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Abstract

This research work presents the transient flow analysis of viscous fluid within a pipe. The model
equations evolved were considered for leak and no leak conditions. The equations were further
solved analytically using eigen vector expansion method. The results obtained were presented
graphically and analyzed. The analyses were undertaken using flow velocity, pressure, density,
measured inlet mass flow, measured outlet mass flow, elevation, leak rate, leak velocity and
Reynolds’ number. Based on the results obtained, these fundamental tools of analysis proved
effective in detecting, locating and describing the type and behaviour of leakage in a pipe.

Keywords: Leakage, Viscous Flow, Mass Flow Rate and Reynolds number.
Introduction

Pipelines are media needed for the movement of crude oil from reservoir wellbore and other
stations to be delivered to destination point such as separator, storage tanks and the likes
(Oyedeko and Balogun, 2015). The use of pipelines is considered as a major medium of
transporting petroleum products like gases, fossil fuels, chemicals and other important

hydrocarbons (Rehman and Nawaz, 2017).

Until crude oil is converted into useful products, there are intermediary processes that need one
or more-unit operations which will involve leakages with one another with the help of pipelines
(Chinwuko et al.,2016). It has been proven that gas and oil pipeline system are the safest and
most economical media of transporting crude oil and they fulfill a high demand for reliability
and efficiency (Boaz et al., 2014; Xiao et al., 2018). Transportation of crude oil in pipelines need
serious monitoring to detect pipeline failure or malfunctioning like leaks (Hauge et al., 2007).
Overtime, these pipelines due to design faults, stress corrosion and fatigue cracks, operation
outside design limit or intentional damage in act of vandalism, ageing and their likes result to
leaks (Oyedeko and Balogun, 2015). Sudden pipeline burst result in rapid change in pressure,
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causing economic loss and environmental problem without locating the leakages position and

repairing in time (Yang et al., 2011).

The failure of pipelines is either deliberate vandalism or device failure or corrosion damage
(Ajao et al., 2018; White et al., 2019). This leads to pipeline failure and thus causing an
irreversible damage such as financial losses and extreme environmental pollution specifically
when the leakage is not located timely (Arifin et al., 2018; Mokhatab et al., 2012; Mutiu et al.,
2019). Crude oil is in some sense hazardous. Hence, it is required to install leak detection and
localization systems (LDS). Leak detection systems that have the capability of detecting the
particular spot. Both the transporters and producers of these hydrocarbons experience the
problems of pipeline leaks from time to time and failure to locate it can lead to human casualties,
direct cause of loss of product and lie downtime, environmental cleanup cost and possible fines
and legal suits from habitants (Oyedeko and Balogun, 2015; Chinwuko et al., 2016). Hauge et
al., (2007) suggested a set of two coupled one dimensional first order nonlinear hyperbolic
partial differential equations governing the flow dynamics based on the assumption that
measurements are only available at the inlet and outlet of the pipe, and output is applied in the
form of boundary conditions. The deficiency of the model is that leak is only accurately located
and quantified successfully when the pipeline is shut-down. In this work, we solved and
extended the model for leakage in pipeline. The model was modified to include: no leak and leak
situations for viscous fluid. The two were solved analytically by eigen-function expansion

technique.

2.0 Mathematical Formulation

In formulating the models, relevant assumptions were made in line with Chinwuko et al., (2016).
The model equation was also modified to depict two different situations. They are:

Case 1: No leak situation for a viscous fluid.
Case 2: Leak situation for a viscous fluid.
The following assumptions were made:

Pipe cross-sectional area remains constant;
Isothermal and adiabatic flow;

One-dimensional flow (unidirectional)
No chemical reaction between the transporting fluid and internal wall of the pipe;
Constant density throughout the pipeline segments
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(vi)  Homogenous fluid (either oil or gas) being transported in the pipeline.
(vii) Energy conservation equation is neglected, since the leak considered in the transient model
affects only the downstream temperature at the fluid flowing velocity.

