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ABSTRACT 

The paper presents a literature review on the development of models for predicting strength properties of tropical clay stabilize 

with Calcium Carbide Residue (CCR) and zeolite. Application of Artificial Neural Networks (ANNs) in geotechnical analysis 

of tropical clay stabilised with CCR and zeolite, have been evaluated. Chemical treatment of expansive clays involves 

development of optimum binder mix proportions or improvement of a specific soil property using additives. These procedures 

often generate large data, requiring regression analysis in order to correlate experimental data and model the performance of the 

soil in the field. These analyses often involve large datasets and tedious mathematical procedures to correlate the variables and 

develop required models using traditional regression analysis. The findings from this study shows that ANNs is becoming well 

known in dealing with the problem of mathematical modelling involving nonlinear functions due to their robust data analysis 

and correlation capabilities, which has enabled them to be successfully applied, and with high performance, to the stabilisation 

process of clays. The study also shows that the supervised ANN model is well adapted to dealing with stabilisation of clays 

with high performance as indicated by high R2 and low Mean Average Error (MAE), Root Mean Square Error (RMSE), and 

Mean Square Error (MSE) values. The Levenberg–Marquardt algorithm is effective in shortening the convergence time during 

model training.  
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1.0 INTRODUCTION 

The increasing population of the world, especially in the 

developing nations, has led to increasing demand for 

roadways, railways, housing facilities and other 

infrastructures. Soil with higher stability is required to bear the 

weight of these structures. Generally speaking, the stability of 

any civil engineering structure directly or indirectly depends 

on the stability of the bearing soil (Akuto, 2021; Suleiman et 

al. 2021; Balarabe and Mary, 2015). While some soils have 

the required stability to bear the weight of these structures, 

some other soils are deficient in this regard.   

Deficient soils are regarded as soils which do not meet some 

or all the criteria required for their satisfactory performance in 

geotechnical applications. These could either be for base 

courses in pavement construction, embankment for dams, 

subsoil base, clay liners for containment of leachates and 

backfill for retaining walls (Alhassan and Mustapha, 2015). In 

the tropical region, these soils could be lateritic soils, tropical 

black clay, collapsible soils or any other tropical soil type 

(Alhassan and Mustapha, 2015). 

Tropical Clay Soil (TCS) are expansive soils that principally 

occur in arid and semi-arid regions of the tropical zone, 

marked by dry and wet seasons, with low rainfall, poor 

drainage and exceedingly great heat (Nelson and Miller, 1992; 

Eberemu et al, 2012). Because of their unconventional 

behavior, they are problematic in geotechnical engineering 

applications because they exhibit large volume changes with 

respect to variation of moisture content (Eberemu et al., 

2012).  

Tropical clay soil presents various challenges to engineers all 

over the world due to their characteristic of severe loss of 

strength and swelling with respect to changes in moisture 

regime. As a result, structures and highways constructed on 

them are subjected to severe deformations and frequent 

repairs, leading to high cost of maintenance. Various efforts 

have been made to stabilize tropical clay with cement, lime, 

admixtures and waste products, to make them meet the 

requirements for construction works (Balogun, 1991; Osinubi 

et al.; 2009; Suleiman et al, 2021).  

Soil stabilization refers to the improvement of the bearing 

power of a deficient soil using compaction, proportioning 

and the addition of suitable stabilizers or appropriate 
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admixtures (Alhassan and Mustapha, 2015). Soil stabilization 

methods include chemical, mechanical and physico-chemical 

methods to improve soil properties such as strength, stability 

and reduce swelling. Stabilization methods can generally be 

categorized as physical and chemical methods (Neeraj and 

Ahirwar, 2014). Physical stabilization involves improving 

soil structure through mechanical methods, while chemical 

stabilization uses additives like lime or cement to enhance 

soil strength and durability. Together, these methods enhance 

the resistance to erosion and increase load-bearing capacity 

of the soil. Locally available materials have also been 

experimented as soil stabilizing additives. 

