all (Ali et al., 2017). The size of Phacophyta can vary widely, from the micrometer scale to several
meters. At most, they have a length of about 30 meters (Hakim and Patel, 2020)

Brown algae, or Phacophyta, are a type of autotrophic, multicellular organism that belongs to
the Chromophyta division The xanthophyll pigment fucoxanthin is present in them, along with
the chlorophylls a and c. So, those that belong to the Phacophyta group tend to be a unique shade
of greenish brown (Remya et al., 2022). For Phacophyta to thrive in the ocean’s depths, the brown
pigment is crucial. Most Phacophyta live in saltwater; however, there are a select few that thrive
in freshwater (Al-Homaidan et al., 2021). The majority of Phacophyta are found in temperate
zones of the northern hemisphere, while a few species can be found in tropical seas. As of now,
scientists have identified between 1500 and 2000 different types of brown algae (Al-Homaidan
et al, 2021).

2.3.1  PHAroPHYTA CLASSIFICATION
The classification of Phacophyta is shown in Table 2.1.

2.4 THE GREEN ALGAE (CHLOROPHYTA)

Green algae, or Chlorophyta (Figure 2.2), are also commonly referred to as seaweed. Several spe-
cies can be found on land, but they are much more commonly associated with water. Single-cell and
multicellular forms, colonies, and coenocytic (one large cell) organisms are all possible. Chlorophyta
convert sunlight into starch, which is then used as an energy reserve in the cells (Polle et al., 2014),
Chlorophylls (a and b) in the same ratio as in “higher” plants provide the green color, together
with beta-carotene (a yellow pigment) and other xanthophylls (yellowish or brownish pigments).

FIGURE 2.1 Brown algae (Phaeophyta) (MIblevins, 2009)



Abilities in Remediation of Contaminants 19

Dulse (Palmaria palmata) and carrageen moss (Chondrus crispus and Mastocarpus stellatus)
are two of the best-known edible red algae (Johnston et al,, 2014).

I°s true that there are many Kinds of algae, and one of them is red. Kappaphycus and Betaphycus
are the primary sources for the carrageenan utilized in most processed food today. This includes
many of our favorite dairy products like yogurt, chocolate milk, and reconstituted puddings. Agar is
made from red algae like Grucilaria, Gelidium, and Pterocladia and is used as a microbial growth
medium, in the food industry, and in biotechnology (Rahelivao et al., 2015).

2.6  MARINE GREENS AND CONTAMINATION

Green marine algae have been shown 10 be very good at cleaning up pollution in marine
environments. The algae are able 10 absorb, change, and even break down contaminants because
of their different metabolic and physiological processes (Chekroun and Baghour, 2013; Babaniyi
et al,, 2023). Marine green algae, which are also called seaweeds, have been shown to be effective
at cleaning up heavy metals, organic pollutants, and excessive nutrients in marine environments.
Some of the things that marine green algae can do o help get rid of these pollutants are described
in the following subsections.

2.6.1 Bioaccumutanon

Marine green algae can accumulate and store contaminants within their tissues, This process is
referred to as bicaccumulation and is a key mechanism through which algae can remove contaminants
from the water. Once the algae have accumulated the contaminants, they can be harvested or allowed
to dic and sink 10 the bottom of the ocean, removing the contaminants from the water (Henrigues
ct al, 2015). Bivaccumulation is the process by which substances, such us nutrients, metals, or
organic compounds, accumulate in the tissues of marine green organisms (Mao et al., 2023). This
accumulation occurs hbecause the organisms are exposed to these substances in their environment
and cannol metabolize or eliminate them efficiently. The mechanism of bioaccumulation is a result
of the concentration of these substances in the tissues of the organisms over time, often due to their
inability to metabolize or eliminate them efficiently (Mao et al., 2023).