Based on the above assumptions, the continuity equation also known as the mass balance
equation which is based on the law of conservation of mass for a one-dimensional flow can be
expressed as;

o(pK) , o(pAV)

=0 1
ot OX @

In the occurrence of a leak, the continuity equation becomes

0 0 U .
(pA), 2(pAY) | . 2
ot OX
where the M, is the leak rate defined as:
My =M, =M, = (M;—-M,) (Tetzner, 2003) ©)

The leak position is also given by

(My—M,)
Xieak :_#L

(4)

leak

The momentum equation describes the force balance on the fluid within a segment of the
pipeline. From the Navier-Stokes equations, the conservation of momentum in one — dimensional
flow is:

e
Plat

0 o%u
&j __ %, 5)

OX ﬂy

Substituting the viscosity « from the expression for Reynolds’ number and later substituting
with the relation of frictional factor f gives:

ou  ou op o«
—4tU—|=——+ U— 6
p(at 6xj x ok (©)

Substituting p =P + pgH into (6) and introducing the leak term gives

+tU— |=———-pg—+u—+puU 7
Pl Y5 yolo u Pz (7)

(a_u auj oP oH o%u
OX OX ox?
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where: u is the one-dimensional velocity of fluid; t is time; x is the spatial space; p is the
static pressure; u is the viscosity of the fluid; H is the elevation; pis the density of the fluid,;

A is the cross sectional area of the pipe; M, is the leak rate; X, is the leak position; L is the
length of the pipe; gis the acceleration due to gravity; U, is the leak velocity; U,is the
reference flow velocity; M, is the estimated outlet mass flow rate; M, is the estimated inlet mass

flow rate; M, is the measured outlet mass flow rate and M, is the measured inlet mass flow rate.

The following initial and boundary conditions are later applied:

u(x,0)=0
u(0,t)=U, (8)
u(L,t)=0

2.1 Method of Solution

If we assume ﬁto be parabolic, i. e. H :ix(l—i) )]
OX OX L L

Then, equations (2) and (7) satisfying (8) become (10) and (11) respectively

L L Nty =0 (10)
ou  ou oP  pgH, ( xj o°u
LN LR e Y P LA B 11
p(at Gx) x L L) o T e )

2.2 Non-Dimensionalization

Here, we non-dimensionalize equations (10) and (11) satisfying (8) using the following

u Ut , , '
° Y (12)

dimensionless variables: u'=—t"= =
U, P Po

X,
L )
Substituting (12) into (10), (11) and using (8), we have

Je a_,d+p0U0 8(p'u') M

' ' + leak —
L ot L OX

pop'U§(G_U'N,@wj:_poUé8_p_pop'HogL X,(l_L_X'jJrqu o'’
L L ox L L > ox'

0 (13)

— +p,p'U 14
o o PoP Yea (14)
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u(x,0)=U,u’(x',0)=0,
and u(0,t)=U,u’'(0,t") =uj,, (15)
u(L,t)=Uu'(1t")=0

8_/3'+ d(pu) s LM

i.e. , , Ieak:O
ot OX LY (16)
! ' ' 2,1 ’
A Bag ) P MLy gy s L
and ot OX OX U, poLU, ox= U 17
u'(x,0)=0
u'(0,t")=1 (18)
u'(Lt")=0

Dropping prime we have the following dimensionless equations and initial and boundary
conditions.

6'[ 8X leak (19)
OX , OX (20)
u(0,t)= (21)

where R

B

Leak *is the leak rate, Vica "is the leak velocity, ” "is the elevation and

R, : is the Reynolds’ Number for the flow
The above equations (19) — (21) will now be considered under two (2) cases. They are;

1. Non-viscous flow without leakage
2. Non-viscous flow with leakage

Note that;
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If there is no leak, the transient pressure drop per unit length along the pipeline is constant i.e.,
no leak implied

6&) . .
azf(Ml)zM, = constant (22)
If a leak occurs, the flow rate upstream of the leak will be greater than the flow rate downstream
of the leak, therefore the pressure drop per unit length upstream of the leak will also be greater
than pressure downstream of the leak i.e.,

o
OX

op

= =f(M,)=f(M)=M, +(M; =M, )x>0 (23)

