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Abstract 

This research examines the application of Magnetic Resonance Equation in the detection of a disease 

called Tracheomalacia. The mathematical model applied evolved from the fundamental Bloch 

equations and was transformed into general flow equations. With appropriate boundary conditions, the 

method of separation of variables was used to obtain the solutions in two cases: Case 1 – free flow 

situation and Case 2 – diseased situation. The solution obtained was graphically plotted. From the 

graphs, the values of magnetization exhibited by the free flow demonstrated free induction decay (FID) 

with a range of value of 1.26026E-05 to 0.18 while those exhibited by the diseased situation manifest a 

deformity with a range of value of 1.26026E-05 to 1.5. As shown mathematically from the work, MRI 

has become an important tool in non-invasive methods of diagnosis and treatment in humans. 
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1.0 Introduction 

Tracheomalacia is a disorder which occurs when the cartilage that maintains the airway (trachea) opens 

and becomes brittle, causing the trachea to partially collapse, especially during periods of excessive 

airflow. The most common age groups for this illness are newborns and young children. The typical 

symptom is stridor upon exhaling. Typically, this is referred to as a collapsed windpipe. Normally, the 

trachea slightly widens during inhalation and somewhat closes during exhalation. 

Tracheobronchomalacia is the term used when the disorder affects the big airways (bronchi). 

Laryngomalacia, a related disorder, can also affect the larynx. 

Tracheomalacia may be congenital or acquired later which is known as secondary tracheomalacia. 

When the trachea's walls give way, it is called tracheomalacia. This may occur as a result of something 

pressing against the windpipe or weak windpipe walls. The trachealis muscle may be hypotonic in this 

case (Wert et al., 2017). It can affect the entire windpipe or only a small portion of it. Bronchomalacia 

is the medical term for a deflated portion of the windpipe that extends past the point at which it divides 

into the two lungs. Noisy breathing is one of the symptoms inside the lung. 

Bronchography offers a dynamic and morphological assessment of the tracheobronchial tree along with 

an accurate measurement of the airway lumen. However, to do this, contrast material must be injected 

into the constricted airway. Risks can include an allergic response, blockage of the airway, or total 

obstruction (Fraga et al., 2016).  

Over the years, Magnetic Resonance Imaging (MRI) is being used to detect partial and total blockage 

of oxygen flow in the human trachea (which is approximately cylindrical in shape). In recent time, MRI 

has emerged as an important instrument for functional ventilation imaging, Kauczor et al. (2001). After 

the advent of MRI, deaths from partial or total blockage of the trachea have decreased due to early 

detection by the use of MRI machines. 

Diffusion Magnetic Resonance Imaging (DMRI) is one of the MRI methods that is evolving rapidly. 

This method offers an accurate assessment of the individual component or multi-component systems in 

a matter of minutes, as opposed to conventional radioactive tracer methods, which might take weeks for 

each component (Awojoyogbe et al., 2011). The Bloch MRI flow equations and solution can be used 

to calculate the coefficient of diffusion in terms of the flow parameters. These factors play a crucial role 

in the study of flow in restricted geometries. This has been used in biological flow, catalysis, the 
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movement of different materials, the movement of fluids in hydrocarbon reservoirs, the movement of 

ground water, and the movement of pollutants (Awojoyogbe, 2009). 

The amount of material that diffuses in a specific amount of time, or a substance's coefficient of 

diffusion, is crucial for MRI pipe obstruction detection. The fascinating characteristics of water 

molecules' random diffusion motion are influenced by the physiological and anatomical surroundings 

of the animals under study. This idea serves as the foundation for the DMRI method. Due to distinctive 

relaxation rates, nuclear magnetic resonance may assess the diffusion movement of molecules (Yusuf 

et al., 2010). 

Each molecule of water, which has the chemical formula H2O, includes two hydrogen atoms. Humans 

are fortunate to have a large number of hydrogen atoms in our bodies for imaging reasons. 60% of an 

adult's body is made up of water on average. Hydrogen atoms are widely distributed in the energy-

storing compounds found in fat and carbohydrate molecules. As a result, Magnetic Resonance Imaging 

is a useful imaging technique for studying the internal organization of the body (Klioze, 2013). 