For several years, researchers have recognized the use of 

locally available materials which are available from 

industrial and agricultural wastes to improve the properties of 

expansive soils. This is aimed at reducing stabilization costs, 

related to conventional stabilizing agents such as cement and 

lime, as well as reducing the problem of CO2 emission that is 

related to cement manufacturing process (Balarabe and Mary, 

2015). 

Calcium Carbide Residue (CCR) is a by-product from the 

production of acetylene gas (C2H2) used in oxyacetylene 

welding (Johnson et al.; 2023). It consists mainly of lime, 

caustic solid substances, and is white in appearance when 

pure.  

Zeolites as a pozzolan are aqueous aluminum silicate 

containing alkali and alkaline earth elements. Their structure 

is made up of a framework of SiO4 and AlO4 tetrahedrons 

linked to each other’s corners by sharing oxygen atoms 

(Capucto et al.; 2008). Zeolites have been recognized for 200 

years, but only during the middle of the twentieth century did 

they attract the attention of scientists and engineers, who 

demonstrated their technological importance in several fields 

(Hahwu et al.; 2008).  

1.1. Artificial Neural Network 

Artificial Neural Networks (ANNs), or more simply neural 

networks, are new systems and computational methods for 

machine learning, knowledge demonstration, and finally the 

application of knowledge gained to maximize the responses 

of complex systems (Grekousis; 2019). ANN is a data 

processing model based on the way biological nervous 

systems, such as the brain, process data. They are focused on 

the neuronal structure of the mamalian cerebral cortex, but 

data is much smaller scale. Many artificial intelligence 

experts believe that artificial neural networks are the best and 

perhaps the only hope for designing an intelligent machine. 

ANN, as a branch of artificial intelligence, is simply an 

automated optimisation system capable of learning the 

relationship and inter-dependencies between multiple input 

variables of a given system and modelling such relations 

(trends and patterns) in the form of mathematical functions 

for easy prediction (Stepniewska-Dziubinska et al.; 2018).  

ANN has been successfully used in the study of complex 

systems to identify patterns and model real-life problems 

relating to complex behaviours involving nonlinear 

functional relations. The capability of ANN to discover the 

mapping between several domains of data has drawn the 

interest of many researchers in geotechnical engineering (Lal 

and Tripathy, 2012). ANNs are classified based on numerous 

criteria such as the learning condition (supervised and 

unsupervised networks), based on model topography 

(feedforward or recurring networks), based on a number of 

hidden layers (shallow or deep networks), based on training 

algorithm (Back-Propagation Networks, Hopfield Networks, 

Self-Organizing Map Networks) (Chao, et al., 2018). This 

paper simplifies the underlying concepts of back propagation 

ANN models and explores its applicability in modelling the 

behaviour of stabilised clays viz a viz predicting the response 

of key soil parameters in other to clear the wide-spread 

complexities and misconceptions associated with the method 

and to encourage its use in soil stabilisation problems for 

more reliable solutions. 

1.2 Components of Artificial Neural Network 

1.2.1 Neurons and Edges 

ANN building blocks are a collection of neurons (nodes) and 

links, mimicking the biological neural network, as shown in 

Figure 1. The neurons are linked to other neurons by edges 

and are connected to others so that results from preceding 

neurons might automatically become inputs for succeeding 

ones, thereby creating the network. These neurons are the 

data collection or processing points in the network. Here, 

signals (input) are processed and transferred to other neurons 

through the connecting links with each neuron generating a 

unique output that may become inputs to multiple neurons. 

In this current subject area of application, these inputs would 

be laboratory results of key soil parameters described as the 

dependent variables. The input value of a given neuron is 

simply obtained by computing the weighted sum of the 

inputs from connected neurons with the addition of a bias 

(Grekousis, 2019). This output of the weighted summation 

then becomes the input for the activation function- a linear or 

non-linear function (Nihat, 2009). 

