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Abstract: This study investigates the performance of YOLOv8, a Convolutional Neural Network
(CNN) architecture, for multi-crop classification in a mixed farm with Unmanned Aerial Vehicle
(UAV) imageries. Emphasizing hyperparameter optimization, specifically batch size, the study’s
primary objective is to refine the model’s batch size for improved accuracy and efficiency in crop
detection and classification. Using the Google Colaboratory platform, the YOLOv8 model was
trained over various batch sizes (10, 20, 30, 40, 50, 60, 70, 80, and 90) to automatically identify the five
different classes (sugarcane, banana trees, spinach, pepper, and weeds) present on the UAV images.
The performance of the model was assessed using classification accuracy, precision, and recall with
the aim of identifying the optimal batch size. The results indicate a substantial improvement in
classifier performance from batch sizes of 10 up to 60, while significant dips and peaks were recorded
at batch sizes 70 to 90. Based on the analysis of the obtained results, Batch size 60 emerged with
the best overall performance for automatic crop detection and classification. Although the F1 score
was moderate, the combination of high accuracy, precision, and recall makes it the most balanced
option. However, Batch Size 80 also shows very high precision (98%) and balanced recall (84%),
which is suitable if the primary focus is on achieving high precision. The findings demonstrate
the robustness of YOLOv8 for automatic crop identification and classification in a mixed crop farm
while highlighting the significant impact of tuning to the appropriate batch size on the model’s
overall performance.

Keywords: precision agriculture; smart farming; convolutional neural network; YOLOv8;
hyperparameter; multi-crop classification; unmanned aerial vehicles

1. Introduction

Agriculture has been the platform from which human sustainability evolves over time,
even with the spontaneous increase in population in recent time to over seven billion [1].
The activities of farming have changed, and are still changing, from the known traditional
ways to a more sophisticated approach with the aid of evolving technology [2]. Planting one
kind of crop on a single area of land is changing to a system of mixed cropping on the same
area of land (mixed farming), which is gradually becoming a common practice [3]. Mapping
out crops in mixed farming for effective management to meet the purpose of better harvest
is a crucial component of precision agriculture. Therefore, the task of optimized multi-crop
classification in mixed farms has been a subject of interest for many agricultural researchers
worldwide [4]. This task involves the identification and classification of multiple crop types
in a single agricultural field.

The classification of multiple crops in mixed farming systems is a challenging yet vital
task which provides insights into the dynamics of crop combinations and their impact on
yields and sustainability [5]. While early studies on multi-crop classification focused on
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traditional rule-based methods and required enormous resources and time to execute [6],
with advancements in remote sensing technologies, machine learning, and deep learning
the approach to this task has evolved significantly [7]. Modern techniques, including
the use of satellite imagery, drones, and deep learning algorithms, have revolutionized
multi-crop classification because these methods offer higher accuracy and scalability [8].

The benefits of accurate crop classification are multifaceted. It enables optimized re-
source allocation, where farmers can efficiently distribute resources such as water, nutrients,
and pesticides to specific crops based on their individual needs. This approach supports
precision agriculture practices, allowing for site-specific management and data-driven
decision-making [9]. Furthermore, accurate classification aids in yield prediction, helping
farmers to estimate and plan for future harvests more accurately [10]. Nonetheless, crop
classification comes with its own set of challenges. Crops evolve over time, and change in
appearance as they progress through different growth stages. This can make classification
difficult, especially if the same field is used to plant different crops in various seasons.
Additionally, mixed planting nearby can lead to overlapping canopies, making it more
challenging to identify and classify crops accurately [11]. A range of tools and technologies
are available for crop classification in mixed farming. High-resolution satellite imagery can
provide an overview of the entire farm, assisting in large-scale classification [12]. Drones
equipped with cameras or sensors can capture detailed images of crops from a closer van-
tage point. Spectral imaging, such as hyperspectral or multispectral sensors, can capture
the unique spectral signatures of different crops, aiding in their identification [2].

In recent years, deep learning models such as Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs) have become useful models in precision agricul-
ture [7]. They can distinguish between different crops and even assess their health and
growth stage based on training data [2,12]. YOLOv8 is a popular CNN architecture released
on 10 January 2023, and has shown promising results in object detection and classifica-
tion [13]. It is a rapid, precise, and user-friendly model designed for tasks such as object
detection, segmentation, classification, and pose estimation. However, the performance of
YOLOv8, like other architectures, is highly dependent on hyperparameters, which means
that the choice of hyperparameters can significantly affect its performance. The algorithm
has several hyperparameters that can be tuned to improve its performance, including the
learning rate, batch size, number of epochs, and number of anchors.