MRI scanners are particularly well suited to image the non-bony parts or soft tissues of the body. They 

differ from computed tomography (CT), because they do not use the damaging ionizing radiation of x-

rays. Klioze (2013) commented that the brain, spinal cord and nerves, as well as muscles, ligaments and 

tendons are seen much more clearly with MRI than with regular x-rays and CT; for this reason, MRI is 

often used to image knee and shoulder injuries. 

Nearly every part of the body may be studied with MRI. It gives very detailed pictures of soft tissues 

like the brain. Magnetic resonance imaging is routinely used in clinical practice to detect and monitor 

inflammatory lesions in patients with multiple sclerosis (MS) - Tomassini et al. (2009). Air and hard 

bone do not give an MRI signal, so, these areas appear black. Bone marrow, spinal fluid, blood and soft 

tissues vary in intensity from black to white, depending on the amount of fat and water present in each 

tissue and the machine settings used for the scan. The radiologist compares the size and distributions of 

these bright and dark areas to determine whether a tissue is healthy. 

 

Computed tomography originally perceived as standard for assessment of lung morphology and the 

most reliable imaging modality for monitoring cystic fibrosis (CF) lung disease, (Davis et al., 2007) 

have been implicated with numerous risk factors. CT has a much higher radiation exposure than chest 

x-ray. The cumulative radiation dose for life-long repeated CT scans has limited its use for CF patients 

as their life expectancy increases. Clearly, no dose would be preferable over low dose when the same 

or more relevant information can be obtained.  

 

Until the mid-1990s, chest x-ray was most widely used to monitor morphological changes in the CF 

lung. However, previous studies demonstrated that, although chest x-ray correlates significantly with 

PFT parameters, it has a low sensitivity to detect early changes in the CF lung, (Terheggen-Lagro et al., 

2007) and is inferior to computed tomography (CT). However, compared to chest x-ray, chest CT 

exposes patients to much higher radiation doses, Brenner & Hall (2007). Considering the necessity of 

life-long repeated imaging studies, the cumulative radiation dose reached with CT has restricted its use, 

especially for short-term follow up. 

While the trachea and main bronchi are generally well-visualized on MRI, one of the major advantages 

of MRI is the lack of ionizing radiation which is appealing in evaluating young children and adolescents 

who may require frequent imaging of the trachea. MRI is also advantageous in imaging tracheal 

compression or invasion by mediastinal masses or vascular rings or other vascular anomalies that may 

compress the trachea. Magnetic resonance imaging has therefore been established as a radiation-free 

alternative to CT and X-rays. Besides morphological imaging, functional qualities of the lung can be 

visualized and measured regionally. MRI of the chest was proposed as a potential imaging alternative 

in Cystic Fibrosis patients in the late 1980s, although at that time MRI technology was not capable of 

producing results comparable to CT.  
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In the last decade, new technologies and strategies have been implemented to overcome the inherent 

difficulties of MRI of the lung, Kauczor et al. (2001). With the introduction of parallel imaging in 

clinical practice, faster image acquisition became possible, enabling substantial improvement in 

temporal and/or spatial resolution. Although spatial resolution is lower as compared to CT, MRI has the 

advantage of characterizing different aspects of tissue based on different contrasts, as well as 

enhancement after contrast media administration. Additionally, MRI is capable of visualizing different 

regional functional aspects of the lung parenchyma (pulmonary hemodynamics, perfusion, ventilation). 

 

In this research work, the mathematical method of using MRI to detect blockage of fluid in cylindrical 

pipe used by Yusuf et al. (2015) is applied to detect the obstruction of flow of oxygen in the lungs 

resulting in difficulty of breathing.  The study adopts magnetic resonance imaging equation to show the 

mathematical processes involved in detecting tracheomalacia as a disease which occurs in the human 

trachea with a view to saving human life without surgical operation thereby facilitating medical 

treatment in a seamless manner. 

. 