Edges are the links or connections between neurons and 

convey signals with associated weights depending on the 

influence of the input from such a link on the output of a 

given neuron (Winston, 1992). Inputs parameters with 

greater importance are assigned a higher weight than those 

with lower importance (Zell, 2003). For instance, in a soil 

classification problem, the weights will be dependent on the 

contribution of the features in determining the class of soil 

(Cal, 1995).  In a typical perceptron, as in Figure 2, the 

connection weights can be represented as Wj, which 

describes the importance of the connection. 
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Figure 1: (a, b) Biological Neural Network (Sharma, et al., 

2012) 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Typical Neuron showing associated edge weights 

 

2.0  Materials and Method  

Input data sets will be supplied to the neurons in the input 

layer and will be treated each with coefficients and constants 

known as weights and bias respectively to obtain a sum of 

weighted inputs and bias as given in Equation I 

   

where (1)  

P= weighted sum of inputand bias 

Xi = input data i 

Wij = weight associated with the input hidden layer and 

Equation 3 will be treated with a tangent sigmoid activation 

function given in Equation 2 to obtain the first layer output 

given in Equation 3 

 

Where 

Β = activation function  

  

where;  

Φ is the hidden layer output 

The first (hidden) layer output Φ be supplied to the neuron 

in the output layer and will be further processed with new 

weights and bias. The weighted sum will be further treated 

with a linear activation function given in Equation 4 to 

obtain the overall model output given in Equation 5 termed 

as the case 1 model. 

   

Where;  

 

    = Output of the entire case 1 ANN model 

 µ = Input activation function  

wij = weight associated with output layer and  

b2 = bias associated with the output layer 

The models will be trained using back propagation algorithm. 

The sequence requires updating the connection weights and 

biases according to the learning capacity of the network. The 

iterative process last up until the network is able to identify 

the smallest error between the actual experimental result and 

the model output based on the parameters given.  

 

2.1. ANN Architecture 

Deciding the ANN topography is a critical part of the model 

development and involves an iterative trial and error process 

(training) (Naidu, et al., 2020). In most studies, an initial model 

topography is assumed and trained while monitoring the 

performance of the model using predefined statistical measures 

such as coefficient of determination (R2), Root Mean Square 

Error (RMSE), Mean Average Error (MAE) and Mean Square 

Error (MSE). The hyperparameters are continuously modified, 

and the model retrained until an optimum model architecture is 

obtained with the lowest error and highest R2 (Eyo and Abbey, 

2021). This training, in simple terms, is “showing the network 

an example” of the problem using experimental input and 

output data. Many training algorithms exist; quasi-newton 

backpropagation, Bayesian regularization backpropagation 

algorithm, gradient descent, Levenberg–Marquardt 

optimization, etc., but the process is similar and begins with 

feeding the model with a quality dataset and allowing the 

system to process this data in order to learn the relationship 

between the variables and hence generate weighted 

associations between the data within the network and predict 
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the result. The predicted result is then compared with the 

experimental result to evaluate the error, which is then used to 

modify the weights of the connections by a reverse error 

minimization process using a chosen cost function. The process 

is repeated until there is an insignificant change in the output of 

the cost function (Wald, 1950).  Based on the performance of 

various models with different hyperparameters, the best model 

topography is then selected. 