One mechanism ol bilaccumulation in marine green organisms is through the process of uptake
and retention. Marine green organisms, such as algae or scaweed, take up substances from the sur-
rounding water or sediments through their cell membranes. Some substances can also be absorbed
through the surface of the organism or through the ingestion of food particles. Once the substances
are taken up by the organism, they can accumulate in the tissues over time, leading to increased
concentrations (Gojhovic et al,, 2015). The degree of uptake and retention depends on several fac-
tors, including the chemical propertics of the substance, the characteristics of the organism, and
the environmental conditions, For example, substances that are hydrophobic, meaning they have a
low solubility in water, tend to accumulate more readily in the tissves of marine green organisms
(Zhang et al, 2016; Aransiola et al., 2021). This is because the organisms have a high lipid content
in their cell membranes, which can attract and retain hydrophobic substances (Zhang et al., 2016).
Another mechanism of bioaccumulation in marine green organisms is through the food chain;
marine green organisms, such as plankton, are often the base of the marine food web (El-Shoubaky
and Mohammad, 2016). When they consume substances that are present in the water or sediments,
these substances can accumulate in their tissues. When higher-level organisms, such as fish, con-
sume the plankton, they can accumulate even higher concentrations of these substances in their tis-
sues (El-Shoubaky and Mohammad, 2016). This process is known as biomagnification and can lead
to high concentrations of toxic substances in top predators, such as sharks or marine mammals (Sun
et al., 2020). The level of bicaccumulation depends on the chemical properties of the substance,
the characteristics of the organism, and the environmental conditions. For example, the tempera-
ture, salinity, and pH of the surrounding water can affect the uptake and retention of substances in
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2.1 INTRODUCTION

“Marine greens” refers to the vast and diverse ecosystem of marine algae or seaweeds that exist in
oceans, scas, and other bodies of saltwater, Algae are a type of plant that can grow both in the water
and on land (Wang et al, 2014). However, marine green algae are only found in saltwater. They
play a significant role in marine ecology, as they serve as the primary food source for many aquatic
organisms and provide important nutrients to the oceanic food chain (Cardol et al., 2008).

Marine green algae play a vital role in maintaining the health and balance of marine ecosystems.
They serve as a primary food source for many aquatic animals, including fish, crustaceans, and
other invertebrates, and are also consumed by larger marine mammals such as manatees and sea
otters (Edison et al., 2016). Additionally, they produce significant amounts of oxygen through
photosynthesis, which helps to maintain the oxygen balance in marine environments. The algae
also absorb carbon dioxide from the atmosphere and store it, thereby reducing the amount of carbon
in the atmosphere and mitigating the effects of climate change (Edison et al., 2016).

Marine green algac are an essential component of marine ecosystems, providing crucial nutrients,
oxygen, and ecological balance. The biodiversity and variety of these algae are crucial to the well-
being of numerous marine species and help mitigate the effects of climate change by reducing
carbon dioxide in the atmosphere. The preservation and conservation of these species are crucial to
maintaining the health of our oceans and by extension, the planet (Ghoneim et al., 2014). Therefore,
this review proposes to look at the ability of marine greens to remediate contaminants.

2.2 TYPES OF MARINE GREENS

Scawced is a common name for many types of marine algae. Although they look like aquatic plants
and can reach lengths of more than 150 feet, seaweeds are not plants (Aravind et al., 2020). Instead,
marine algae arc a diverse group of organisms belonging to the Protista kingdom, specifically the
brown algae (Phacophyta), the green algae (Chlorophyta), and the red algae (Rhodophyta). Algae
aren’t really plants, but they do share some key characteristics with their plant counterparts. For
photosynthesis, marine algac rely on chlorophyll in much the same way as land plants do. Seaweeds,
like land plants, have cell walls (Wang et al., 2014). However, plants have crucial characteristics
that seaweeds lack, such as a root system, an internal circulatory system, and the ability to generate
seeds and flowers (RothSchulze et al., 2018).
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