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Abstract  
An optimized one-step hybrid block method for the numerical solution of first-order initial value 
problems is constructed. The method takes into consideration two and four intra-step points 
which are chosen appropriately to optimize the local truncation errors of the main formulas for 
the block. The method is zero-stable and consistent with fifth and seven algebraic order. Some 
standard examples such as Riccati equation, system of linear equation and chemical equation are 
discussed to show the accuracy of the proposed method over the existing method in the 
literature. 
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Introduction 
The mathematical models in engineering and many spheres of human endeavours often lead to 
initial value problem of ordinary differential equations of the form: 

 

( , )y f x y

y a 

 


           (1) 

 ,x a b  

According to Modebei et al. (2019), differential equation is a mathematical equation that relates 
one or more functions and their derivatives. Functions are used to represent physical quantities 
in applications, derivatives are used to characterize their rates of change, and differential 
equations are used to create a relationship between them. The primary goal of studying 
differential equations is to examine their solutions (the set of functions that satisfy each equation) 
as well as their attributes. Only the most fundamental differential equations can be solved using 
explicit formulas; nevertheless, many aspects of differential equation solutions can be known 
without precisely computing them. When there is not a closed-form equation for the solution, it's 
often possible to approximate it numerically using computers. While the theory of dynamical 
systems stresses qualitative analysis of systems described by differential equations, many 
numerical approaches have been developed to determine solutions with a specified degree of 
precision. 

There are many problems in mathematics for which no analytic solution exists, as well as others 
for which analytic solutions are repetitious and the answer is in the form of a boundless solution 
that must be deciphered after considerable computational effort. Hilbert et al., (1998). With the 
advent of fast modern computers, numerical methods have become more appealing for 
addressing practical issues by eliminating the tiresome dull redundant human mathematical 
calculations. This is due to the systematic approach numerical method receives in critical thinking, 
which is similar to computation. These calculations are effectively converted into machine-
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readable code. As a result, numerical analysis serves as a bridge between mathematics and 
computers. 

Several numerical methods have been designed and proposed in literature for solving second 
order ordinary differential equations. For example, Areo and Adeniyi (2013) developed a self-
starting linear multistep method and applied it to solve second order IVPs of ODEs directly. Two 
intra step grid points were considered by means of collocation and interpolation approach. 
Abdelrehim and Omar (2015) proposed a single-step hybrid block method of order five to solve 
second order ODEs. In the work of Olabode and Momoh (2016), continuous hybrid multistep 
method with Legendre polynomial as the approximate solutions was investigated to obtain the 
approximation of stiff second order ODEs. Also, two intra step grid points were considered by 
means of collocation and interpolation approach. More so, Sunday et al. (2014) developed 
numerical solution of stiff and oscillatory first order differential equations, using the combination 
of power series and exponential function as basis function. Momoh et al. (2014) used the same 
basis function to produce a new numerical integration for the solution of stiff first order ODEs. 
Most of the methods proposed for the solution of stiff problems are numerically unstable unless 
the step size is taken to be extremely small and the adoption of implicit A-stable schemes is 
better for the solution of stiff or stiff oscillatory problems. Above all, most proposed numerical 
methods implemented in block modes were problem dependent. In other words, the numbers of 
interpolation are subject to the order of the problem. 

In this research, a class of one-step second derivatives method with intra-step points for the 
solution of initial value problems of ODEs is proposed. The method is implemented in block mode 
and problem independent.  

Derivation of the method 

The proposed one-step second derivative, intra-step block numerical method for the solution of 
stiff systems of first order ordinary differential equations is given as 
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And the additional formula 
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Where 1  and 1 are not equal to zero, 
j and 

j  are constant coefficient to be determine,  is 

use to denote the intra-step points. 