Several studies have investigated the effect of hyperparameters on the performance of
deep learning models for object detection and classification, but only a few have focused
on performance for multi-crop classification in a mixed farm context. For example, in [14]
the authors investigated the effect of different hyperparameters on the performance of
YOLOv3 for crop classification using remote sensing data. They found that increasing the
batch size improved the accuracy of the algorithm. The authors also found that increasing
the number of anchors improved the recall rate of the algorithm. Similarly, a study by [15]
investigated the effect of hyperparameters (training epochs) on the performance of YOLOv5
for multi-crop classification in a mixed farm. The authors used remote sensing data to
classify five crop types and tuned the number of training epochs from 100 to 1000. They
found that increasing the number of epochs improved the accuracy of the algorithm until
the algorithm became saturated at the 700th epoch, when the model performance began
to decline. Several studies have investigated the impact of batch size on the performance
of deep learning models. In [16], the authors found that increasing batch size can lead
to better generalization performance, while [17] found that larger batch sizes can lead to
lower generalization errors. However, other studies have shown that the optimal batch size
varies depending on the dataset and network architecture [18–20]. Several studies have
investigated the impact of batch size on the performance of YOLOv3 and YOLOv4. In a
study by [21], the authors found that larger batch sizes can lead to better performance on
the COCO dataset. Similarly, [22] found that increasing batch size can lead to improved
accuracy and speed in object detection tasks. Hence, this study focuses on investigating the
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effect of varying batch sizes on the performance of YOLOv8 for multi-crop classification in
a mixed farm.

Study Area

The study area is mixed-crop farmland situated in the Lapan Gwari neighborhood of
Minna, the capital city of Niger State in Nigeria. Covering approximately 2.8 hectares, the
site is geographically located between (9◦31′33′′ N, 6◦30′02′′ E) and (9◦31′37′′ N, 6◦30′05′′ E)
at an elevation of about 250 m above sea level [15]. The farmland predominantly features
loamy soil. The crops grown on the farm include Banana (Musa spp.), Pepper (Capsicum
spp.), Spinach (Spinacia oleracea), and Sugarcane (Saccharum officinarum) [23,24]. Figure 1
describes the study area, providing a context from the broader region of Nigeria to the
specific site in Lapan Gwari.
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Figure 1. The study area in Lapan Gwari, Minna, Niger State, Nigeria [15,23].

2. Materials and Methods

The methodological approach adopted for the execution of this study is made up of
four important steps: (i) data collection and preparation, (ii) preprocessing, (iii) model
training, and (iv) evaluation metrics. The detailed breakdown of the approach used is
outlined as follows:

i. Acquisition of a diverse dataset of UAV images capturing various crop types found
in the mixed farm and preparation of a labelled dataset from the acquired images.

ii. Image resizing to standardized dimensions for compatibility with YOLOv8 input
requirements. The initial 4000 × 3000-pixel images were resized to 416 × 416 pixels.

iii. Implementation of the YOLOv8 architecture, known for its efficiency in object
detection tasks, for crop classification and experimenting with different training
batch sizes (10, 20, 30, 40, 50, 60, 70, 80, and 90) to investigate their impact on
model performance.
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iv. Systematically analyzing results across various batch sizes to identify trends and
variations in performance.

The procedure for developing and implementing a YOLOv8 architecture is described
in Figure 2.
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2.1. Data Acquisition

The data used for this study was the same used by [15,23,24]. The data were acquired
with the aid of a DJI Phantom 4 UAV (DJI, Shenzhen, China) equipped with an on-board
RGB camera with 12 megapixels of camera resolution and a focal length of 5.74 mm. The
drone was deployed at a flight altitude of 30 m and an average airspeed of 5 m/s with a
front overlap of 75% and a side overlap of 65%. A total of 1488 images were collected for
this study, out of which about 393 images were used, as these images were successfully
annotated by the Computer Vision Annotation Tool (CVAT) (https://www.cvat.ai/), an
interactive video and image annotation web-based tool for computer vision.

2.2. Image Preprocessing

The preprocessing procedures executed on the obtained images (Figure 3) are as
discussed below.
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Image resizing: Image resizing is a fundamental step aimed at standardization, which
facilitates the storage of images in a NumPy array format suitable for input into a deep
learning network. YOLOv8 typically requires input images to adhere to specific dimensions.
In this case, the original images, initially sized at 4000 × 3000 pixels, were resized to
416 × 416 pixels. This process ensures uniformity in input dimensions, a prerequisite that
enhances the ability of the YOLOv8 model to learn features effectively.

Normalization of Data: Normalizing pixel values is important for training deep learning
models. It involves scaling pixel values to a standardized range, often between 0 and 1. This
step helps to stabilize training while avoiding saturation of activation functions, improving

https://www.cvat.ai/
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model robustness, and mitigating sensitivity to initial weights. It prevents issues related to
convergence and ensures that input features are on a similar scale. This contributes to the
stability, efficiency, and generalization ability of the YOLOv8 model during training, which
promotes optimal performance on real-world data.

Data Augmentation: We artificially increased the diversity of the training dataset by
applying a transformation function to the images. This helps the model to generalize
better and improve its robustness. This diversification helps the YOLOv8 model to learn
more invariant features, which makes it more resilient to variations in real-world scenarios.
Essentially, data augmentation acts as a regularization technique that prevents overfitting
and ensures that the model performs well on unseen data by exposing it to a broader range
of variations during training.