0<x<L

0<X<Xjeak

2.3 Viscous flow without leakage

In this case, equation (19) and (21) reduce to

Z—f+a(a”“)=o (24)
X

ou  ou , 1 &%

T uE =M, - Bx(1-x)+—2 2
p(aﬁ 8xj A )+Reax2 (25)
u(x,0)=0
u(0,t)= (26)
u(Lt)=0

2.4 Analytical solution of Viscous Flow without Leakage

It is simple to eliminate the continuity equation (24) by means of streamlines function

p(s,t)ds (27)

n(xt)=(p%)

N
O C— <

Let u=u(x,t)suchthat 7 =7(x,t)and x=x(t)then by chain rule, we have

ou_uan ouat
ot om ot ot ot

(28)

and
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du_duon, )

oX On ox ot ox

u= —lfa—pds (30)
Py ot
then on =-u (31)
ot
and on_y (32)
OX

The coordinate transformations become

o, 00m 2 @)

ox on ox ony

o 0 m. o o 0 ”
ot onp ot ot ot opy

Using (27) - (34) then equations (24) — (26) can be simplified as:

ou 1 d0u .

pE_R_ea_nz_M' -pn(1-n) (35)
u(7,0)=0

u(0,t)= (36)
u(Lt)=0

Equation (35) — (36) is a non-homogenous boundary value problem. Hence, there is need to
transform (35) — (36) to homogenous boundary value problem. To do this, let

u(nt)=a()+F(B(t)-a () =(L-n)t" (37)
and  u(7.t)=A(n,t)+u(n.t) (38)
Then, 4(17,0)=A(17,0)+ u(17,0) = A(7,0)+(1-17) =0 (39)
= A(1,0)=(n-1) (40)
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u(0,t)=A(0,t)+(0,t)= A(0,t)+1=1= A(0,t)=0 (41)
u(Lt)=ALt)+u(Lt)=A(Lt)+0=0=A(Lt)=0 (42)
and

u_oA on oA o oA )
oo ot ot ot ot

N _A H_A (44)
on on on on

Su A Fu_OA A

= = 0= 45
8772 8772 8772 6772+ 8772 ( )
Then equation (35) — (36) reduce to
oA _ 1 A M
TAM gy (@6)
o pRo p p
A 77,0):77—1
A(0t)= (47)
A(Lt)=
Consider equation 48 to 53 (Myint-U and Debnath, 1987)
aa—l:_kZTu+au+F(xt) (48)
u(x,0)=F(x)
u(0,t)= (49)
u(Lt)=
Assuming u(x,t):iun (t)sm(nfx], (50)
n=1
¢ [ om0z} (t-r) k(™) |
where u, (t):_[é[ (LU Fn(r)dr+bn£{ (Lj] (51)
0
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L
b, =EI f (x)sin@dx
L L
Compare (46) and (47) with (48) and (49) respectively, we have

u=A,K:iR ,05=0,F(77,'[)=—%(|\7II —ﬂﬂ(l—?])),x=7], f(n)=n-1LL=1

[

L
f(7)=n—-1=h, =2[n-1sinnzndy
0

1 1
Then, f(n)= Z(IUSin n;zndn—_[sin nmydnJ
0 0

Let b, = 2((1_(_1)n) Y } = 2{@] =q

nxz nxz nxz

1 1 1
and  F ()= —EU M, sinnzndn —ﬂjnsinnmydn +ﬂJ'n2 sinnmydnJ
p 0 0 0

F ()= [(M' (-0) peay (200w 2)}

nz nz (n;z')3

Let F,(t)=0q,

— L (et S (nx)?e —X(n
Also, A, (t)=q, 0 °* fe PR dz+qe¢ ~%

(0]

Let g, = IOLR(WZ)2

e

Then A, (t) =1 ¢ gor

2

t
,rar®
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A, (8)= (1 %) 1 g = [i+(q —i]zqth (64)
a, 2 02
Therefore, A(n,t)= i(i{q—iyqﬂ)sin nzn (65)
n=1\ Y2 2

Thus u(n,t)z(l—n)+i[&+[q—iJﬁq“]sin nzn (66)

