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Abstract 
This paperpresents a theoretical study of blood flow and heat transfer in the cardiovascular 
system of human undergoing tumor treatmentunder the action of an externally applied 
magnetic field. The fluid (blood) medium is assumed to be porous in nature. The variable 
viscosity of blood depending on hematocrit is taken into account in order to improve 
resemblance to the real situation. The temperature-dependent blood thermal conductivity is 
considered. The transient governing equations for laminar, incompressible Newtonian fluid 
and heat transfer is solved by using Olayiwola’s Generalized Polynomial Approximation Method 
(OGPAM). The solutions are obtained for flow velocity and heat transfer in both tissue and 
blood. The computations were done using Computer Symbolic Algebraic Package MAPLE 17 
version and the results are presented graphically. It is observed that the influence of 
hematocrit, magnetic field, permeabilty parameter, Reynolds number and Pressure gradient 
have important impact on the velocity profile. Moreover, the effect of Peclet number, pressure 
gradient and perfusion mass flow rate on the tissue and blood temperature profiles has been 
significantly observed. It can be concluded from the results obtained that the flow of blood 
can be controlled by the application of an external magnetic field. 
 
Keywords: Blood flow, Cardiovascular system, heat transfer, Hematocrit, thermal  

        conductivity 
 
Introduction 
The cardiovascular system is the blood transport mechanism that enables the nutrient 
transport to the tissues and organs of the body and the removal of various waste and toxic 
substances (Urquiza et al., 2005). It consists of three major components listed as the heart 
(the system’s pump that pump blood around the body), the blood vessel (the delivery routes 
like) and the blood (a fluid that contains the needed oxygen and nutrients for the body and 
carries the wastes that needed to be removed). Generally, the cardiovascular system 
comprises of two connected distinct systems: The systemic circulation that provide organs, 
tissues and cells with blood so that they can get oxygen and other vital substances (Taura et 
al., 2012), the pulmonary circulation where the fresh oxygen we breathe in flows into the 
blood. Simultaneously, carbon dioxide is being released from the blood.The major function of 
cardiovascular system is to support blood flow to all parts of the body for its survival. 
 
The examination of heat transfers and blood flow in biological processes demands exact or 
careful mathematical models. The biological processes normally involve two stages namely 
solid and liquid (fluid). Thermal ablation therapy is an application of heat transfer and fluid 
flow in biological processes. Temperature plays an important role with tissue interactions 
(Aiyesimi & Salihu, 2016). The blood flow in a tissue mainly has a direction from artery to vein 
passing through the capillary bed, the blood and its surrounding tissues are not in thermal 
equilibrium when the blood vessel diameter is larger which means the energy equations for 
tissue and blood in large vessels must be treated one at a time. One of the crucial issues of 
thermal treatments is blood flow. Blood flow usually drains the free heat from the heating 
region, which causes inadequate thermal dose in the targeted volume. 
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The studies of blood flow via a porous medium have gained serious attention to the medical 
practitioners as a result of its massive changes in the flow conditions. Dash et al. (1996) 
studied the Brinkman equation to model the flow of blood when there is an accumulation of 
fatty plaques in the lumen of an arterial part. They treated the clogged segment as a porous 
medium. Bhargava et al. (2007) analyzed the transport of pharmaceutical species in laminar, 
homogeneous, incompressible, magneto-hydrodynamic, pulsating flow via two dimensional 
channels with a porous wall containing non-porous materials. Misra and Shit (2007) and Misra 
et al. (2011) considered a mathematical model and numerical model for analyzing blood flow 
via a porous vessel with a magnetic field where the viscosity varies in the radial direction. Shit 
and Roy (2012) presented a paper on a theoretical study of blood flow through a tampered 
and overlapping stenosed artery under the action of an externally applied magnetic field with 
the blood medium assumed to be porous in nature. The variable viscosity of blood depending 
on hematocrite (percentage volume of erythrocytes) is taken into account. 
 
The mathematical equations governingblood flow and heat transfer in the cardiovascular 
system of a human undergoing hyperthermia treatment is presented and solved using 
Olayiwola’s Generalized Polynomial Approximation Method (OGPAM). The graphical 
summaries of the system responses is also considered. 
 
Problem Formulation 
Here, the blood is assumed to be incompressible and has uniform dense throughout but the 

viscosity )(r  varies in the radial direction. The work of Shit and Roy (2017) is extended with 

the equation governing the blood flow under a closed watch of an external magnetic field via 
blood as follow: 
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Einsten’s formula for the variable viscosity of blood is taken to be 

( ) ( )( )rhr  += 10                                                                                                                 (2) 

The analysis will be carried out by using the following empirical formula for hematocrit given 
by 
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The work of Horng et al. (2015) is also extended with the governing equations of the 
temperature evolution for the tissue andblood vessels as follow: 
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(5) 

We adopt no-slip boundary condition at the vessel wall and we put into consideration the axis-
symmetric boundary condition of axial velocity at the mid line of the vessel with the 
assumptions that the blood vessel segment is straight, that the vessel wall is rigid and porous. 
Also, we assume that the flow is laminar, incompressible and Newtonian. Thus, the initial and 
boundary conditions are formulated as: 
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Where z  is the axial distance, r is the radial distance,   is the density, w  is the axial velocity 

of blood flow, 0w  is the initial axial velocity of blood flow, p  is the blood pressure, ( )r  is 

the blood viscosity at a radial distance r, ( )rh is the hematocrit at a distance r, H  is the 

maximum hematocrit at the center of the artery, 0 is the coefficient of viscosity of plasma, 