2.0 Mathematical Formulation 

 

Bloch equations have been used to derive the diffusion equation. The second order differential equation 

so derived, is transformed into cylindrical coordinates to represent the assumed cylindrical structure of 

the trachea where there is no prevalent disease. This shall serve as Case 1 in the study. Case 2 shall be 

the diseased portion of the trachea which based on assumption, exhibits reduced radius due to the curved 

portion of the diseased region. Thereafter, appropriate initial and boundary conditions are applied. The 

transformed model equation is solved using the method of separation of variables. Radio frequency 

(RF) field is then introduced into the resultant solution of the equation revealing the response of the 

diseased portion to the MRI machine.  

The x, y and z components Bloch Magnetic Resonance Images equations are: 

dt

dM x
=

2T

M x      (1) 

dt

dM y
= )(1 tBM z

2T

M y
    (2) 


dt

dM z )(1 tBM y
1T

MM oz     (3) 

where oM = equilibrium magnetization  

xM = component of transverse magnetization along the 𝑥-axis 

yM = component of transverse magnetization along 𝑦-axis 

zM = component of magnetization along the field (𝑧 -axis) 

  = gyro-magnetic ratio of fluid spins 

)(1 tB = radio-frequency (RF) magnetic field     
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1T   = Longitudinal or spin lattice relaxation time    

2T  = Transverse or spin-spin relaxation time   (Bloch, 1946) 

From the fundamental Bloch equations, Awojoyogbe (2004) evolved the diffusion equation  
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where coefficient of diffusion, 𝐷, = −
𝑉2

𝑇𝑝
,  

21

11

TT
Tp  ,   pT Sum of the relaxation rates and  

𝐹𝑜 =
𝑀𝑜

𝑇1
,            𝐹𝑜 =ratio of equilibrium magnetization to spin lattice relaxation time 

The diffusion coefficient  𝐷 =  −
𝑉2

𝑇𝑝
  was accurately defined in terms of MRI flow parameters fluid 

velocity,𝑉, 𝑇1𝑎𝑛𝑑 𝑇2 relaxation rates (
21

11

TT
Tp  ). The absolute value of the fluid velocities for 

human tissues can be determined with different diffusion coefficient and 
1T  ,

2T can be obtained while 

making appropriate assumptions.  

Expressing 𝑀𝑦  as  

 𝑀𝑦 = 𝑀𝑦(𝑟, 𝑧, 𝑡)     (5) 

𝑀𝑦 = transverse magnetization, 𝑧 = direction of the magnetic field,  𝑟 = radial axis  

It is assumed that a normal trachea has an approximate cylindrical shape. A diseased trachea has a 

cylindrical shape but the disease portion collapses inward and becomes bean-shaped which in this 

research work, is being considered as an approximate semi-circle. 

In cylindrical polar coordinates,  

   𝑥 = 𝑟𝑐𝑜𝑠𝜃, 𝑦 = 𝑟𝑠𝑖𝑛𝜃, 𝑧 = 𝑧                   (6) 

Hence equation (4) which is a second order non homogenous differential equation becomes 

𝜕𝑀𝑦

𝜕𝑡
= 𝐷 (

𝜕2𝑀𝑦

𝜕𝑟2
+

1

𝑟

𝜕𝑀𝑦

𝜕𝑟
+

𝜕2𝑀𝑦

𝜕𝑧2 ) +
𝐹𝑜

𝑇𝑜
𝛾𝐵1(𝑡)                                                   (7) 

Recall the cylinder is radially symmetric, then it is independent of  𝜃. The general solution to this 

equation is of the form

      𝑀𝑦 = 𝐹(𝑟, 𝑧)𝑈(𝑡) + 𝑤𝑐(𝑡)               (8) 

with     𝑤𝑐(𝑡̇) =
𝐹𝑜

𝑇𝑜
𝛾𝐵1(𝑡)    (9) 

implying    𝑤𝑐(𝑡) = ∫
𝐹𝑜

𝑇𝑜
𝛾𝐵1(𝑡)

𝑡0

0
𝑑𝑡   (10)
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Using the method of separation of variables (MSV),  

                       𝑀𝑦 = 𝐹(𝑟, 𝑧)𝑈(𝑡)    (11) 