Data Splitting: The dataset, consisting of 393 images, was divided into three subsets:
80% for training, 13% for validation, and 7% for testing (https://app.roboflow.com/final-
year-project-avilz/image-annotation-vv5yx/1 (accessed on 21 September 2023)). The
validation subset was used to evaluate the model’s performance during the training phase,
while the test subset was employed to measure the model’s effectiveness after training.
Figure 3 describes the workflow for the UAV image data preprocessing.

2.3. Implementation Architecture

The model design of YOLOv8’s network architecture is presented in Figure 4. The
model employs a feature extraction backbone network, typically the CSPDarknet53 ar-
chitecture, to capture hierarchical features from UAV images. This feature extraction is
important for identifying and classifying different crops, in this case including sugarcane,
banana trees, spinach, pepper, and weeds [23,24]. To refine features obtained from the
backbone, it incorporates a neck architecture such as Path Aggregation Network (PANet).
This refinement process facilitates feature aggregation across different scales, allowing the
model to effectively handle objects of varying sizes within the dataset. Anchor boxes, which
are predefined bounding box shapes learned during training, enhance object localization
and ensure accurate prediction of bounding box coordinates for each crop type. During
the training process, YOLOv8 learns from labelled images and ground truth annotations,
minimizing a loss function that considers both localization accuracy and classification per-
formance [25,26]. After obtaining predictions, the model applies postprocessing techniques
to filter out low-confidence detections and refine the final set of predictions for different
crop types. This is essential for ensuring the accuracy of crop classification in precision
agriculture [27].

2.4. Training Process

Before commencing model training, meticulous data preparation was carried out. The
dataset, which included annotated images with labelled objects, was divided into three
fundamental subsets: the training set, validation set, and test set, as described earlier.
Each batch size variant underwent this same data partitioning process to ensure equitable
training conditions. The YOLOv8 model’s configuration files were tailored to accommodate
the distinct requirements of each batch size. Each variant was configured to reference the
appropriate dataset directories and batch size. The training process began with the initial-
ization of the YOLOv8 model within the Google Colab environment. Importing the model
and its dependencies ensured the availability of essential libraries and configurations. For
the learning and identification tasks, a T4 GPU with 12 GB of RAM was used (NVIDIA
GeForce GTX TITAN X). The study was conducted on a workstation operating on Ubuntu
18.04 with GPU acceleration using a virtual machine setup, while Python (Python 3.8)
programming was employed for coding. The dataset consisted of images annotated with
labelled bounding boxes to identify the crops and weeds. As the primary objective of this
study was to examine the impact of batch size on the model’s performance, a dedicated
training script was executed for each batch size variant, referencing its specific dataset
directories and configuration files. The training process entailed a set number of epochs,

https://app.roboflow.com/final-year-project-avilz/image-annotation-vv5yx/1
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during which the model adapted and learned from the data. The batch sizes used were
10, 20, 30, 40, 50, 60, 70, 80, and 90, allowing for comparative analysis. Comprehensive
monitoring and metric analysis were conducted to assess the effect of batch size on the
training process. Loss, an essential metric, was monitored continuously. The TensorBoard
(https://www.tensorflow.org/tensorboard) tool facilitated real-time visualization of train-
ing metrics. The trained models for each batch size variant were evaluated using dedicated
validation sets, which assessed their ability to generalize and detect objects accurately.
Subsequently, the test set was employed to further validate the models’ performance.
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both the testing and validation datasets. The metrics used for this assessment included
recall (R), accuracy (A), F1 score (F1), and precision (P). According to [28,29], these metrics
are commonly employed in deep learning applications. The metrics used to assess the
performance of the YOLOv8 model are discussed as follows:

i. Accuracy (ACC): Accuracy is a fundamental metric that quantifies the model’s
overall correctness in its predictions. It is defined as the ratio of correctly classified
objects to the total number of objects.

ACC =
True Positives + True Negatives

Total Objects
(1)

ii. Precision (PR): Precision gauges the model’s ability to make correct positive predic-
tions. It is calculated as the ratio of true positive predictions to the total number of
positive predictions.

PR =
True Positives

True Positives + False Positives
(2)

iii. Recall (RC): Recall, also known as sensitivity or true positive rate, measures the
model’s capability to identify all relevant instances. It is defined as the ratio of true
positive predictions to the total number of actual positive instances.

RC =
True Positives

True Positives + False Negatives
(3)

iv. F1 Score (F1): The F1 score balances precision and recall to provide a single metric
that quantifies the model’s accuracy in detecting and classifying positive instances.

F1 = 2 · Precision. Recall
Precision + Recall

(4)

v. Precision Average (PR-AVG): The precision average is calculated as the arithmetic
mean of precision values for each class or category in the classification problem:

Precision Average (PR-AVG) =
1
N ∑N

i=1 Precisioni (5)

where N represents the number of classes.
vi. Recall Average (RC-AVG): Similarly, the recall average is computed as the average

of recall values for each class.

