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Abstract  

The advection-dispersion equation (ADE) is mostly adopted in evaluating solute migration in a flow. This 

study presents the behavior of contaminant in a flow due to variations in the cross-flow dispersion under a 

Dirichlet boundary conditions. The analytical solution of a two-dimensional advection-dispersion equation 

for evaluating groundwater contamination in a homogeneous finite medium which is initially assumed not 

contaminant free was obtained. In deriving the model equation, it was assumed that there was a constant 

point-source concentration at the origin and a Dirichlet type boundary condition at the exit boundary. The 

cross-flow dispersion coefficients, velocities and decay terms are time-dependent. The modeled equation 

was transformed using some space and time variables and solved by parameter expanding and Eigen-

functions expansion method. Graphs were plotted to study the behavior of the contaminant in the flow. The 

results showed that increase in the cross-flow coefficient decline the concentration of the contaminant with 

respect to increase in time, vertical distance and horizontal distance in different patterns. 

Keyword: contaminant, cross-flow dispersion, advection, dispersion, decay parameter, Eigen- function, 

parameter expanding method. 

 

INTRODUCTION 
Groundwater is the water found below Earth’s surface in cracks of rocks and spaces in soil. It is stored in 

and moves slowly through geologic formation of soil, sand and rocks called aquifers. The depth at which 

soil pore spaces or fractures and voids in rock become completely saturated with water is called water table. 

Usually, Groundwater is recharged from the surface; it may discharge from the surface naturally at springs 

and seeps. Groundwater, under most conditions, is safer and more reliable for use than surface water. Thus, 

groundwater serves as an essential source of drinking water and other domestic use in most part of the 

world. However, its pollution is one of the most typical hydro-geological and environmental problems. 

Groundwater contamination occurs when pollutants are released into the environment and make their way 

down into groundwater. In many parts of the world, groundwater resources are under increasing threat from 

growing demands, wasteful use and contamination. The movement of solute in soils and groundwater has 

long been a focus of experimental and theoretical research in subsurface hydrology. Once the groundwater 

is contaminated, it is extremely difficult and expensive to remove the contaminants from the groundwater 

(Gurganus,1993).  

Most of the groundwater contaminants are reactive in nature and they infiltrate through the vadoze zone, 

hit the water-table and continue to move in the direction of groundwater flow. Therefore, it is essential to 

understand the transport mechanism of contaminants through the subsurface porous media. Surface water 

is more readily exposed to contaminants from sources such as agricultural activities, indiscriminate disposal 

of all kinds of wastes, factories or traffic than groundwater. Thus, groundwater is an important source of 

water for domestic use. There are two major methods applied in examining contaminant transport with 

regard to reactions in porous media. These methods are classified as stochastic and deterministic (Flury et 

al., 1998; Gao et al., 2013). Stochastic methods deal with reaction coefficients and are considered to ‘be 

stationary processes’. The quality of groundwater that passes through hydro chemical analyses was 

evaluated through samples taken from the canals, drains and groundwater (Ghorba et al., 2013). Laboratory 

study and mathematical modeling were presented in their work, providing two numerical computer models 

by applying finite difference method to study the flow of water as a three-dimensional and unsteady state. 

A guide on planning of water resource projects and estimation of the available water in aquifer plays an 
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important role in groundwater modeling as contained in (Ghose et al., 2013). The first step in the water 

availability estimation is the computation of runoff resulting from the precipitation on river catchments. A 

three-dimensional groundwater flow model to evaluate the groundwater potential and assess the effects of 

groundwater withdrawal on the regional water level and flow direction was developed in the central Beijing 

area (Seyf-Laye et al., 2012). They estimated current contaminant fluxes to the central area and site streams 

via groundwater by developing a program of groundwater model.  

The pollutant transport from a source through a medium of air or water is described by a partial differential 

equation of parabolic type derived on the principle of conservation of mass and is known as advection-

diffusion equation (Singh, 2011). The analytical solution of solute concentration for space-time variation 

in unsteady flow via a homogeneous finite aquifer subjected to point source contamination under the 

sinusoidal form and exponentially decreasing flow velocity was obtained and analyzed (Singh et al., 2009). 

The steady state flow condition of the contaminant in two dimensions where inorganic contaminants in 

aqueous waste solutions are disposed off at the land surface before it migrates through the vadoze zone to 

underground water was modeled in (Cole et al., 2017).  The solution of one-dimensional contaminant flow 

problem which is characterized by advection, dispersion and adsorption processes with constant initial and 

boundary conditions was developed using Bubnov-Galerkin weighted residual technique (Jimoh et al., 

2017). In order to evaluate the groundwater contaminant processes, a development of groundwater 

contamination processes frame work was carried out (Ujile, 2013). In contaminant transport, the effect of 

dispersion of solute is usually higher than that of advection. It was in this vein that contaminant’s horizontal 

dispersion along and against sinusoidally varying velocity from pulse type source was examined (Singh et 

al. 2015).  