Equations (2) and (3) are derived using the interpolation and collocation techniques of a trial 
function of the form 
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where 
ja are unknown coefficient to be determined, r is the number of interpolation and s is the 

number of collocation points. Interpolating (4) at nx  and collocating its first and second 

derivatives at 1nx  and a countable number of intra-point is defined as 
n nx x h    ,  (0,1)

. This leads to a system of non-linear equations in the form: 
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This is evaluated using matrix inversion method to have ,ja s and then substituting into equation 

(4) to obtain to obtain the continuous scheme of the form 

 2

0 1 1 1 1( ) ( ( ) ( ) ( )n n n n ny x y h x f x f x f h g              (6) 

The equation (6) generates the main and additional algorithm which are merged to generate 
approximate solution simultaneously. In this paper, two sets of intra-step points are applied: 
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One-step second derivative block method with two intra-step points (OSDBM2) 

The specification for deriving this method is given as: 
, 1

1 2
1, , ,

3 3
n nk x x x 
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and following (3) to (5), we obtain one-step second derivative block method: 

2

1 1 2 1 1

3 3

13 9 9 13 1

120 20 40 40 60
n n n n n

n n
y y hf hf hf hf h g  

 
        (7)

2

1 1 2 1 1

3 3 3

367 19 7 127 19

3240 60 40 1620 1620
n n n n

n n n
y y hf hf hf hf h g 

  
        (8) 

2

2 1 2 1 1

3 3 3

43 7 1 11 2

405 15 15 405 405
n n n n

n n n
y y hf hf hf hf h g 

  
        (9) 

One-step second derivative block method with 4 intra-step points (OSDBM4) 

The specification for deriving this method is given as:  1
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and the block method are obtained as follows: 
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Analysis of Basic Properties of the Methods.  

3.1 Order and error constants 

The approach of Garba and Mohammed (2020) for determining the order of a numerical 
scheme is adopted in the analysis of order and error constants of the new block methods. 
Hence the new methods have uniform orders and their respective error constants are presented 
below. 

Table 1: Order and Error Constants for (OSDBM2) 

Equation   order p   error constants 1PC   

 (7)   5      
1

64800
 

 (8)   5      
283

2624400


 

 (9)   5      
2

164025
 

 

Table 2: Order and Error Constants for (OSDBM4) 

 

Equation   order p    error constants 1PC   

(10)    7     
11

529200000
 

(11)    7     
2633

110250000000
 

(12)    7     
187

10335937500
 

(13)    7     
257

12250000000
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(14)    7     
16

861328125  

3.2 Consistency: Also, as stated in Mohammed et al. (2021), a linear multistep method is said 
to be consistent if it has order 1p  . As seen from the tables above, the two new methods 

satisfy the condition for consistency.  

3.3. Zero stability 

Definition: A block linear multistep method is said to be zero stable if the roots of the first 

characteristic polynomial ( )p   satisfied | | 1, 1,2.......j j    and for those roots with | | 1,j  the 

multiplicity must not exceed 1. To establish the zero-stability of the new methods, we write the 
proposed one-step second derivative block methods as a matrix differences equation as follow 

(1) (0) (0) (1) 2 (0) (0)

1 1 1w W W W WA A Y h B F B F h C G C G  
             (15) 

And the matrices  
(1) (0) (1) (0) (1), ,B ,B ,A A C  and (0)C  are matrices whose first entries are given by 

the coefficients of the methods whose first characteristic polynomials is given as 

(1) (0)( )P A A           (16) 

Equations (6) to (8) are written in the form of equation (14) for (OSDBM2) and we have 
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Using equation (15) we obtain 

 2( ) 1 0P       

 0,0,1           (17) 

Hence the method is zero stable since it satisfies 1j   

Similarly, equations (9) to (13) for (OSDBM4) are also written in the form of equation (15) as 
follows: 
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 
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42000
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(1)

4919 6347 2563 307 129571

22400 37800 16800 2800 3024000

3797 38 283 227 5489

12600 4725 3150 3150 189000

6567 127 1233 291 4393

22400 1400 5600 2800 112000

52 344 176 2 548

175 4725 525 175 23625

2375 125 625 125 3103

8064 1512 2016 1008
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 
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
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0 0 0 0
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37
0 0 0 0
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87
0 0 0 0
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16
0 0 0 0

7875

11
0 0 0 0

2016

C
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 
 
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 
 
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Then the first characteristic polynomial is given as  

 4( ) 1 0P       

 0,0,0,0,1           (18) 

Hence the method is zero stable since it satisfies  1j  . 

 

Convergence of the method 

Consistency and zero stability are both required and sufficient for a linear multistep technique to 
reach convergence in the spirit of Lambert (1973) and Kuboye and Adeyefa (2021). As a result, 
we infer that our technique is convergent since it has an order of accuracy greater than 1 (which 
implies consistency) and zero-stable. 