2.2. Feed forward and Recurring Networks 

The ANN topography is such that the neurons are grouped into 

layers, namely input layers and output layers, and in some 

cases, there is the need to include hidden layers between the 

input and output layer, making a multilayered perceptron 

neural network model in order to create sufficient degrees of 

freedom to avoid overfitting. The hidden layer could be made 

one layer (shallow networks), as shown in Figure 3, or multiple 

layers (deep neural network, DNN) (Ikizler et al., 2009). In 

addition, the connections between layers could be in such a 

way that a neuron in one layer could be connected to all 

neurons in the succeeding layer and is said to be fully 

connected, resulting in a larger number of neurons in the 

succeeding. Additionally, the models could be organized such 

that multiple neurons in a layer are connected to a single 

neuron of the succeeding layer. The latter condition is said to 

be a pooled connection and is synonymous with a lesser 

number of neurons in the succeeding layer even though one 

may be tempted to believe that a larger number of neurons will 

always result in a better prediction using ANNs. However, the 

optimum number of neurons will depend on several factors 

such as the amount of data and the complexity of the 

relationship. In certain types of NNs, such as the Deep Neural 

Network, the number of neurons has a lesser effect on the 

overall performance of the network than the number of layers 

and DNNs with more hidden layers have been shown to yield 

more results than shallow networks (network architecture with 

a single hidden layer). However, the number of hidden layers to 

be used in each network will depend on the complexity of the 

mapping between input and output domain, the quality and the 

amount of data (Sushama and Bindhu, 2015). Additionally, 

even though it is expected that a greater number of 

experimental datasets used in training the model will improve 

its performance, recent studies have shown that it might be 

advisable to use fewer experimental datasets of high quality 

than a large amount of experimental data which may be prone 

to errors (Stepniewska-Dziubinska et al., 2018).  Moreover, the 

quality of the output is dependent on how the input database is 

utilized in the training. In terms of the way data is transferred 

from one layer of the network to another, one can generalize 

that there are two broad categories of ANN architecture—the 

recurring network and feedforward network. In the recurring 

network, there is a connection between neurons of a given layer 

and that of preceding and/or succeeding layers, forming a loop 

and allowing an input to be processed many times by the same 

neuron. Conversely, in the feedforward network, neurons in 

each layer are only connected to neurons in other layers as 

presented in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: A Typical ANN Architecture Showing Neurons 

and Layers. 
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                                 (b) 

Figure 4. (a) Recurring Network; (b) Feed Forward 

Network. 

 

2.3 Data Preprocessing 

The input dataset used to develop ANN models for 

geotechnical engineering problems comprises of various 

ranges of input variables because the ANN neurons 

connection weights are representatives of the importance of 

the variables. The weights of the connections are influenced 

by the Euclidean distance which for any given points, y1 (x11, 

x21, x31, . . . , xn1) and y2 (x12, x22, x32, . . . , xn2) in a data space 

can be expressed as Equation (6). Therefore, in order to ensure 

that proper significance is attributed to the features, it is 

imperative to scale the features. Feature scaling can be 

achieved using methods such as standardization (Z-score 

normalization) or the max-min normalization method. For 

standardization, the feature Xi is expressed in its standardized 

form as in Equations (6) and (7) below. 
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In Equations (1) and (2), Xs is the standardised value of Xi, µ 

is the mean and σ is the standard deviation. The input 

variables can also be scaled using the max-min normalisation 

to achieve the same purpose using the expression, where 

Xnorm is the normalised value and Xmin and Xmax are the 

minimum and maximum values, respectively. 

3.0 Selecting Design Parameters for ANN in Soil 

Stabilisation 

Training of the neural network is actually the process of 

selecting or ‘designing’ the best network model parameters 

(hyperparameters). However, there is a start point, where a 

first architecture is proposed. Selecting the right number of 

neurons in the hidden layer is critical as it influences the 

performance of the network. Too few a number of neurons in 

the hidden layer can lead to underfitting. In this case, the 

training data presents a more complex problem than the 

network is modelled to handle. For some problems, 

increasing the number of neurons by introducing additional 

features can make learning easier for the model and resolve 

the problem. In some other cases, for example, in some 

geotechnical applications, the input parameters of interest 

may have been predetermined and measured, and this option 

may not be feasible. Alternatively, increasing the number of 

hidden layers and neurons may be helpful, but again, if the 

number of neurons becomes excess, this leads to overfitting. 

In this case, the model is training on less complex data than it 

is designed to analyse. The effect is that the model is unable 

to properly generalize on new data set outside the training 

data as the weights are not optimally adjusted. Additionally, 

an excessively high number of neurons in the hidden layer 

can extend training time and lead to poor training even with a 

sizable database for training. The goal, therefore, is to find a 

balance. However, this is not a straightforward process. A 

good step would be to make a good initialization of the 

network parameters, and there are several ideas concerning 

how these parameters can be initialized. Amongst the huge 

suggestions that are available and, of course, effective under 

different conditions, one simple empirical rule for selecting 

the number of neurons in the hidden layer is to use the mean 

of the number of neurons in both input and output layers. 