Recall Average (RC-AVG) =
1
N ∑N

i=1 Recalli (6)

For this study, precision, recall, and mean average precision (mAP) were employed
to evaluate the performance of the model under different batch size conditions. mAP is
derived from the precision–recall curve.

3. Results

The precision confidence curves for various batch sizes were analyzed in order to
evaluate the performance of the network training process. The network was trained with
batch sizes of 10, 20, 30, 40, 50, 60, 70, 80, and 90. The results indicated that the highest
precision of 0.984 was achieved at a batch size of 80. This was followed by batch sizes of
30 with a precision of 0.964, 10 with 0.950, 70 with 0.937, 60 with 0.897, 40 with 0.870, 20
with 0.835, and finally batch size 50 with the lowest precision confidence of 0.821. Figure 5
shows the precision confidence training and validation output across the experimented
batch sizes.
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3.1. Recall Confidence

It is essential to understand that setting the appropriate confidence threshold depends
on the specific application and the trade-off between missing detections (false negatives)
and accepting false positives. Figure 6 shows how the recall confidence level decreases as
the batch sizes are increased. The obtained recall confidence values for each of the batch
sizes were 0.840, 0.820, 0.780, 0.790, 0.750, 0.830, 0.770, 0.840, and 0.77 for batch sizes 10, 20,
30, 40, 50, 60, 70, 80, and 90, respectively. The highest recall confidence was recorded at
batch size 10 and 80.
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The confusion matrices obtained for all the batch sizes are presented in Figure 7a–i. In
the confusion matrices, the diagonal elements, running from the top left to the bottom right
represent the number of true positive (TP) predictions for each class. Figure 7a presents the
confusion matrix for batch size 10. Specifically, it shows that 67% of items in the “banana”
class, 30% in the “pepper” class, 46% in the “spinach” class, 59% in the “sugarcane” class,
and 6% in the “weed” class were correctly classified.

Conversely, 33%, 70%, 54%, 41%, and 94% of objects belonging to the banana class,
pepper class, spinach class, sugarcane class, and weed class, respectively, were classified
as “unknown.” These are instances where the classifier could not confidently assign these
objects to any specific class.
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Tables 1–9 present the crop-specific performance of the model at different batch sizes.
In these tables, the precision values span from 0 (indicating no precision) to 1 (perfect
precision), while the recall values also range from 0 (no recall) to 1.0 (ideal recall). For batch
size 10 (see Table 1), among the different classes ‘banana’ exhibited the highest precision
at approximately 0.884, making it the most precise class. This was followed by ‘spinach’,
‘pepper crops’, ‘sugarcane crops’, and finally ‘weeds’ with approximately 0.278 precision,
ranking as the least precise. For recall, the ‘banana’ class achieved the highest recall value
at approximately 0.778, making it the best recognized class. In descending order, the
classes ‘sugarcane crops’, ‘spinach’, ‘pepper crops’, and ‘weeds’ followed, with ‘weeds’
having the lowest recall value at approximately 0.118. This suggests that the classifier
identified fewer positive samples of ‘weeds’ compared to ‘spinach’, ‘bananas’, ‘pepper
crops’, and ‘sugarcane’.

Table 1. Details of the precision and recall obtained at batch size 10.

Class Images Instances Precision Recall mAP50 mAP50-95

Banana Tree 52 9 0.884 0.778 0.874 0.553
Pepper 52 10 0.536 0.578 0.577 0.226
Spinach 52 37 0.561 0.595 0.554 0.219
Sugarcane 52 37 0.29 0.676 0.431 0.15
Weeds 52 17 0.278 0.118 0.0962 0.0422
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Table 2. Details of the precision and recall obtained at batch size 20.

Class Images Instances Precision Recall mAP50 mAP50-95

Banana Tree 52 9 0.826 0.530 0.694 0.436
Pepper 52 10 0.612 0.634 0.733 0.275
Spinach 52 37 0.513 0.486 0.508 0.226
Sugarcane 52 37 0.511 0.568 0.509 0.202
Weeds 52 17 0.528 0.118 0.121 0.0703

Table 3. Details of the precision and recall obtained at batch size 30.

Class Images Instances Precision Recall mAP50 mAP50-95

Banana Tree 52 9 0.882 0.778 0.833 0.571
Pepper 52 10 0.503 0.609 0.695 0.237
Spinach 52 37 0.669 0.622 0.617 0.246
Sugarcane 52 37 0.439 0.529 0.445 0.195
Weeds 52 17 0.485 0.0588 0.0923 0.0437

Table 4. Details of the precision and recall obtained at batch size 40.

Class Images Instances Precision Recall mAP50 mAP50-95

Banana Tree 52 9 0.635 0.582 0.712 0.483
Pepper 52 10 0.423 0.442 0.441 0.135
Spinach 52 37 0.521 0.595 0.538 0.262
Sugarcane 52 37 0.304 0.514 0.368 0.152
Weeds 52 17 0.496 0.118 0.185 0.0807

Table 5. Details of the precision and recall obtained at batch size 50.