Numerical Experiment 

In this section, the first-order dynamical systems with applications in population dynamics, 
chemical equations, and vibration theory are implemented. The resultant iterative techniques are 
discretized into the following form: 

     , , , , 0,1n j n j n j n j n j n jy f x y y g x f j     
          (19) 

and treated as a block which requires no starting values and predictors. Using the known initial 

condition,  ny x  for 0,1,..., 1n N  , the first order IVPs are solved in the N  non-overlapping 

block points    0 1 1, ,..., ,N Nx x x x , with the step size defined in the usual way as 1n nh x x   .  

Problem 1: Consider the Riccati equation  
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 2 2 1, 0 0y y y y      ,  

with the exact solution:  
1 2 1

1 2 tanh 2 log
2 2 1

y x x
  

        

  

Problem 2: Consider the system of linear equation  

 

 

1 1 2 1

2 1 2 2

15 15 0 1

15 15 0 1

x

x

y y y e y

y y y e y





     

    
, 

with the exact solution:    1 2;x xy x e y x e    

Problem 3: Consider the following system of chemical equation  

 

 

1 1 2 1

2 1 2 2

500000.5 499999.5 0 0

499999.5 500000.5 0 2

y y y y

y y y y

    

   
,  

with the exact solution:    
6 610 10

1 2;x x x xy x e e y x e e        

Problem 4: Consider the following system of nonlinear equation  

 
 

 

2

1 1 2 1

2 2 2

1
, 0

2

, 0 1

y y y y

y y y




    


   

  

Where 10000  , The exact solution is  
 

 
2

1 2,
2

x
xe

y x y x e



  


 

 

Table 1: Comparison of Absolute Errors for Problem 1 with variable step size 

x Error in Kashkari 
and Syam (2019) 

h  = 0.05 

Abolarin et. al, (2020) 

h = 0.1 

Error in (OSDBM2) 

 h  = 0.05 

Error in (OSDBM4)  

h  = 0.1 

1.0 1.41810-11 9.10410-15 1.28010-10  3.95210-12 

2.0 7.23410-13 7.10510-15 8.25410-11 1.12310-13 

3.0 1.16310-13 8.88210-15 1.66410-13 1.36010-15 

4.0 2.13210-14 2.12110-14 4.44710-13 1.27110-15 

5.0 2.66410-15 1.36810-13 5.38010-14 1.63410-16 

6.0 4.44110-16 7.98310-13 4.80410-15 1.49110-17 

7.0 4.44110-16 3.69910-12 3.80810-16 1.24010-18 

8.0 4.44110-16 - 2.81710-17 8.98810-20 

9.0 4.44110-16 - 2.00110-18 2.97210-20 

10 4.44110-16 - 1.38210-19 5.88510-20 
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Table 2: Comparison of Absolute Errors for Problem 2  

x Error in Akinfenwa 
et. al, (2015) 

1

2

y

y
 

Error in 
Ezzeddine and 
Hojjati (2012) 

1

2

y

y
 

Error in 
(OSDBM2) 

1

2

y

y
 

Error in 
(OSDBM4) 

1

2

y

y
 

5.0 9.73010-17 

9.54010-18 

2.23010-15 

3.04010-15 

3.07110-19 

2.34010-19 

4.12310-26 

3.17110-26 

10 4.68010-19 

2.71010-19 

2.27010-17 

2.83010-17 

4.58810-21 

2.22810-21 

6.16710-28 

3.02810-28 

15 3.92010-21 

2.44010-21 

6.56010-19 

1.50010-19 

4.82610-23 

1.24810-23 

6.49310-30 

1.70910-30 

20 4.30010-23 

4.14010-24 

2.76010-21 

1.52010-22 

4.26210-25 

2.30010-26 

5.74010-32 

3.34810-33 

 

 

Table 3: Comparison of Absolute Errors for Problem 3 

x Tahmasbi  (2008),  

1

2

y

y
  

h = 0.00001 

Error in 
Akinfenwa et. 

al, (2017) 

1

2

y

y
 

 h = 0.0001 

Error in 
(OSDBM2) 

1

2

y

y
  

h = 0.0001 

Error in 
(OSDBM4) 