Some other idea involves taken about 60–70% of the total 

input and output neurons. In general, the idea is to provide a 

reasonable start so that during the training, the model can be 

optimised or pruned, and redundant neurons can be removed 

based on the assigned weights while keeping track of the 

performance. However, for most regression analyses relating 

to stabilisation, one hidden layer has been found very 

effective. In rare cases, two hidden layers have been used, 

but there are seldom cases where over two layers have been 

needed in developing reliable predictive models. As shown 

in the succeeding section, almost all the applications in soil 

stabilisation have utilised one hidden layer, with one or two 

utilizing more than one hidden layer. 

3.1 Training, Validation, and Testing 

As mentioned in the earlier section, the training of most 

neural networks applied to modelling geomechanical 

properties of stabilised Clay is done under supervised 

conditions. In this type of training, the supplied data are 

partitioned, and a part (training dataset) is utilised in learning 

the relationship between the variables, thereby providing the 

initial weights. This sample is continuously fed to the 

network with a view to understanding the data rather than 

recognizing it. If the network learns progressively, it 

converges with reduced error after each iteration until a pre-

defined error range is attained. The quality of the training 

dataset influences the convergence of the model (Murata, et 

al., 1993). A dataset may lack the necessary independent 

variables required for the model to understand the data and 

hence can lead to non-convergence. A very small sample 

space can lead to the network memorizing rather than 

learning. Hence, it is important that part of the data is 

separated to be used in evaluating the training. This is the 

validation dataset. The major aspect of developing a suitable 

model would then be to continuously monitor and tweak the 

number of neurons in the hidden layer, or the number of 

hidden layers, modify the activation function or even the 

training algorithm (Maind and Wankar, 2014). The model 

validation utilizes the successive trial of the trained model on 

the validation dataset (Gareth, 2013). This is an unbiased 

evaluation of how well the model understands the training 

data. The final test of the model’s predictive ability is carried 

out on the test dataset, which was never seen by the model. 

In some cases, the data are continuously partitioned into two 

as in cross-validation. The dataset is switched and utilised for 

training and validation in a crossed pattern. 

The performance of models is usually evaluated by using 

statistical measures such as the coefficient of determination 

(R2), the mean absolute error (MAE), the root mean square 

error (RMSE), the mean square error (MSE) and others. The 

R2, MAE, RMSE and MSE expressions are defined in 

Equations (8), (9), (10) and (11), respectively. 

 

 

 
For which yexp (i) and ypre(i) are experimental and predicted 

values of a given dependent variable, while ypre and yexp are 

the mean values of the predicted and experimental values. 
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3.2. Estimating the Amount of Training Data 

Determining the sample size required for successful model 

training is a vital step in successful model development. A 

common start-off point is the “rule of ten”, which proposes 

that the training sample size is taken as not less than ten 

times the number of network parameters. The number of 

parameters may be estimated as the number of edges or 

connections, including biased neurons. It is expected that 

the performance of the model would improve with 

increasing sample size following a power function up to a 

point is reached where there is no significant increase in 

performance. Usually, in practical situations, the data set is 

split into the ratio of 70%:30% or 80%:20%, where the 

higher percentage is that of the training sample space. 

Although this split is only important with a relatively low 

sample size. The underlying idea is to make available 

sufficient example data with which the network is trained 

and evaluated. Too little training data will result in a 

higher variance of the network parameters. Additionally, 

two few testing data will create higher variance during the 

evaluation of the performance of the model. 