The expression on the righthand side of (11) can be written as a product function of 𝐹(𝑟, 𝑧) and  𝑈(𝑡) 

only. The first function is in terms of (𝑟, 𝑧) and the second function is in terms of 𝑡 only. Both sides 

must be equal to a constant, say −𝜆2, in order to obtain solution that will not be identically zero. Hence, 

the following two differential equations evolve:    

     
𝑑𝑈(𝑡)

𝑑𝑡
+ 𝜆2𝐷𝑈(𝑡) = 0    (13) 

    
𝜕2𝐹

𝜕𝑟2 +
1

𝑟

𝜕𝐹

𝜕𝑟
+

𝜕2𝐹

𝜕𝑧2 +𝜆2𝐹 = 0    (14) 

By integrating equation (13), the general solution is: 

   𝑈(𝑡) = 𝐶1𝑒
−𝜆2𝐷𝑡      𝜆 = 1, 2, … ,…,  (15) 

where 𝐶1 is the arbitrary constant of integration 

In order to solve (14), the same method of separation of variables is followed:  

     𝐹 = 𝑄(𝑟)𝑍(𝑧)    (16) 

The expression on the righthand side of (16) can be written as a product function of 𝑄(𝑟) and  𝑍(𝑧) 

only. The first function is in term of (𝑟) and the second function is in term of 𝑧 only. Both sides must 

be equal to a constant, say−𝜇2, in order to obtain solutions that will not be identically zero. The 

following two differential equations evolve; 

     
𝜕2𝑄

𝜕𝑟2 +
1

𝑟

𝜕𝑄

𝜕𝑟
+ 𝜇2𝑄 = 0                (17) 

and     
𝜕2𝑍

𝜕𝑧2 −𝛽2𝑍 = 0     (18) 

where we have  

                                𝛽2 = 𝜇2 − 𝜆2               (19) 

From equations (17), a Bessel differential equation evolves and its solution is given as 

                     𝐹(𝑟) = 𝐶2𝐽0(𝜇𝑟) + 𝐶3𝑌𝑚(𝜇𝑟)   (20) 

where 𝐽0(𝜇𝑟) is the Bessel function of the first kind, of order zero and 𝑌𝑚(𝜇𝑟) is the Bessel function of 

the second kind, of order 𝑚. 𝐶2𝑎𝑛𝑑𝐶3 are constants. Also, from (18),  

                                         𝑍(𝑧) = 𝐶4𝑒
𝛽𝑧 + 𝐶5𝑒

−𝛽𝑧    (21) 

Consequently, the solutions to the equations are: 

                  𝑈(𝑡) = 𝐶1𝑒
−𝜆2𝐷𝑡    𝜆 = 1, 2, … , …,                       (22) 

       𝐹(𝑟) = 𝐶2𝐽0(𝜇𝑟) + 𝐶3𝑌𝑚(𝜇𝑟)            (23) 

    𝑍(𝑧) = 𝐶4𝑒
𝛽𝑧 + 𝐶5𝑒

−𝛽𝑧             (24) 

Combining the solution to the diffusion Equation (7), this gives the product of the quantities in (22), 

(23) and (24) plus ∫ 𝑤𝑐(𝑡̇)
𝑡0

0
𝑑𝑡
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    𝑀𝑦 = 𝑀𝑦(𝑟, 𝑧, 𝑡) = 𝐹(𝑟)𝑍(𝑧)𝑈(𝑡) + ∫ 𝑤𝑐(𝑡̇)
𝑡0

0
𝑑𝑡        (25) 

𝑀𝑦(𝑟, 𝑧, 𝑡) = {𝐶2𝐽0(𝜇𝑟) + 𝐶3𝑌𝑚(𝜇𝑟)}{𝐶4𝑒
𝛽𝑧 + 𝐶5𝑒

−𝛽𝑧}{𝐶1𝑒
−𝜆2𝐷𝑡} + ∫ 𝑤𝑐(𝑡̇)

𝑡0

0
𝑑𝑡   (26) 

The initial and boundary conditions are as follows:  

             𝑖) 𝑀𝑦(𝑟, 𝑧, 0) = 𝑀𝑖(𝑟, 𝑧);  