Similarly, efforts made in understanding the movement and dispersion of solutes was boosted with a study 

on a two-dimensional model incorporating the cross-flow dispersion to account for off-diagonal dispersions 

with various initial and boundary conditions (Lee and Kim, 2012; Jimoh and Adebayo, 2021). The literature 

in Lee and Kim (2012) did not consider decay and reaction of the contaminant with the fluid and solid 

matrix. In the study, a decay or reaction term and a convective term are incorporated in order to see the 

behaviour of the concentration under Dirichlet boundary condition. 

Model Formulation 

The transport of a contaminant through a homogeneous finite medium of length x L under transient state 

flow is formulated. It is assumed that at time 0t  , the flow is not clean. Let ic be the initial contaminant 

concentration and  , ,c x y t  describe the distribution of the concentration at all points in the flow domain. 

A time dependent concentration is assumed at the boundary  0x  of the flow. The velocities of the flow 

in the horizontal and vertical direction are  u t  and  v t  respectively. 

Following the work of Lee and Kim (2012); Jimoh and Shuaibu (2021); Olayiwola et al. (2013); Jimoh and 

Adebayo (2021); the cross-flow contaminant flow model can be formulated as follows:  

L LT TL T

c s c c c c c c
u v D D D D c

t t x y x x y y x y


            
          

            
  (1) 

i.e;  

 
2 2 2

2 2
1 2L T LT

c c c c c c
kd D D D u v c

t x y x yx y


     
      

     
   (2) 

Since 

2 2

LT TL

c c
D D

x y y x

 


   
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Where LD  is the Longitudinal dispersion coefficient, TD  the vertical dispersion coefficient, TL TLD D is 

cross-flow vertical dispersion coefficient, c  solute concentration in the liquid phase, v  seepage or 

average pure water velocity and  u initial velocity. 

 

By introducing a new time variable,  

 
1

f t dt
R

            (3) 

where   e qtf t R           (4) 

 

and also introducing a space variable,  

0

0

T

L

D
x y

D
            (5) 

 

The use of the transformations (3), (4) and (5) in equation (2) result into the following: 

0 0

0 0 0

0 0

22 2 2

0 0 02 2 2
2

T T

L T LT

L L

D Dc c c c c c
D D D u v c

D D


     

     
     

     
  (6) 

 

Further simplification of equation (6) leads to 

0 0 0

0 0

0 0 0

2 2

0 0 02
2

T T T

L LT

L L L

D D Dc c c
D D u v c

D D D


  

     
        
     
   

   (7) 

By taking  0 0

0 0

0 0

2

2 ,
T T

L LT

L L

D D
D D D

D D
    and 0

0

0 0

T

L

D
u u v

D
     (8) 

 

Equation (7) may be written as  
2

2

c c c
D u c

  

  
  

  
        (9) 

The associating initial and boundary conditions are as chosen below 

 ,0 ; 0ic c           (10) 

   00, 1 ; 0qc c e            (11) 

 , 0,c l l           (12) 

 

By applying the new time variable in equation (3) on the boundary conditions, the initial boundary value 

problem becomes 

 

   

 

2

2

0

,0

0, 2

, 0

i

c c c
D u c

c c

c c q

c l


 



 



  
   

  
 
 

 

       (13) 
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Non-dimensionalization 

Equation (13) is non-dimensionalized with the aid of the dimensionless variables 

*

0

*

*

ic
c

c

l

u

l








 




 



 


         (14) 

The non-dimensionalized equation with the initial and boundary conditions (13) becomes 

 

 

 

* 2 * *
* * *

* *2 *

*

0

*

, 0

0, 2 ; 0

1, 0; 1

i

c c c
D c

c
c

c

c q

c


  



  

 

  
   

   
 

  


  

      (15) 

 

The parameter expanding method is applied to the equation (15) as follows: 

Let      *

0 1, , , ...c c c          

and with the assumption 1 b  in the advection term of equation (15) as used in [16]. The following 

equation is obtained (15) 

             

      

      

2
2 * 2

0 1 2 0 1 22

2

0 1 2

2

0 1 2

, , , ... , , , ...

, , , ...

, , , ...

c c c D c c c

b c c c

c c c

               
 

        


        

 
       

 

  

     
 

   

  

(16) 

From equation (16) the following equations are generated for order zero and order one: 

         

 

 

 

 

2
*

02

0

0

,

, 0

0, 2

1, 0

i

c
D c

c
c

c

c q

c

 
 



 



 
 

  
 

 


 
 

       (17) 
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 

 

 

2
*1

1 0 02

1

1

1

,0 0

0, 0

1, 0

c
D c b c c

c

c

c

 







  
   

  
 


 

      (18) 

 

The above equations (17) and (18) are transformed to satisfy the homogeneous boundary conditions. This 

is done by using a function  0 ,g    which satisfies the boundary conditions: 

        0 ,g
l


                 (19) 

where   2 q     and   0    

so that  

     0 0 0, , ,c w g               (20) 

 

Substituting (20) into (17) and (18), the following initial boundary value problems are obtained:  

 

   

 

 