4.0   Application of ANN in Predicting the Properties of 

Stabilised Clays 

The variability of soils following uncontrollable and 

imprecise chemical and mechanical processes of their 

formation makes it very complex to predict their behaviour 

even in the natural state. Several mathematical and 

graphical models have been proposed for use in modelling 

the post-stabilisation behaviour of treated clays through the 

prediction of various engineering parameters for the 

purpose of design and construction. These methods rely on 

laboratory results of a few samples with which in-situ post-

stabilisation behaviour is to be predicted. However, in 

many cases, the post-stabilisation behaviour of any soil 

will be dependent on multiple variables such as curing 

time, curing duration, soil type, binder content, curing 

temperature, moisture content, compaction method and 

effort, plasticity, etc., which are key and influence the 

dependent variables (Lorenzo and Bergado, 2004). The 

large variability of input parameters, the extensive 

laboratory experiments required and the unknown 

relationship between the variables, put together makes it 

even more complex to predict the behaviour of the soils 

(Fan et al., 2018). In other to simplify the problem, many 

studies tend to concentrate on a set of few parameters and 

employ simple mathematical models to map the domains 

of input to our variables. An example of such simplified 

mathematical models is the multiple linear regression 

model, which, for a given set of features x1n, x2n, x3n, . . . , 

xmn, can be related to its dependent variable as stated in 

Equation (12) below (Gunaydin et al., 2010).  

 

y= β0+β1x1n+β2x2n+β3x3n+ . . . β1xmn +ε                (12) 

 

where β0, β1, β3, . . . βn are the coefficients, and ε is the 
error. 

ANN application has shown good results in terms of the 

prediction of engineering parameters of stabilised soils for 

various purposes. ANN’s ability to learn the relations 

between a wider and more complex set of experimental 

variables and map these variables to the target output domain 

using well-adjusted weights makes it a more reliable tool in 

the prediction of the in-situ post-stabilisation behaviour of 

treated clay soils. In addition, the ability of ANNs to 

simultaneously handle multiple dependent and independent 

variables using the same experimental dataset and its 

adaptability in finding correlations for highly non-linear data, 

which are characteristic of many civil engineering problems, 

makes it more advantageous over traditional regression 

analysis (Gardner, 1998). A review of studies modelling 

various soil properties is presented in the subsequent 

sections. The review is in a bid to explore the input 

parameters considered in the study, the number of data 

utilised in model development, the training algorithm 

utilised, the hyperparameters of the model, the model 

performance and, finally, the results or predictive models 

developed. 

4.1. Unconfined Compressive Strength 

ANN has been employed in tracking and modelling the UCS 

of geopolymer stabilised clays, by Mozumder et al., (2015). 

In the study, Ground Granulated Blast Furnace Slag (GGBS) 

and Pulverised Fly Ash (PFA) were considered as binders for 

the improvement of the compressive strength of three clays 

with varying properties. The soil characteristics such as 

Liquid Limit (LL), Plastic Limits (PL), etc., were evaluated 

according to the British Standards and, in combination with 

key experimental variables, were utilised as input data for the 

ANN model development. Eight input variables namely, LL, 

Plasticity Index (PI), GGBS content, PFA content, the 

molarity of alkaline activator used (M), the ratio of the 

activator to the binder, the ratio of sodium to aluminium in 

the activator–binder mixture (Na/Al), the ratio of silicon to 

aluminium in the activator–binder mixture (Si/Al), and 28 

days UCS, were considered. A multi-layered perceptron 

ANN model was` chosen with one hidden layer to study the 

experimental data. The optimum architecture was selected by 

varying the number of neurons in the hidden layer while 

evaluating the performance of the model and was obtained as 

one hidden layer with nine neurons. The ANN showed a 

better ability to learn the relationship of the data set, as 

shown in Figure 5. 
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Figure 5: Experimental versus ANN-Predicted UCS values 

(Mozumder, et al., 2015)  

 

From Figure 5, it is obvious that almost all data points are 

within 99% confidence limit. The line of best fit is almost 

aligned with the line of equality at which all experimental 

observations and predicted values are the same. Table 1. 

compares the performance of the ANN model with that of a 

Multivariable Regression Analysis (MVR) on the same data 

set. It is obvious that ANN performed better at correlating the 

independent variables and their influence on the UCS of the 

stabilised soils. 

Table 1: Statistical Evaluation of the Performance of ANN 

and MVR models 

(Mozumder et al., 2015) 

Expansive soils are known for their vulnerability to 

significant volume changes with moisture due to their high 

plasticity properties. Table 2 shows the classification of 

expansive clays according to the Building Research 

Establishment (BRE) based on a modified plasticity index. 

