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Abstract: The activated sludge process is the most versatile technological method used for urban wastewater treatment system. However, complex, non-linear and uncertain nature of the process made building its model quite challenging. The existing models are highly complex to use for optimization, estimation and control purposes. Therefore, there is an urgent need for suitable, efficient, simple and easy to use process model. An adaptive neuro-fuzzy inference system (ANFIS) model is going to be presented in this paper for an activated sludge process. High flexibility, less computational cost, accuracy, robustness, fast learning and adaptation capabilities are some of the enticing features taken into account for choosing ANFIS. For comparison, the standard international accepted benchmark simulation model no.1 (BSM1) was used. The promising results obtained are in conformity with the BSM1 results. This revealed that the proposed or suggested model is an efficient powerful tool to describe and predict an activated sludge process.
Keywords: Activated sludge process, modelling, BSM1 neuro-fuzzy, fuzzy inference system.

Introduction

Successful operation of an activated sludge process relies on an efficient model of the process to produce more effective and reliable results. Models are valuable tools for design, process control, future performance prediction and safety analysis. Building model whether analytically or through computer simulation for an activated sludge process is quite complex due to its intricate, uncertain nature and parallel biological/biochemical reactions involved in the process. Nevertheless, suitable process model expounds intricacies of the process and the reactions taking place.
Several models were developed for the activated sludge process such as the activated sludge model No.1 (ASM1), developed by the International Association on Water Quality (IAWQ) meant to remove organic carbon and nitrogen, the model received international acceptability and served as a reference in the scientific research community and among practitioners. The later versions of activated sludge model families such as ASM2, its extension ASM2d and ASM3 as described in (Henze et al. 1987; Henze et al. 2000). Arguably, the models have contributed immensely in the field of modelling of urban wastewater treatment system and proven to be indispensable tools. However, these mathematical models are highly cumbersome, tough to handle for estimation/regulation purposes, require large experimental information and extensive knowledge of the process. Various approaches were proposed to reduce the complexity, especially of ASM1 and maintaining the non-linearity of the model, as suggested by (Jeppson and Olsson, 1993). From linearization view point, proposals by (Smets et al. 2003; Smets et al. 2006; Steffens et al. 1997) implemented linear model of ASM1 through linearization around one or more equilibrium point to obtain multiple-models, which significantly simplified ASM1. However, loss of vital information is the main disadvantageous feature of the methods. To avoid the limitation of the aforementioned techniques (Nagy et al. 2010) suggested a purely analytical multi modelling approach in which the original non-linear ASM1 is transformed into multiple model by obtaining a set of sub-models with a simple linear structure and a set of suitable weighting functions, the final model is realized by combining the sub-models. The proposal conserved the non-linear structure of ASM1, but considered only pollution part of ASM1, requires rigorous computations and large amount of time before realizing the final model.  Evidently, a robust and straightforward model having the ability to capture complex and non-linear behaviour of the process is needed so that cost related to analysis, and experimentation may be reduced drastically.  Soft-computing approach has proven to be an effective and powerful device for model development in many engineering problems. 
One well-known soft-computing technique is the neuro-fuzzy method. Thus, for an efficient and reliable approach to system modelling, the consolidation of two models (i.e.  neural network and fuzzy system) could yield and serve the purpose effectively.  Accurate, speedy learning, flexibility, smoothness, ease of use, handling of a large amount of noisy data from complex dynamic and non-linear system made neuro-fuzzy technique to be a superior choice in various applications. Moreover, the main principle of neuro-fuzzy is the ability to endure imprecision, uncertainty and intricacy of a system under consideration with less computational cost.
Neuro-fuzzy have been applied to the activated sludge process as in (Civelekoglu et al. 2007; Perendeci et al. 2008; Pai et al. 2011), however, the applications do not focus on simplifying the complex structure of the ASM1 (the state of art), so that the model can easily be used for control purposes and process optimization. Therefore, it is the objective of this paper to purvey a robust and straightforward model for the process and assess the performance relative to the standard international accepted model. The state and model equations for the system were discussed and the proposed approach is described.
Materials and Methods