2
*0 0

2

0

0

0

0

1

,0 2 1

0, 0

1, 0

i

w w
D q

c
w

c

w

w


 

 





 
   

  
   




 

       (21) 

 

 

 

 

2

* 01 1

02

1

1

1

,0 0

0, 0

1, 0

ww w
D b w

w

w

w

 







 
   

  
 


 

      (22) 

 

Then equations (21) and (22) are solved by Eigen-function expansion technique to obtain a solution of the 

form: 

   0

1

, sinn

n

w w n   




  

      (23) 

as used by [16].  

where  
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 
 

   

2
*

2*

0

n
D t

D n tl

n n nw e F t dt b e

 




 
            (24) 

   
0

2
, sin

l

nF F n d
l

            (25) 

 
0

2
sin

l

nb F n d
l

           (26) 

The solution of the initial boundary value problem (21) and (22) are therefore given below: 

    
 

     
2 2* *

0 3*
1 0

2 2
, 2 1 1 cos 1 2 sin

D n D ni

n

cq
c q e n e n

n cD n

   
     




 



                  
   (27)

 

   1 1, ,c w            (28) 

 
   

    

   

2 2* *

2*

1 3 2* *

0

2 1
, 1 sin

2
cos 1 2 sin

D n D n

D ni

q
c e e n

D n D n

c
n e n

n c

   

 

   
 

  


 



  
      
    

  
    

  

 

 

  (29) 

Therefore, the solution of the cross-flow dispersion problem (2) is therefore  

     0 1, , ,c c c               (30) 

where 
1

b


  (as approximated from the expansion perturbation parameter) 

RESULTS AND DISCUSSION 

In this section, the solution obtained for the cross-flow dispersion problem is expressed in graphical forms 

with the aid of the Mathematical software called MAPLE 16. The suitable initial values of the parameters 

used are  

1.0,1.0,0.3,0.4,5.1,0.1 00000  vuqDDD LTTL
and 1.0 . 
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Figure 1: Concentration Profile of Contaminant Concentration with Time for Varying Flow 

Resistance Coefficient. 

 

 

 

 

 

 

 

Figure 2: Concentration Profile of Contaminant Concentration with Vertical Distance y for 

Varying Flow Resistance Coefficient. 

 

Figure 3: Concentration Profile of Contaminant Concentration with Time for Varying Decay 

Parameter. 
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Figure 4: Concentration Profile of Contaminant Concentration with Horizontal Distance y for 

Varying Initial Decay Coefficient. 

 

 

 

 

 

 

 

 

Figure 4: Concentration Profile of Contaminant Concentration with Time for Varying 

Longitudinal Dispersion Coefficient. 

 

 

 

 

 

 

 

Figure 6: Concentration Profile of Contaminant Concentration with Vertical Distance y for 

Varying Initial Horizontal Dispersion Coefficient. 
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Figure 7: Concentration Profile of Contaminant Concentration with Time for Varying Vertical 

Dispersion Coefficient. 

 

Figure 8: Concentration Profile of Contaminant Concentration with Horizontal Distance x for 

Varying Initial Vertical Dispersion Coefficient. 

 

 

Figure 9: Concentration Profile of Contaminant Concentration with Vertical Distance y for 

Varying Initial Horizontal Dispersion Coefficient. 
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Figure 10: Concentration Profile of Contaminant Concentration with Time for Varying Cross-flow 

Dispersion Coefficient. 

 

 

 

 

 

 

 

 

 

Figure 11: Concentration Profile of Contaminant Concentration with Horizontal Distance x for 

Varying Initial Cross-flow Dispersion Coefficient. 

 

 

 

 

 

 

 

 

 

Figure 12: Concentration Profile of Contaminant Concentration with Vertical Distance y for 

varying Initial Cross-flow Dispersion Coefficient. 
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Figure 13: Concentration Profile of Contaminant Concentration with Time for Varying Initial 

Horizontal Velocity Coefficient. 

 

 

 

 

 

 

Figure 14: Concentration Profile of Contaminant Concentration with Vertical Distance y for 

Varying Horizontal Velocity Dispersion Coefficient. 
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Figure 15: Concentration Profile of Contaminant Concentration with Time for Varying Initial 

Horizontal Velocity Coefficient. 

 

 

 

 

 

 

 

Figure 16: Concentration Profile of Contaminant Concentration with Vertical Distance y for 

Varying Horizontal Velocity Coefficient. 

 

CONCLUSION  
The contaminant flow model that incorporates the cross-flow dispersion and decay parameter was 

formulated with associated Dirichlet boundary conditions. The problems was solved by using combination 

of parameter expanding method, Eigen-Functions expanding technique and direct integration method. 

The behaviours of the flow were expressed in graphical form in order to study and interpret the behaviour 

of the concentration of the contaminant as the values of the parameters are varied. Findings show that the 

concentration of the contaminant decreases with time for increasing values of the parameters, 

1.0,1.0,0.3,0.4,5.1,0.1 00000  vuqDDD LTTL
and ,1.0 . 
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