Class Images Instances Precision Recall mAP50 mAP50-95

Banana Tree 52 9 0.857 0.665 0.777 0.540
Pepper 52 10 0.465 0.600 0.495 0.129
Spinach 52 37 0.519 0.703 0.660 0.268
Sugarcane 52 37 0.344 0.568 0.428 0.209
Weeds 52 17 0.292 0.176 0.201 0.0628

Table 6. Details of the precision and recall obtained at batch size 60.

Class Images Instances Precision Recall mAP50 mAP50-95

Banana Tree 52 9 0.758 0.700 0.879 0.517
Pepper 52 10 0.796 0.800 0.762 0.190
Spinach 52 37 0.595 0.597 0.580 0.240
Sugarcane 52 37 0.306 0.568 0.500 0.264
Weeds 52 17 0.425 0.118 0.162 0.0532

Table 7. Details of the precision and recall obtained at batch size 70.

Class Images Instances Precision Recall mAP50 mAP50-95

Banana Tree 52 9 0.870 0.745 0.818 0.524
Pepper 52 10 0.393 0.600 0.391 0.102
Spinach 52 37 0.555 0.649 0.593 0.234
Sugarcane 52 37 0.349 0.723 0.546 0.249
Weeds 52 17 0.172 0.0588 0.101 0.0509
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Table 8. Details of the precision and recall obtained at batch size 80.

Class Images Instances Precision Recall mAP50 mAP50-95

Banana Tree 52 9 0.717 0.847 0.878 0.561
Pepper 52 10 0.505 0.510 0.598 0.157
Spinach 52 37 0.543 0.676 0.648 0.25
Sugarcane 52 37 0.389 0.655 0.407 0.206
Weeds 52 17 0.211 0.0588 0.110 0.048

Table 9. Details of the precision and recall obtained at batch size 90.

Class Images Instances Precision Recall mAP50 mAP50-95

Banana Tree 52 9 0.965 0.778 0.860 0.525
Pepper 52 10 0.397 0.300 0.423 0.117
Spinach 52 37 0.566 0.493 0.505 0.221
Sugarcane 52 37 0.497 0.614 0.475 0.196
Weeds 52 17 0.452 0.101 0.155 0.0601

The confusion matrix obtained at batch size 20 for the multi-class classification is
illustrated in Figure 7b. Specifically, it shows that 44% of items in the “banana” class, 80%
in the “pepper” class, 57% in the “spinach” class, 59% in the “sugarcane” class, and 6% in
the “weed” class were correctly classified. Conversely, 56%, 20%, 43%, 41%, and 88% of
objects belonging to the banana, pepper, spinach, sugarcane, and weed classes, respectively,
were classified as “unknown.”

As shown in Table 2, ‘banana’ also exhibited the highest precision at approximately
0.826, making it the most precise. This was followed by ‘pepper crops’, ‘weeds’, and
‘spinach’, in that order, with ‘sugarcane’ ranking as the least precisely detected with ap-
proximately 0.511 precision. Notably, the ‘pepper’ class achieved the highest recall, with
an approximate value of 0.634. In descending order, ‘sugarcane crops’, banana’, ‘spinach’,
and finally ‘weeds’, with an approximate recall value of 0.118 followed, indicating that
the classifier identified fewer positive instances of ‘sugarcane’, ‘spinach’, ‘bananas’, and
‘pepper crops’ and the least positive instances of ‘weeds’.

The confusion matrix obtained at batch size 30 for the classification (see Figure 7c)
shows that 78% of items in the “banana” class, 60% in the “pepper” class, 65% in the
“spinach” class, 59% in the “sugarcane” class, and 6% in the “weed” class were correctly
classified. Conversely, 22%, 40%, 35%, 41%, and 94% of objects belonging to the banana
class, pepper class, spinach class, sugarcane class, and weed class, respectively, were
classified as “unknown.” These instances could not be confidently assigned to any specific
class by the classifier.

Table 3 shows that ‘banana’ exhibited the highest precision at approximately 0.882,
making it the most precise. This was followed by ‘spinach’, ‘pepper’, ‘weeds’, and finally
‘sugarcane crops’ with approximately 0.439 precision ranking as the least precise. In
addition, the ‘banana’ class achieved the highest recall, with an approximate value of 0.778.
In descending order, ‘spinach’, pepper’, and ‘sugarcane’ followed, with ‘weeds’ returned
the lowest recall with an approximate value of 0.0588, indicating that the classifier identified
few or no positive instances.

Figure 7d presents the confusion matrix obtained at batch size 40 for the crop classifi-
cation. Specifically, it shows that 56% of items in the “banana” class, 50% in the “pepper”
class, 65% in the “spinach” class, 51% in the “sugarcane” class, and 12% in the “weed” class
were correctly classified. Conversely, 44%, 50%, 35%, 49%, and 88% of objects belonging to
the banana class, pepper class, spinach class, sugarcane class, and weed class, respectively,
were classified as “unknown.”