System description

Wastewater treatment system consists of many parallel processes occurring at a different rate. Typically, biological treatment method served as the commonly preferred wastewater treatment technique. The prime component of biological treatment is the activated sludge process. The success of the process lied on the mixing of influent wastewater with a consortium of microorganisms capable of degrading organic pollutants, and then the treated water is separated from sludge flocs in the settler. Based on the design and specific task, apart from removal of organic waste material from the wastewater, activated sludge process can achieve nitrogen and phosphorus removal from wastewater (Gernaey et al. 2004). The process has been utilized in its classical form and modernized form; all have the ability of producing a satisfactory treatment of wastewater.
Demands for high quality effluent coupled with operational difficulties significantly increases the use of system models, which in-turns led to the need for mathematical models capable of describing the dynamics of the system. An appropriate model helps not only in keeping the performance of the system close to optimal operating condition, but also better ways for system start-up (Makinia, 2010).
Activated sludge process modelling
Below in Fig.1, is the schematic of activated sludge process. The process consists of a biological reactor tank where a group of a microorganisms break down the pollutants and a settling unit in which the suspended solids are separated from the wastewater, small fraction of the sludge is removed as a waste while the larger part returned to the reactor tank to keep the microorganisms.

[image: image1]
Fig. 1 The schematic of the activated sludge process

The process under study considered ASM1 model biological reactor tank. The model helps greatly in describing biological/chemical interactions occurring in the process and has being used by researchers and practitioners. ASM1 consists of 13 different components and eight (8) separate processes (Alex et al. 2008). Each of the components is described by non-linear differential equation obtained from applying material balance around completely mixed biological reactor tank.
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Growth of heterotrophic bacteria under aerobic condition
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Growth of heterotrophic bacteria under anoxic condition
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Growth of autotrophic bacteria under aerobic condition
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Decay of heterotrophic bacteria
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Decay of autotrophic bacteria
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Ammonification of soluble organic nitrogen
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7
Hydrolysis of entrapped organics
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8
Hydrolysis of entrapped organic nitrogen
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9
For detailed description and more information regarding ASM1 model, (1) should be referred. The optimal operation of the process demands for removal of the sludge from treated wastewater in the settling unit before being released.
Settler performs two independent functions- (i) separating solid particles from the water by sedimentation and (ii) thickening of sludge to be returned to the reactor tank. Due to complexity associated with the settler and its relevance in successful operation of the process, different models were proposed (Olsson and Newell, 2010; Takac’s et al. 1991). The considered settler model is the traditional one-dimensional model with ten layers in which the mixed liquor from the biological reactor tank enters through the feed layer (m). The model is based on solid flux principle, and the flux in each layer is restricted by the adjacent layer. The solids flux as the result of bulk flow of liquid in each layer can be either above or below the feed layer (
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For bottom layer (m=1)
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For layers below feed layer (m=2 to 5)
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For the top layer (m=10)
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For the layers above feed layer (m=7 to 9)
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where 
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 is the threshold solids concentration and 
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 is the settling velocity function (Takac’s et al. 1991) given as
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The report of the implementation of the complete process model with different software packages could be found (11). Considering the complexity of the process model and cost of experimentation and analysis, neuro-fuzzy approach could be a better choice to model the process.
ANFIS modelling
Neuro-fuzzy modelling involves building of a model from input-output data representing dynamic nature of a system. From the considered data, ANFIS generates a fuzzy inference system of which membership function parameters could be adjusted by the use of back propagation algorithm solitarily or in conjunction with a least squares estimation, to enable the ANFIS learn the rules and membership function from the data set.  ANFIS is an adaptive network that consists some layers and nodes. Each node does a specific function according to a signal going into and parameters in relation to the node (Jang, 1993; Jang et al. 1997; Cruz and Figueroa, 2009). The circular nodes are fixed while the square nodes have parameters to be learnt, the links only indicates the direction of signal flow. The desired input-output mapping is achieved through adjusting of these parameters based on the considered training data and a gradient based learning algorithm. In ANFIS the objective is to optimize the parameters of the FIS which is achieved via minimizing error between simulated (desired) output and real output.

[image: image28]
Fig.2 Illustrate fuzzy reasoning
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Fig.3 the ANFIS structure

The Fig.2 depicts fuzzy reasoning while Fig. 3 illustrates structure of ANFIS which consists of two inputs (x and y) and one output z. Since the FIS has two inputs and one output, a first order Sugeno fuzzy model has rules of the following form:

Rule 1
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where 
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 denotes the membership function for the input 
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 are the parameters of the output. 
The structure of the ANFIS in Fig. 3 has five layers whose functions could be described as follows:

Layer 1: Each node 
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 in this layer has a node function given by
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where 
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 is the input to node 
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 is the linguistic label? The membership function must be triangular, Gaussian or bell-shaped. Here, Gaussian membership function is considered given by
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where 
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 and 
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 are the parameters. As their values changes, the Gaussian membership function changes accordingly. These parameters are referred as premise parameters.