Table 2. Classification of shrink-swell clays (BRE. 1993) 

 

In another study, Salahudeen et al. (2020) employed a 

feedforward ANN model in studying the UCS of expansive 

clays stabilised with Cement-Kiln Dust (CKD). The liquid 

limit, plastic limit and plasticity index of the clay were 

determined to be 48.2, 27.2 and 21%, respectively, with free 

swell of 80%. The natural and stabilised clay samples were 

subjected to compaction and UCS tests in accordance with 

BSI (BS 1377, 1990). Three ANN models were developed 

with a total of eight input variables, namely specific gravity 

(Gs), linear shrinkage (LS), coefficient of uniformity (CU), 

coefficient of gradation (CC), LL, PL, Maximum Dry Density 

(MDD) and Optimum Moisture Content (OMC) for three 

UCS outputs (7, 14 and 28 days). A total of 72 sample data 

were utilised in model development. The ANN model 

topography consisted of one input layer with eight neurons 

and one output neuron (the UCS value). However, the 

number of hidden layers was varied in order to determine the 

optimum number of neurons in the hidden layer. Figure 6 

shows the performance of the trial models. 

 

 

 

 

 

 

Number of Hidden Layers 

Figure 6: The selection of optimum number of neurons in 

hidden layer (Salahudeen, et al., 2020)  

 

The optimum model was found to be of nine neurons in the 

hidden layer based on lowest MSE. The authors (Salahudeen 

et al., 2020) suggest that the MSE is a more reliable 

parameter for network selection when R values alone become 

insufficient for optimum network selection. The results of the 

analysis showed that the ANN model was able to predict the 

variation of UCS as a function of the predictor variables with 

a high correlation coefficient, as seen in Figure 7. 

 

 

 

 

 

 

 

 

 

 

Figure 7: Observed Versus Predicted UCS (Salahudeen et 

al., 2020)  

 

Model Dataset  Statistical 

Parameter 

 

R2 MSE MAE 

(%) 

ANN Training data 0.992 0.34 3.65 

Testing data 0.964 1.50 8.34 

MVR Training data 0.828 7.24 19.20 

Testing data 0.808 8.04 19.26 
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Plasticity Index IP 

 Volume Change     

Potential (VCP) 
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40–60 High 
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The study reveals a high correlation between experimental 

values and ANN predicted values. The high correlation 

coefficient with low RMSE confirms the performance of the 

model. 

Priyadarashee et al. (2020) conducted an experimental 

investigation on the suitability and performance of kaolin 

clay stabilised with Fly Ash (PFA), Rice Husk Ash (RHA) 

and cement. The improvements in the soil were ascertained 

by considering increase in the UCS. The LL, PL, and PI of 

the unstabilised kaolin clay were determined as 43.3, 19.5 

and 23.8%. The input variables considered for the correlation 

were clay content, RHA content, cement, PFA content and 

curing duration. The number of neurons in the hidden layer 

was selected manually and varied while evaluating the 

performance of the model using the MSE. Figure 8 shows the 

variation of MSE and the number of neurons in the hidden 

layer. 

 

                          

Training  Testing 

 

Figure 8: The selection of the optimum number of neurons 

in hidden layer (Ayeldeen et al., 2016)  

 

As seen in Figure 8, the optimum model performance was 

found at 10 neurons in the hidden layer based on Levenberg–
Marquardt algorithm. The results of the analysis, using the 

optimized model showed good correlation between the 

datasets. The predictive model developed from ANN is given 

in Equation (14), where UCSm is the dependent variable to be 

estimated and represents the UCS for a given combination of 

independent variables. A comparison of ANN performance 

with multivariable regression analysis further proves ANN’s 

advantage, as shown in Table 3.  

 

 

 

 

ANN has been described as a black box since it is difficult to 

predict the way the predictive model will be selected. 

However, sensitivity analysis can be carried out in 

determining the influence of the input variables on the target 

variable. 

 

The UCS of cement stabilised clays was investigated by Ngo 

et al. (2021) in order to find a relationship between the 

several key variables. Different types of cement were utilised 

to study the effects of cement type on the UCS. 