1\ O, 0,

2.5 Case 2: Viscous flow with leakage

In this case, equations (19)- (21) reduce to

a—'D+a(pu)+RLeak =0 (67)
ot OX

ou _ o(pu)) T V) . Lo
R A e L <68>
u(x,0)=0
o(0.)=1 ©)
u(L,t)=0

2.6 Analytical solution of Viscous Flow with Leakage

Using (27) — (29) and from continuity equation (67), we obtain

Li Ja_pdﬁﬁnl (70
py ot p
ie. —Eu+ﬁnj:l a—pds (71)
p py ot
d R
Then 2= |y ey (72)
ot o,
an
11 73
= (73)

Then, the coordinate transformation become
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R

2.0 (R )0 75)
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Using (71) - (75), then equations (67) — (69) can be simplified as

U Ry ou) 120U .
p(g_Tn%j_R_eﬁ_ﬂz_(Ml +(Mg-M, )U)‘ﬂ’?(l—’?)+VLeak (76)
Suppose the solution u (n,t)can be expressed as:
U(ﬂ,t)=uo (Uyt)+RLeakU1(77,t) (77)
Then, equation (76) becomes

0 Rk © 1 ¢
P[E(Uo + RLeakul)_LTkn%(uo + RLeakul)J = R_ea_772(uo + RLeakul)_ (78)
(MI +(M0 - MI )n)_ﬂn(l_ﬂ)+VLeak
Collecting the like powers of R ., , we have for
RLeak0

ou 1 ¢ - - -
#:Eanzo _(Ml+(M0_M|)77)_,B77(1_77)+VLeak (79)

U (17,0)=0
U, (0,t) = (80)
U, (Lt)=0
RLeak1

0 1 0 1 0?

e e B (81)

ot p On R, on
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U, (0,t)=0 (82)

Equations (79) — (80) is a non-homogeneous boundary value problem. So, we let
w0 =a)+ (B (t)-a®)=(1-n)t (83)

and  Uy(7,t) =B(m,t)+ 14 (1) (84)

Then, equations (79) and (80) become

oB_ 1 GZB_E . " B VL_eak

ot _PRe on? ,O(MI +(M0 M|)77) ,077(1 77)+ p (85)
B(n,O):n—l

B(0,t)=0 (86)
B(Lt)=0

Compare (85) and (86) with (48) and (49) respectively we have

u=B,k = 1

,0(=0,F(77)=77—1,L=1,X=77

F(n't):%(VLeak _(MI +(Mo —M,)T])—,Bﬂ(l—ﬂ))

Then F(n7)=n-1=b,=q (88)

and

(VLeak ~-M, )Jl'sin nm]dn—(l\)lo -M, +ﬂ)j‘778in nzndn
RO=21 ° ° (89)
+,B.|‘7728in nzndn
0

(1) (Ve —Mr.])(l—(—l)“)+(Mo—M. +A)CY ((2-(m) )(3—1) -2) 0
/3 nz (nﬁ)

< |
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Let F,(t)=q,

t
B, (1) =g, * [ (= dr+qr
0

Bn (t) = g—z(l_ngt)_i_ qgfqzt

G

[q_

2

8
0,

Therefore, Z(q— ( ﬁjﬁ%‘]sinnm
2

n=1

02

0.

Thus, U, (7.t)=(1-7) Z( ( q3J£th]sinnm]
=1

But Ay _—1+Zn7{q3 (q—
=1 qZ

on

&j s ] cosnzn

02

Then, equations (81) and (82) become

au 1 du N B e
—=— +> (n —=10"% |pcosnzn —
o= R o 2 ff)[ q 77€0S N7 17

n=1 QZ 2

Compare (97) with (48) and (49), we have;

u:ul,k—ia 0,f(7)=0,L=1Lx=7n

PR,

F(n.t)= i(nﬂ)(%+[q—&ythJncosnmy—n
n=1 2 2

q

Then f(n)=0=hb, =0

andF =2 3 n;z [q3
nl g,

ﬁ(Q:z[ﬁ;@_zjﬁn)
Let F,(t)=q,

q_

q,

1 1
&ij* ]In cosnznsinnzndn —jnsin nmydnJ
0 0

—+[q —kJéqzt J LD J
d, nz

86

ISSN: 2395-3470
Www.ijseas.com

(91)