𝑖𝑖) 𝑀𝑦(𝑟, 0, 𝑡) = 0;   

𝑖𝑖𝑖)𝑀𝑦(𝑟, 𝐿, 𝑡) = 0;   

𝑖𝑣)𝑀𝑦(𝑎, 𝑧, 𝑡) = 0; 

                                                                    𝑣)|𝑀𝑦(𝑟, 𝑧, 𝑡)| < 𝑀,            (27), Spiegel (1974)               

𝑀 = 1,2,3… 𝑖. 𝑒. 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 

where 𝑟 depicts the radius of the normal trachea and a depicts the collapse portion of the diseased 

trachea and 𝑧 represents the direction of flow of air (oxygen).     

Firstly, 𝑟 = 0, 𝑌𝑚(𝜇𝑟) → −∞; to keep the solution finite, 𝐶3 must be zero. Thus, 

   𝑀𝑦(𝑟, 𝑧, 𝑡) = {𝑒−𝜆2𝐷𝑡}{𝐶2𝐽0(𝜇𝑟)}{𝐶4𝑒
𝛽𝑧 + 𝐶5𝑒

−𝛽𝑧}   (28) 

Using the second boundary condition,  

𝑀𝑦(𝑟, 0, 𝑡) = {𝑒−𝜆2𝐷𝑡}{𝐽0(𝜇𝑟)}{𝐶4 + 𝐶5} = 0                                                       (29) 

So that we must have 𝐶4 + 𝐶5 = 0  implying that 𝐶5 = −𝐶4 then (28) becomes 

𝑀𝑦(𝑟, 𝑧, 𝑡) = {𝑒−𝜆2𝐷𝑡}{𝐽0(𝜇𝑟)}{𝑒𝛽𝑧 − 𝑒−𝛽𝑧} = 0                                                 (30) 

From the third condition, 

𝑀𝑦(𝑟, 𝐿, 𝑡) = {𝑒−𝜆2𝐷𝑡}{𝐽0(𝜇𝑟)}{𝑒𝛽𝐿 − 𝑒−𝛽𝐿} = 0                                               (31) 

which can be satisfied with𝑒𝛽𝐿 − 𝑒−𝛽𝐿 = 0 ,                    

𝑒𝛽𝐿. 𝑒𝛽𝐿 = 𝑒−𝛽𝐿. 𝑒𝛽𝐿 = 1 = 𝑒2𝑘𝜋𝑖                                                                           (32) 

Note that     𝑒𝑖𝑥 = 𝑐𝑜𝑠𝑥 + 𝑖𝑠𝑖𝑛𝑥      (33) 

and that implies 𝑒2𝜋𝑖 = 𝑐𝑜𝑠2𝜋 + 𝑖𝑠𝑖𝑛2𝜋 = 1 = 𝑒2𝑘𝜋𝑖.  𝑘 = 0, 1, 2, ……   (34) 

∴ 𝑒2𝛽𝐿 = 𝑒2𝑘𝜋𝑖               𝑘 = 0, 1, 2, … ..                                                                       (35) 

It follows that 2𝛽𝐿 = 2𝑘𝜋𝑖            or                𝛽 =
𝑘𝜋𝑖

𝐿
, 𝑘 = 0, 1, 2, ……                      (36) 

Using this in (30), 

𝑀𝑦(𝑟, 𝐿, 𝑡) = {𝐶𝑒−𝜆2𝐷𝑡}{𝐽0(𝜇𝑟)}𝑠𝑖𝑛
𝑘𝜋𝑧

𝐿
= 0                                                           (37) 

where 𝐶 is a new constant. 
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From the fourth condition, it implies 

𝑀𝑦(𝑎, 𝑧, 𝑡) = {𝐶𝑒−𝜆2𝐷𝑡}{𝐽0(𝜇𝑎)}𝑠𝑖𝑛
𝑘𝜋𝑧

𝐿
= 0                                                            (38) 

which can be satisfied only if 

                                                           {𝐽0(𝜇𝑎)} = 0                                                           (39) 