Table 4 also shows that ‘banana’ exhibited the highest precision at approximately 0.635,
which was followed by ‘spinach’, ‘weeds’, ‘pepper crops’, and finally ‘sugarcane crops’ with
approximately 0.304 precision ranking as the least precise. On the other hand, the ‘spinach’



Appl. Sci. 2024, 14, 5708 14 of 19

class achieved the highest recall, with an approximate value of 0.595. In descending order,
‘banana’, sugarcane crops’, ‘pepper crops’, and ‘weeds’, with an approximate recall value of
0.118 followed, indicating that the classifier identified few positive instances of ‘sugarcane’,
‘spinach’, ‘bananas’, and ‘pepper crops’ and the least positive instances of ‘weeds’.

The confusion matrix obtained at batch size 50 for the classification (see Figure 7e)
shows that 56% of items in the “banana” class, 30% in the “pepper” class, 65% in the
“spinach” class, 46% in the “sugarcane” class, and 12% in the “weeds” class were correctly
classified. Conversely, 44%, 70%, 35%, 54%, and 88% of objects belonging to the banana
class, pepper class, spinach class, sugarcane class, and weed class, respectively, were
classified as “unknown.”

Of all the classes presented in Table 5, ‘banana’ exhibited the highest precision at
approximately 0.857, making it the most precise. This was followed by ‘spinach’, ‘pepper
crops’, ‘sugarcane’, and finally ‘weeds’ with approximately 0.292 precision ranking as the
least precise. The ‘spinach’ class also achieved the highest recall, with an approximate
value of 0.703. In descending order, ‘banana’, pepper crops’, ‘sugarcane crops’, and ‘weeds’
followed, the latter with an approximate recall value of 0.176, indicating that the classifier
identified few or no positive instances.

Figure 7f presents the confusion matrix obtained at batch size 60 for the multi-class
classification. It shows that 67% of items in the “banana” class, 70% in the “pepper” class,
57% in the “spinach” class, 59% in the “sugarcane” class, and 12% in the “weed” class were
correctly classified. Conversely, 33%, 30%, 43%, 41%, and 88% of objects belonging to the
banana class, pepper class, spinach class, sugarcane class, and weed class, respectively,
were classified as “unknown”.

Table 6 shows that ‘pepper’ exhibited the highest precision at approximately 0.796,
making it the most precise. This was followed by ‘banana’, ‘spinach’, ‘weed’, and finally
‘sugarcane crops’ with approximately 0.306 precision ranking as the least precise. The
‘pepper crops’ class also achieved the highest recall, with an approximate value of 0.800,
making it the class with the best recall. In descending order, ‘banana’, spinach’, ‘sugarcane
crop’, followed, while ‘weeds’, with an approximate recall value of 0.118, yielded the
lowest recall.

The confusion matrix obtained at Batch size 70 for the crop classification is illustrated
in Figure 7g, showing that 67% of items in the “banana” class, 80% in the “pepper” class,
62% in the “spinach” class, 70% in the “sugarcane” class, and 6% in the “weed” class were
correctly classified. Conversely, 33%, 20%, 38%, 30%, and 94% of objects belonging to the
banana class, pepper class, spinach class, sugarcane class, and weed class, respectively,
were classified as “unknown”.

As shown in Table 7, The ‘banana’ class exhibited the highest precision at approxi-
mately 0.870, making it the most precise. This was followed by ‘spinach’, ‘pepper’, ‘sug-
arcane crops’, and finally ‘weeds’ with approximately 0.172 precision ranking as the least
precise. Notably, the ‘banana’ class also achieved the highest recall, with an approximate
value of 0.745, making it the class with the best recall. In descending order, ‘sugarcane crop’,
spinach’, ‘pepper crop’, and ‘weeds’ followed, the latter with an approximate recall value
of 0.0588, indicating that the classifier identified fewer positive instances of ‘sugarcane’,
‘spinach’, ‘bananas’, and ‘pepper crops’ and the least positive instances of ‘weeds’.

The confusion matrix obtained at batch size 80 for the multi-crop classification (see
Figure 7h) shows that 78% of items in the “banana” class, 40% in the “pepper” class, 68%
in the “spinach” class, 57% in the “sugarcane” class, and 6% in the “weeds” class were
correctly classified. Conversely, 22%, 60%, 32%, 43%, and 94% of objects belonging to the
banana class, pepper class, spinach class, sugarcane class, and weeds class, respectively,
were classified as “unknown.” In Table 8, it can be observed that ‘banana’ exhibits the
highest precision at approximately 0.717, making it the most precise. This is followed
by ‘spinach’, ‘pepper’, ‘sugarcane crops’, and finally ‘weeds’ with approximately 0.211
precision ranking as the least precise. The ‘banana’ class also achieves the highest recall,
with an approximate value of 0.847, followed in descending order by ‘spinach’, ‘sugarcane
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crops’, ‘pepper crops’, and finally ‘weeds’ with an approximate recall value of 0.0588,
indicating that the classifier identified fewer positive instances of ‘sugarcane’, ‘spinach’,
‘bananas’, and ‘pepper crops’ and the least positive instances of ‘weeds’ at this batch size.