The soil under investigation was collected at various depths 

below the ground surface to also study the effect of confining 

pressure on the strength of the stabilised soils. Three 

machine learning algorithms were utilised. ANN was used in 

correlating the predictive variables. A total of 216 

experimental data points were generated from various 

combinations of fourteen input variables, namely soil type, 

moisture content (MC), bulk density (We), the mass of 

cement (CM), sample diameter (DI), the length of the sample 

(L), the cross-sectional area of the sample (CA), the volume 

of the sample (SV), the depth of sample collection (D), the 

mass of the sample (MS), sample density (DS), curing 

condition (CD), curing time and cement type (CT). ANN 

training was done using the Quasi-Newton method, 

Stochastic Gradient Descent and Adam in order to select the 

optimal hyperparameters for the ANN topography. The 

dataset was divided in the ratio of 80% and 20% for training 

and testing. Performance evaluation of the developed ANN 

model showed a good correlation. ANN performed better 

than the other machine learning algorithms. The high number 

of neurons in the hidden layer may be due to the multiple 

dimensions of the input vector in the sample dataset. The 

study showed that ANN could be utilised effectively for 

stabilisation problems to track and model a wide range of 

independent variables. 

 

 

Table 3, comparison of ANN performance with  

multivariable regression  

Model Dataset 

 Statistical 

Parameter 

 

R2 MSE RSME 

ANN 

Training 

data 

0.9813 0.0395 0.1987 

Testing 

data 

0.9714 51.34 7.1651 

MVR  0.8870 68.7603 8.2921 
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Figure 9: Predicted and experimental observations (Ngo et 

al., 2021)  

 

To alleviate the difficulties associated with the need for 

continuous experimental determination of UCS, Sabat (2015) 

employed machine learning in analysing and modelling the 

performance of stabilised dredged sediments. A total of 51 

experimental datasets were collated from existing literature 

for the development of the ANN model. The input predictive 

variables were percentage moisture content (MC), cement 

content, air foam content, and waste fishing net content. The 

ANN model to topography was initialized to two hidden 

layers while varying the number of neurons in order to find 

the optimum model. This approach has been taken in most 

soil stabilisation applications. The optimum ANN 

architecture was made up of two hidden layers with 12 and 

10 neurons based on training using the Levenberg–
Marquardt algorithm. From the results of the analysis, the 

model has been able to find the trend within the available 

training dataset. However, for certain values of the water 

content, the error was high. For the model to generalize 

better, a wider training dataset may still be needed. Previous 

studies have suggested a training dataset at least ten times the 

network parameters. In a lot of original research on 

stabilisation, there is usually limited experimental data. A 

cross-validation approach may be combined for a relatively 

lower sample size. The statistical evaluation of the 

performance of the model in training and testing is presented 

at the end of Section 4. 

5.0 Conclusions 

The advantages of the artificial neural over traditional 

regression analysis as applied to stabilisation have been 

highlighted in the foregoing sections. In a typical field 

stabilisation project, in order to improve the properties of 

expansive clays, experimental data are usually generated 

from several field and laboratory tests to monitor and 

ascertain the progress made in terms of improvement. These 

procedures are expensive and time-consuming and may be 

reduced to a minimum using ANN to predict the field 

response of the soils. In summary, the following conclusions 

are made. 

An artificial neural network is reliable and can be employed 

in modelling various properties of stabilised clays for easy 

prediction of soil response while eliminating the need for 

extensive experimental procedures. 

Backpropagation feedforward networks are the most used 

models in dealing with the problem of regression analysis for 

stabilisation of clays. 

An artificial neural network should be developed with a 

relatively substantial dataset to regression models with good 

correlation. Many of the studies in regression analysis of 

stabilised clays have used relatively small data sets, although 

the models have performed well. The ability of the models to 

generalize can be improved with a larger dataset which fields 

a wide range of possible soil behaviour for proper training of 

the model. 

Shallow networks made up of one hidden layer are the most 

used ANN architecture in developing predictive models for 

the prediction of geotechnical characteristics of stabilised 

clays and in modelling the response of stabilised expansive 

clays. The Levenberg–Marquardt training algorithm has been 

reported to be the most used among the studies reviewed. 
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