(92)

(93)

(94)

(95)

(96)

(97)

(98)

(99)

(100)

(101)

(102)



IJSEAS . . . .
| International Journal of Scientific Engineering an

t

d Applied Science (IJSEAS) — Volume-8, Issue-3, March 2022
ISSN: 2395-3470
Www.ijseas.com

Then u,, (t)=q,/ % [¢*"dr+0 (103)
0
Uy, (t) = (1) (104)
q;
Therefore;  u,(n,t)= i%(l— A )sin nzn (105)
n=1l 42
Thus, u(7,t)=uy(7,t)+ R (7.1) (106)
u(mt)=Q0-n)+ i &+[q —%J[qzt sinnzn + I?Leaki&(l—[qzt )sin nzn (107)
n=1 2 2 n=1 Y2

3.0 Results and Discussion

In analyzing the solution, we examine the effect of the measured inlet mass flow rate (m,),

measured outlet mass flow rate (m, ), elevation, p
v

eak

3.1 Analysis of Results

The graphs for different cases are given below:

Case 1: Viscous flow without leakage

ressure, the leak rate (R, ), leak velocity

), the Reynold number (R, ) on the flow distribution.

1

0.8

0.6

L. )
0.4

02 0.4

m=1
i

Figure 4.1: Flow distribution against distance at various values of mi

Figure 4.1 depicts the graph of flow velocity against distance for various
values of measured inlet mass flow rate mi . It is observed that the flow
velocity decreases along distance and decreases as measured inlet mass flow

rate mi value increases.

L. x)

PE————

08
0.6

0.4

Figure 4.2: Flow distribution against time at various values of M,

02 0.4

- ..o

m, =1
i

Figure 4.2 depicts the graph of flow velocity against time for various values
of measured inlet mass flow rate M, . It is observed that the flow velocity
decreases and later becomes steady with time and decreases as measured inlet

mass flow rate mi value increases.
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Ly 2]

02

[—p1r —— p-2----p 4]

Figure 4.3: Flow distribution against distance at various values of ,3
Figure 4.3 depicts the graph of flow velocity against distance for various
values of elevation ﬂ . It is observed that the flow velocity decreases along
distance and increases as elevation value increases.

8]

Lr(m. 2)

[—B1 —— Bp—>----p—al

Figure 4.4: Flow distribution against time at various values of ﬂ
Figure 4.4 depicts the graph of flow velocity against time for various values
of elevation ﬂ . It is observed that the flow velocity decreases and later
becomes steady with time and increases as elevation value increases.

vin. 1)
0.4

0.2 0.4 0.6 0.8

n
p—02— —p=04°-"""p—05]

[
Figure 4.5: Flow distribution against distance at various values of O

Figure 4.5 depicts the graph of flow velocity against distance for various
values of density O . It is observed that the flow velocity decreases along

distance and decreases as density 0 value increases.

vin. 1)

0.4 0.6 0.8

r

p=02— —p—04°-"""p—056]
Figure 4.6: Flow distribution against time at various values of O

Figure 4.6 depicts the graph of flow velocity against time for various values
of density . It is observed that the flow velocity decreases and later

becomes steady with time and increases as density 0 value increases.

. )

—— R=1 ——R=2-=-2R=3
E < e

Figure 4.7: Flow distribution against distance at various values of Re
Figure 4.7 depicts the graph of flow velocity against distance for various
values of Reynolds’ number Re . It is observed that the flow velocity

decreases along distance and decreases as Reynolds’ number Re value
increases.