                                                                                 𝜇𝑎 = 𝑠1, 𝑠2, ….                                             (40) 

                                                                           𝜇 =
𝑠1

𝑎
,
𝑠2

𝑎
,….                                           (41) 

where 
𝑠𝑚

𝑎
(𝑚 = 1,2,… . ).is the positive root of the Bessel function {𝐽0(𝑥)} = 0. Now from (19), (36) 

and (41), it follows that: 

                                                 𝜆2 = (
𝑠𝑚

𝑎
)2 − (

𝑘𝜋𝑖

𝐿
)2  = (

𝑠𝑚

𝑎
)2 + (

𝑘𝜋

𝐿
)2                    (42) 

so that a solution satisfying all the boundary conditions except the first is given by  

                                 𝑀𝑦(𝑟, 𝑧, 𝑡) = {𝐶𝑒−𝐷𝑡(
𝑠𝑚
𝑎

)2+(
𝑘𝜋
𝐿

)2
} {𝐽0 (

𝑠𝑚

𝑎
𝑟)} 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿
             (43) 

where 𝑘 = 1,2,3,… ..; 𝑚 = 1,2,3,…. 

Replacing 𝐶 𝑏𝑦 𝐶𝑘𝑚 and summing over 𝑘 𝑎𝑛𝑑 𝑚 and by superposition principle 

𝑀𝑦(𝑟, 𝑧, 𝑡) = ∑ ∑ {𝐶𝑘𝑚𝑒−𝐷𝑡(
𝑠𝑚
𝑎

)2+(
𝑘𝜋
𝐿

)2
} {𝐽0 (

𝑠𝑚

𝑎
𝑟)} 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿

∞

𝑚=1

∞

𝑘=1

                      (44) 

From (28). 

𝑀𝑖 (𝑟, 𝑧) = ∑ ∑{𝐶𝑘𝑚} {𝐽0 (
𝑠𝑚

𝑎
𝑟)} 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿

∞

𝑚=1

∞

𝑘=1

                                                       (45) 

 This can be written as 

𝑀𝑖 (𝑟, 𝑧) = ∑[∑{𝐶𝑘𝑚} {𝐽0 (
𝑠𝑚

𝑎
𝑟)}]𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿
= ∑ 𝑏𝑘𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿

∞

𝑘=1

∞

𝑚=1

∞

𝑘=1

                          (46) 

     𝑏𝑘 = ∑ {𝐶𝑘𝑚} {𝐽0 (
𝑠𝑚

𝑎
𝑟)}                                          (47)∞

𝑚=1  

 It follows from this that 𝑏𝑘are the Fourier coefficients obtained when 𝑀𝑖(𝑟, 𝑧) is expanded into a 

Fourier sine series in 𝑧 (𝑟 being kept constant).  

Thus  

                                         𝑏𝑘 =
2

𝐿
∫ 𝑀𝑖(𝑟, 𝑧)𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿

1

0

𝑑𝑧                                           (48) 

𝐶𝑘𝑚 can be found from the expansion in equation (46). Since 𝑏𝑘is a function of 𝑟 this is simply the 

expansion of 𝑏𝑘 into a Bessel series. 

Consequently,  



4th SCHOOL OF PHYSICAL SCIENCES BIENNIAL INTERNATIONAL CONFERENCE FUTMINNA 2024 
 

SPSBIC2024 530 

 

                                      𝐶𝑘𝑚 =
2

𝐽1
2 (

𝑠𝑚
𝑎

)
∫ 𝑟𝑏𝑘𝐽0 (

𝑠𝑚

𝑎
𝑟)

1

0

𝑑𝑟                                      (49) 

Using (47),  

𝐶𝑘𝑚 =
4

𝐽1
2 (

𝑠𝑚
𝑎

)𝐿
∫ ∫ 𝑟𝑀𝑖(𝑟, 𝑧)𝐽0 (

𝑠𝑚

𝑎
𝑟) 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿

1

0

𝑑𝑟𝑑𝑧
1

0

                                       50) 

The required solution is  

𝑀𝑦(𝑟, 𝑧, 𝑡) = ∑ ∑ {𝐶𝑘𝑚𝑒−𝐷𝑡(
𝑠𝑚
𝑎

)2+(
𝑘𝜋
𝐿

)2} {𝐽0 (
𝑠𝑚

𝑎
𝑟)} 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿

∞

𝑚=1

∞

𝑘=1

                           (51) 

with 𝐶𝑘𝑚in (49) as coefficient.         