0R  is the radius of a normal arterial segment,   is a constant whose value for blood is equal 

to 2.5,   is the electrical conductivity, 0B  is the applied magnetic field strength, k is the 

permeability of the porous medium, tk  is the thermal conductivity of tissue, bk  is the thermal 

conductivity of blood, tc  is the specific heat capacity of tissue, bc  is the specific heat capacity 

of blood, tT  is the tissue temperature, bT  is the blood temperature, aT  is the ambient 

temperature that is normally assumed to be C037 , bW is the perfusion mass flow rate, 

( )tzrQt ,, is the tissue power of heat added axis symmetrically, ( )tzrQb ,,  is the blood power 

of heat added axis symmetrically and L  is the length of vessel wall. 
 
Dimensional Analysis 

We non–dimensionalize equations (3.1) – (3.8) using the following dimensionless variables: 
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Therefore, the dimensionless equations with their initial and boundary conditions are: 
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Transformation 

We introduced a new space variable as: 

2 r z = +                                                                                                                                     (12) 

Then, equations (8) – (11) reduced to 
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Method of Solution 
In other to solve equations (13) – (16), the Olayiwola’s generalized polynomial approximation 
method(OGPAM) (Olayiwola, 2022) is employed and we obtain 
 

( ) ( )( )1 22

1

, 1 1B tB
t e

B
  = − −                                                                                                        (17) 

( ) ( )( )5 26

5

, 1 1
B tB

t e
B

  −
= − −                                     (18) 

( ) ( )2, 1
0

t   


= −
=

                                     (19) 

 
Where, 
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Results and Discussions 
In this analysis, we solved the equations governing the blood flow and heat transfer in the 
cardiovascular system of human undergoing tumor treatment analytically using OGPAM. This 
is to see the effect of parameters involved on the axial velocity of blood flow, tissue 
temperature and blood temperature. Finally, we examined the effect of the Permeability 

parameter ( )k , Peclet number ( )1eP , Pressure gradient parameter ( )C , Perfusion mass flow 

rate ( )1 , Temperatures ratio ( ) , Hartman number ( )M on the velocity and temperatures. 

The computations were done using computer symbolic algebraic package MAPLE 17. 

 
 
Figure 1: Graph of velocity against distance for different values of Hartmann 
                number 
 

Figure 1 displays the graph of velocity profile ( ), t   for different values of Hartmann number

( )M . It is observed that velocity decreases along the distance and this velocity decreases as 

Hartmann number increases. 
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Figure 2: Graph of velocity against time for different values of permeability  

      Parameter 
 

Figure 2 shows the graph of velocity profile ( ), t   for different values of permeability 

parameter ( )k . It is observed that velocity increase and later became steady with time and 

maximum velocity increases as value permeability parameter increases. 
 

 
Figure 3: Graph of tissue temperature against distance for different values of  
          Peclet number 
 

Figure 3 shows the graph of tissue temperature profile ( ),t   for different values of Peclet 

number ( )1eP . It is observed that tissue temperature decreases along the distance and this 

temperature increases as Peclet number increases. 
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Figure 4: Graph of tissue temperature against time for different values of  
        perfusion mass flow rate 
 

Figure 4 depicts the graph of tissue temperature profile ( ),t   for different perfusion mass 

flow rate ( )1 . It is observed that tissue temperature increase with time and maximum 

temperature increases as perfusion mass flow rate increases. 

 
Figure 5: Graph of blood temperature against distance for different values of  

     pressure gradient parameter 
 

Figure 5 shows the graph of blood temperature profile ( ), t   for different values of pressure 

gradient parameter ( )C . It is observed that blood temperature decreases along the distance 

and this temperature decreases as values of pressure gradient increases. 
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Figure 6: Graph of blood temperature against time for different values of  

     temperatures ratio 
 

Figure 6 depicts the graph of blood temperature profile ( ), t   against time for different 

values of temperature ratio ( ) . It is observed that we have positive blood temperature 

profile when 0  and 0  while we have negative blood temperature profile when 0 =

. This by implication means that variable thermal conductivity bring about increase in blood 
temperature. 

 
 
Figure 7: Graph of velocity against distance for different values of Reynolds  

     number 
 

Figure 7 displays the graph of velocity profile ( ), t   for different values of Reynolds number

( )eR . It is observed that velocity decreases along the distance and this velocity increases as 

Reynolds number increases. 
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Figure 8: Graph of velocity against time for different values of hematocrit 
 

Figure 8 shows the graph of velocity profile ( ), t   for different values of hematocrit ( )H . It 

is observed that velocity increase and later became steady with time and maximum velocity 
decreases as values of hematocrit increases. 
 
Conclusion 
For variable viscosity and blood thermal conductivity, we have solved the equations governing 
the blood flow and heat transfer in the cardiovascular system of human undergoing tumor 
treatment analytically using OGPAM. The effects of the dimensionless parameters as shown 
on the graphs were analyzed. From the results obtained, all the parameters have appreciable 
impact on the system. 
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