Figure 7i presents the confusion matrix obtained at batch size 90 for the multi-class
classification. It shows that 78% of items in the “banana” class, 30% in the “pepper” class,
59% in the “spinach” class, 65% in the “sugarcane” class, and 6% in the “weed” class were
correctly classified. Conversely, 22%, 70%, 41%, 35%, and 94% of objects belonging to the
banana class, pepper class, spinach class, sugarcane class, and weed class, respectively,
were classified as “unknown.” As shown in Table 9, ‘banana’ exhibited the highest precision
at approximately 0.965, followed by ‘spinach’, ‘sugarcane’, ‘weeds’, and then ‘pepper’ with
approximately 0.397 precision. Likewise, the ‘banana’ class achieved the highest recall,
with an approximate value of 0.778. In descending order, ‘sugarcane crops’, ‘spinach’,
‘pepper crops’, and ‘weeds’ followed, indicating that the classifier identified fewer positive
instances of ‘sugarcane’, ‘spinach’, ‘bananas’, and ‘pepper crops’ and the least positive
instances of ‘weeds’.

3.2. Overall Model Performance

The overall accuracy, precision, recall, and F1 score results recorded at each batch
size, depicting the overall performance of the model in automatic crop classification, are
presented in Table 10.

Table 10. Overall performance of the model (non-crop-specific).

Batch Size Accuracy (%) Precision (%) Recall (%) F1 Score (%)

10 50.60 95 84 18
20 51.30 84 82 34
30 53.60 96 78 29
40 44.90 87 79 20
50 51.20 82 75 8
60 57.70 89 83 18
70 49.00 93 77 17
80 52.80 98 84 23
90 48.40 95 82 25

4. Discussion

Throughout the tested batch sizes, ‘banana’ exhibited superior performance according
to most of the assessment metrics. In contrast, ‘sugarcane’ and ‘weeds’ showed relatively
low precision rates, while ‘spinach’ and ‘pepper’ yielded average precision. Notably, at
batch size 20 all crops returned above average precision. Additionally, the best precision
for ‘pepper’ was recorded at batch size 60. The impressive performance of the model in
automatic classification of the banana class, despite using the same quantity and quality of
training data as other classes, can be attributed to several factors. First, the distinct visual
features of banana leaves, such as their shape, size, and texture, set them apart from other
plants on the farm. Although the colors of the other plants, including weeds, are similar,
these unique visual characteristics make it easier for the model to distinguish bananas from
other classes. Additionally, the banana class exhibited less variability within itself, meaning
that the appearances of bananas in the images were more consistent. This consistency
allowed the model to learn and recognize them more accurately. In addition, the banana
plants were likely less obstructed by other objects or plants, making their features more
visible. This clear visibility aids in more accurate classification by the model. Furthermore,
bananas tend to have a higher contrast with their background and neighboring crops,
which makes their features stand out more prominently in the images. This high contrast
enhances the model’s ability to detect and classify them accurately.

The poor performance of the model in terms of precision when classifying certain
classes, such as ‘weeds’ and ‘sugarcane’, can be attributed to several factors. One significant
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issue is the lack of distinct visual features in these classes compared to others such as
bananas. In particular, weeds tend to have a wide variety of appearances, making it
difficult for the model to learn a consistent set of characteristics for accurate identification.
This high intra-class variability means that weeds can look very different from one another,
leading to more classification errors. Another factor is the similarity in color and texture
between weeds and the other crops in the dataset. This similarity can confuse the model,
as it struggles to differentiate between weeds and certain crops, especially in mixed-crop
environments. These overlapping visual features lead to lower precision, as the model
incorrectly identifies non-weed objects as weeds and vice versa.

For sugarcane, the performance issues could stem from the physical characteristics
and growing patterns of the plant. Sugarcane plants are often tall and densely packed,
which can result in significant occlusion. This occlusion means that parts of the sugarcane
plants are blocked from view, preventing the model from seeing the complete structure and
reducing the accuracy of classification. Additionally, the repetitive and similar appearance
of sugarcane stalks can make it challenging for the model to identify unique features that
distinguish sugarcane from other classes.

Furthermore, spinach leaves are typically smaller and can be more variable in shape
and size, which can make it difficult for the model to learn a consistent set of features
by which to identify them accurately. Spinach often grows close to the ground and can
be covered by other vegetation, resulting in occlusion that makes it challenging for the
model to acquire a clear view of the entire plant. Similarly, pepper plants often have leaves
and fruits that blend in with the surrounding foliage, making it harder for the model to
distinguish them from other plants or background elements.