Layer 2:
The information sent from layer 1 is processed in this layer, multiplications of incoming signals are performed and a rule firing strength is computed as:
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Layer 3:

The nodes in this layer are circular, the nodes normalize the weight functions obtained from the layer 2.
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Layer 4:
This layer is called consequent layer. The defuzzified output is given as
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where
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 are called consequent parameters

Layer 5:

This layer contains single node which process the information sent from layer 4 and returns the overall output as
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Another attractive feature of an ANFIS is the hybrid learning algorithm. ANFIS uses this algorithm to optimize the premise parameters of the layer 1, and the consequent parameters contained in layer 4. In the forward pass, the premise parameters are held constant and the consequent parameters are computed by the least square estimation. In the backward pass, the consequent parameters are kept fixed while the premise parameters are adjusted by gradient descent. As the parameter sets of the model are obtained, the values of the model output is computed for every pair of the training data and compare with the model expected values, thus the error value of the model is evaluated. The training of the network is stopped based on considering proper minimal error value, and the final model is realized. 
Results and Discussion 
Simulation provides a better approach of validating model and effectively reveals authentic information of a system under various operating conditions. Real influent disturbance data files of BSM1 are used, which contained the influent flow and concentration. Each of the files consists of 14 days influent data sampled at an interval of 15 minutes. Here, dry influent data file which illustrates the diurnal variations in flow and COD load is considered. The data are set as:
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. Fig.4 depicts the dry influent (a) flow rate (b) the soluble component (c) the solid components) which is the input to the wastewater treatment plant. For the ANFIS, the technique described above is utilized to model the training data. Sufficient data is intensely required, which comprises of high and low values of the state variable so that an accurate model can be realized. Mostly training error becomes too large when the input-output data are not within the range of the training data. In each case, the variable under study is considered as the output while the remaining variables are inputs to the system. Two Gaussian membership functions of each of the inputs of a variable were used for the training data for ten epochs with an exception of 
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Fig. 4 Dry weather influent 
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the flow rate (b) the soluble components concentration (c) the solids components concentration.

Fig. 5 Responses of the soluble components concentration of the BSM1 and ANFIS model.
The system was simulated dynamically for 14 days; the results obtained were used as the initials for another 14 days simulation, however the results of interest are the evaluation days. Fig. 5 is the illustration of BSM1 and ANFIS model responses obtained for different variables of the activated sludge process for last 7 days (evaluation days). As it can be seen from the simulation results in Fig. 5 and Fig. 6, the responses of ANFIS model are in good agreement with that of the reference model, thus demonstrates that the proposed model is an indispensable tool in predicting and describing an uncertain system of this nature. The validation of an ANFIS model could also be achieved by calculating a percentage of best fit and root mean square error between the reference model and predicted model (ANFIS) as indicated in Table I. 
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Fig. 6 the responses of soluble components concentration of the BSM1 and ANFIS model
                  Table 1. The model validation via training 

	Variables
	Root Mean Square Error
	Percentage of Best-fit (%)

	SS
	0.004
	98.7

	SNH
	0.0017
	97.5

	SND
	0.0001
	97.6

	XBH
	0.001
	97.6

	XS
	0.002
	97.5

	XI
	0.09
	96.4

	XND
	0.0025
	97.3


As shown in Fig. 5, the results for the variables indicate that the ANFIS model (predicted model) results are in total conformity with that of the BSM1 (reference model). Although for variable Xi due to enormous error, two more membership functions were added to each input, and the addition resulted in drastic error reduction. Minimal error signifies how well the ANFIS model estimates the system behaviour in spite of all the non-linearity and large disturbances. From Table I, the root means square error (RMSE) for each of the variables is minimum, thus proven the reliability of the ANFIS model. As in the table I, the best-fit percentages obtained for the different variables indicates the performance of the ANFIS modelling the process.

Conclusion

In this paper, ANFIS model for an activated sludge process is presented. The expected results obtained proved the efficiency and robustness of the approach in modelling the activated sludge process regardless of the influent disturbances. The proposed model could be easy to use for control and optimization of the process, requires less experimentation and computational cost. The ANFIS model is a valuable tool for predicting activated sludge process.
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Appendix

 List of ASM1 Variables

SI
Soluble inert organic matter
SS
Soluble substrate

XI
Particulate inert organic matter

XS
Slowly biodegradable substrate

XBH
Heterotrophic biomass  

XBA
Autotrophic biomass

XP
Particulate product arising from biomass decay

SO
Dissolved oxygen

SNO
Soluble nitrate nitrogen

SNH
Soluble ammonium nitrogen

SND
Soluble biodegradable organic nitrogen

XND
Particulate biodegradable organic nitrogen

SALK
Alkalinity 
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