(m. 1)

|[—r=1——Rr=2---.r=3|

Figure 4.8: Flow distribution against time at various values of Re
Figure 4.8 depicts the graph of flow velocity against time for various values

of Reynolds’ number Re . It is observed that the flow velocity decreases and

later becomes steady with time and increases as Reynolds’ number Re value

increases.
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Figure 4.9: Flow distribution against distance at various values of T,

Figure 4.9 depicts the graph of flow velocity against distance for various
values of measured inlet mass flow rate IT), . It is observed that the flow
velocity decreases along distance and decreases as measured inlet mass flow

rate mi value increases.

win. )

I—ml.=2 —_—— =3 e = . -ml.=4|
i i i

Figure 4.10: Flow distribution against time at various values of mi

Figure 4.10 depicts the graph of flow velocity against time for various values
of measured inlet mass flow rate mi . It is observed that the flow velocity
decreases and later becomes steady with time and decreases as measured inlet

mass flow rate mi value increases.
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wrim. )

Figure 4.11: Flow distribution against distance at various values of ,3
Figure 4.11 depicts the graph of flow velocity against distance for various
values of elevation ,B . It is observed that the flow velocity decreases along
distance and decreases as elevation value increases.
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Figure 4.12: Flow distribution against time at various values of ,B
Figure 4.12 depicts the graph of flow velocity against time for various values
of elevation ,B . It is observed that the flow velocity decreases and later
becomes steady with time and decreases as elevation value increases.
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Figure 4.13: Flow distribution against distance at various values of O

Figure 4.13 depicts the graph of flow velocity against distance for various
values of density O . It is observed that the flow velocity decreases along

distance and decreases as density 0 value increases.
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Figure 4.14: Flow distribution against time at various values of O

Figure 4.14 depicts the graph of flow velocity against time for various values
of density O . It is observed that the flow velocity decreases and later

becomes steady with time and increases as density 0 value increases.
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Figure 4.15: Flow distribution against distance at various values of Vleak

Figure 4.15 depicts the graph of flow velocity against distance for various

v(n.r) |2

1.0
o8
0.6
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Figure 4.16: Flow distribution against time at various values of Vleak
Figure 4.16 depicts the graph of flow velocity against time for various values
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values of leak velocity VI It is observed that the flow velocity decreases

eak *

along distance and increases as leak velocity VIeak value increases.

of leak velocity VI It is observed that the flow velocity decreases and

eak -

later becomes steady with time and increases as leak velocity VIeak value
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Figure 4.17: Flow distribution against distance at various values of
RIeak
Figure 4.17 depicts the graph of flow velocity against distance for various

values of leak rate R It is observed that the flow velocity decreases

leak *

along distance and decreases as leak rate R k Value increases.

leal

Figure 4.18: Flow distribution against time at various values of Rleak

Figure 4.18 depicts the graph of flow velocity against time for various values

of leak rate R It is observed that the flow velocity decreases and later

leak -

becomes steady with time and decreases as leak rate Rleak value increases.
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Figure 4.19: Flow distribution against distance at various values of Re
Figure 4.19 depicts the graph of flow velocity against distance for various

values of Reynolds’ number Re. It is observed that the flow velocity

decreases along distance and decreases as Reynolds’ number Re value
increases.
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Figure 4.20: Flow distribution against time at various values of Re
Figure 4.20 depicts the graph of flow velocity against time for various values

of Reynolds’ number Re . It is observed that the flow velocity decreases and

later becomes steady with time and increases as Reynolds’ number Re value
increases.
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Figure 4.21: Flow distribution against distance at various values of mo Figure 4.22: Flow distribution against time at various values of m0

Figure 4.21 depicts the graph of flow velocity against distance for various | Figure 4.22 depicts the graph of flow velocity against time for various values
values of measured outlet mass flow rate m0 . It is observed that the flow | of measured outlet mass flow rate m0 . It is observed that the flow velocity
velocity decreases along distance and decreases as measured outlet mass flow | decreases and later becomes steady with time and decreases as measured

rate m0 value increases. outlet mass flow rate mO value increases.

5.0 Conclusion

In this research work, a mathematical model for detecting leakage of non-viscous and viscous
fluid flow in a pipeline was formulated. The model equations evolved were considered in two
cases:

i.  Viscous flow without leakageii. Viscous flow with leakage

The two cases were solved analytically and we observed that: the flow velocity, pressure, density
measure inlet mass flow rate, measured outlet mass flow rate, elevation, leak velocity and
Reynolds’ number for the flow in the equations are not only fundamental but useful tools in
detecting, localizing and analyzing leakage of viscous and non-viscous fluid in a pipe.
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