The overall accuracy obtained for batch sizes 10, 20, 30, 40, 50, 60, 70, 80, and 90 was
50%, 51%, 54%, 44%, 51%, 58%, 49%, 53%, and 48%, respectively, as shown in Table 10.
This trend indicates a steady improvement in accuracy from batch sizes 10 to 30, a dip at
batch size 40, and a peak at batch size 60, followed by a fluctuating pattern. Batch size
10 achieved average precision, recall, and F1 scores of 95%, 84%, and 18%, respectively,
while batch size 20 scored 84%, 82%, and 34%. At batch size 30, results of 96%, 78%, and
29% were obtained, whereas batch size 40 scored 87%, 79%, and 20%. For batch size 50,
the metrics were 82%, 75%, and 8%, while batch size 60 recorded results of 89%, 83%, and
18%. Batch size 70 yielded results of 93%, 77%, and 17%, while batch 80 achieved scores of
98%, 84%, and 23%. Finally, batch size 90 scored 95%, 82%, and 25%. The accuracy of the
predictions fluctuated up to batch size 40, then improved consistently from batch sizes 50
to 80, supporting the findings of [26,27], which affirmed that increased batch size enhances
model accuracy. This is also corroborated by [30,31], which used YOLOv8 for vegetable
disease and wheat seed detection, respectively.

The marginal increase in accuracy from batch size 10 (50.6%) to batch size 20 (51.3%)
suggests a positive trend. However, the average precision drops significantly from 95%
to 84%, implying a higher likelihood of false positives at batch size 20 despite only a
modest decrease in recall from 84% to 82%. The F1 score improved notably from 18% to
34%, indicating better balance in minimizing false positives and negatives. Batch size 30
showed a slight improvement in accuracy (53.6%) over batch size 20 (51.3%). The precision
increased significantly from 84% to 96%, while the recall decreased from 82% to 78%,
suggesting more false negatives. The F1 score decreased from 34% to 29%, reflecting this
trade-off.

At batch size 40, the accuracy dropped to 44.9%, with precision at 87% and recall at
79%. The F1 score further decreased to 20%, indicating a less optimal balance. Batch size
50 saw the accuracy rise to 51.2%, although precision and recall dropped to 82% and 75%,
respectively, with the F1 score plummeting to 8%. Batch size 60 marked an accuracy peak
at 57.7%, with precision and recall at 89% and 83%, respectively. The F1 score improved to
18%, indicating better balance. However, the accuracy at batch size 70 fell to 49% despite
high precision (93%) and lower recall (77%), resulting in an F1 score of 17%.
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Batch size 80 saw improved accuracy of 52.8%, with exceptional precision (98%) and
higher recall (84%), yielding an F1 score of 23%. This batch size achieved a commendable
balance, which is crucial for minimizing false positives and negatives. Finally, the accuracy
at batch size 90 decreased to 48.4%, with precision, recall, and F1 scores of 95%, 82%,
and 25%, respectively, indicating a slight overall improvement in balance despite the
lower accuracy.

The initial transition from batch sizes 10 to 60 suggests a consistent trend of increasing
accuracy, which indicates that the model benefits from larger batches during training up
to a certain point. This progression implies that larger batch sizes contribute positively
to the model’s ability to identify and classify crop types accurately. However, at batch
size 70 a sudden dip in accuracy disrupts the upward trend, prompting a re-evaluation
of the relationship between batch size and accuracy. This finding challenges the con-
ventional expectation that increasing batch sizes consistently lead to improved model
performance [21,22,24]. The subsequent batch sizes of 80 and 90 showed a resurgence in
accuracy, introducing a sinusoidal-like oscillation to the results.

In general, this study demonstrates that increasing batch size does not always lead to
better performance. Batch size 30 showed notable improvements in certain metrics, but
optimal performance was observed at batch sizes 60 and 80 with a more balanced high
precision and recall, which aligns with the findings of [32]. The pattern of the results from
our model suggests that factors beyond batch size alone influence the YOLOv8 model’s
performance. The characteristics of the dataset, neural network architecture, and specifics of
the training process all contribute to this multifaceted dynamic. These variations highlight
the model’s sensitivity to hyperparameter tuning and the importance of carefully tuning
batch sizes based on the specific objectives and requirements of each project. Additionally,
trade-offs between evaluation metrics (accuracy, precision, recall, and F1 score) should be
considered when selecting the most suitable batch size for crop classification tasks.

5. Conclusions

This study evaluated the performance of YOLOv8, a Convolutional Neural Network
(CNN) model, for automatic crop classification in a mixed crop farmland using drone-
acquired images. The model’s performance was systematically assessed across various
training batch sizes using diverse metrics, including loss function graphs, precision and
recall graphs, confusion matrices, and validation metrics such as F1 score, accuracy, recall,
and precision.

Based on our analysis, batch size 60 stands out with the highest accuracy, indicating
that this batch size provides the best overall performance for automatic crop detection
and classification. Although the F1 score is moderate, the combination of high accuracy,
precision, and recall makes it the most balanced option. However, batch size 80 also shows
very high precision (98%) and balanced recall (84%), which might be suitable if the primary
focus is on achieving high precision. This implies that for optimal results in terms of
balanced performance across all metrics, batch size 60 is recommended, while if precision
is the primary concern, then batch size 80 would be a suitable alternative.

In summary, YOLOv8 maintains comparable detection accuracy in identifying and
classifying crops within a mixed crop farmland. Given the limited dataset of approximately
393 image pairs used in this study, future research endeavors should explore the model’s
performance with a more extensive collection of crop images to better evaluate the model’s
capabilities and limitations in diverse agricultural scenarios.
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