1

2

y

y
  

h = 0.001 

0.2 6.20010-14 

6.20010-14 

3.93010-25 

3.93010-25 

2.52710-26 

2.52710-26 

1.24510-29 

1.24510-29 

0.4 1.02010-13 

1.02010-13 

6.57010-25 

6.57010-25 

4.13810-26 

4.13810-26 

2.03810-29 

2.03810-29 

0.6 6.05010-14 

6.05010-14 

8.00010-25 

8.00010-25 

5.08210-26 

5.08210-26 

2.50410-29 

2.50410-29 

0.8 4.48010-14 

4.48010-14 

8.72010-25 

8.72010-25 

5.54710-26 

5.54710-26 

2.73310-29 

2.73310-29 

1.0 4.41010-14 

4.41010-14 

8.90010-25 

8.90010-25 

5.67710-26 

5.67710-26 

2.79710-29 

2.79710-29 

 
Table 4: Comparative Analysis of Result of Problem 4 
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x   Error in Mehdizadeh 
et.al, (2012) 

h = 0.0001 

1

2

y

y
 

Error in Akinfenwa et. al. 
(2017) 

h = 0.1 

1

2

y

y
 

Error in (OSDBM4) 

 h=0.1 

1

2

y

y
 

3 2.4810-11 

2.4710-06 

192.03 10   

141.44 10  

 2.9510-21 

2.9610-16 

5 3.4510-14 

2.3010-08 

201.20 10  

153.21 10  

9.0010-23 

6.6810-17 

10 3.4610-18 

3.1510-11 

201.11 10  

174.38 10  

8.1710-27 

9.0010-19 

 

Discussion of Results 

Problem is a quadratic Riccati differential equation. The derived methods are implemented on 
this nonlinear equation. This problem has been solved by Kashkari and Syam (2019) and Abolarin 
et. al, (2020), with different step sizes. In Table 1 the newly derived methods outperform the 
methods in Kashkari and Syam (2019), and Abolarin et. al, (2020) even with higher step sizes.  

Problem 2 is a stiff system of ordinary differential equation; this system has eigenvalues of large 
modulus lying close to the imaginary axis −115i. This problem is solved using the newly derived 
methods and the absolute errors are compared in table 2 with the methods of Ezzeddine and 
Hojjati (2012) and Akinfenwa et. al, (2015). It is seen that the single step method with 2 intra-
step points is superior to the method of Ezzeddine and Hojjati (2012) and that of Akinfenwa et. 
al, (2015) (also a 2 – step method). 

Problem 3 is a strongly stiff system with stiffness ration 1:106. This problem is solved using the 

proposed methods in this paper on the range  0,1 . This problem is also solved in the methods 

of Tahmasbi (2008), and Akinfenwa et. al, (2017). The results in these methods are presented 
in table 3 and compared the one of the proposed methods. It is seen that the method (OSDBM2) 
using h = 0.0001 outperforms that of Akinfenwa et. al, (2017) using the same step size, and also 
performs better than that of Tahmasbi (2008) whose step size is smaller (h = 0.00001). 

The last problem considered in this work is the nonlinear system of ordinary differential equation 

in problem 4. This problem is solved using the new methods in this paper on the range  0,1 . 

This problem is also solved in the methods of Mehdizadeh et.al, (2012) and Akinfenwa et. al, 
(2017). The results in these methods are presented in table 4 and compared with the one of the 
(OSDBM4). It is seen that the method (OSDBM4) using h = 0.1 outperforms that of Akinfenwa 
et. al, (2017) using the same step size, and also performs better than that of Mehdizadeh et.al, 
(2012) whose step size is smaller (h = 0.0001). 
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Conclusion 

In this paper, we construct an optimized one-step hybrid block method for the numerical solution 
of first-order initial value problems. The continuous formulation of the method takes into 
consideration two and four intra-step points which are chosen appropriately to optimize the local 
truncation errors of the main formulas for the block. The methods are zero-stable and consistent 
with fifth and seven algebraic order respectively. Some standard examples such as the nonlinear 
Riccati equation, system of nonlinear equation and chemical equation are discussed to 
demonstrate the effectiveness of the methods over the existing method in the literature. As a 
result, these methods are recommended for solving real-life problems especially the ones without 
any known analytical solution. 
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