With the radio frequency (rf) field, the solution becomes 

𝑀𝑦(𝑟, 𝑧, 𝑡) = ∑ ∑ {𝐶𝑘𝑚𝑒−𝐷𝑡(
𝑠𝑚
𝑎

)2+(
𝑘𝜋
𝐿

)2
} {𝐽0 (

𝑠𝑚

𝑎
𝑟)} 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿

∞

𝑚=1

∞

𝑘=1

+
𝑎𝐹𝑜

𝑤𝑇𝑜
𝛾 sin(𝑤𝑡) (52)

 

Assume 𝑀𝑖(𝑟, 𝑧) = 𝜎0, a constant. 

𝐶𝑘𝑚 =
4𝜎0

𝐽1
2 (

𝑠𝑚
𝑎

)
∫ ∫ 𝑟𝐽0 (

𝑠𝑚

𝑎
𝑟) 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿

1

0

𝑑𝑟𝑑𝑧
1

0

                                                             (53) 

𝐶𝑘𝑚 =
4𝜎0

𝐽1
2(

𝑠𝑚
𝑎

)𝐿
{∫ 𝑟𝐽0 (

𝑠𝑚

𝑎
𝑟)𝑑𝑟

1

0

∫ 𝑠𝑖𝑛
𝑘𝜋𝑧

𝐿

1

0

𝑑𝑧                                                           (54) 

=
4𝜎0

𝐽1
2 (

𝑠𝑚
𝑎 )

{
𝐽1 (

𝑠𝑚
𝑎

)

𝑠𝑚
𝑎

} {
1 − 𝑐𝑜𝑠𝑘𝜋

𝑘𝜋
}                                                                                    (55) 

=
4𝜎0(1 − 𝑐𝑜𝑠𝑘𝜋)

𝑘𝜋
𝑠𝑚
𝑎 𝐽1 (

𝑠𝑚
𝑎 )

                                                                                                              (56) 

Substituting for 𝐶𝑘𝑚 in equation (51) 

 

𝑀𝑦(𝑟, 𝑧, 𝑡) =
4𝜎0

𝜋
∑ ∑ {

(1 − 𝑐𝑜𝑠𝑘𝜋)

𝑘𝜋
𝑠𝑚
𝑎 𝐽1 (

𝑠𝑚
𝑎 )

𝑒−𝐷𝑡(
𝑠𝑚
𝑎

)2+(
𝑘𝜋
𝐿

)2)} {𝐽0 (
𝑠𝑚

𝑎
𝑟)} 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿
    (57)

∞

𝑚=1

∞

𝑘=1

 

 

Radio Frequency (RF) transmitter is needed to transmit energy into the sample of the fluid under 

consideration in order to “activate” the nuclei so that they emit a signal. This is applied as an RF 

magnetic field 𝑩𝟏(𝒕) where 𝑩𝟏(𝒕) = 𝑏𝐵1(𝑡)𝑐𝑜𝑠𝑤𝑡. This field is said to be linearly polarized, since it 

oscillates in a single direction. w is called the irradiation frequency; it is also the reference frequency of 

the RF transmitter and the detection system. w has value 1𝑥108 rad.s-1 (Waldo and Arnold, 1983). 

Therefore,   

                                                            𝑤𝑐(𝑡) = ∫
𝐹𝑜

𝑇𝑝
𝛾𝐵1(𝑡)

𝑡0

0

𝑑𝑡                                      (58) 
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the radio frequency field (rf) is defined as 

                                                  
                                                         𝑩𝟏(𝒕)= 𝑏𝐵1(𝑡)𝑐𝑜𝑠𝑤𝑡                                            (59) 

                                                        𝑤𝑐(𝑡) = ∫
𝐹𝑜

𝑇𝑝
𝑏𝛾𝐵1(𝑡)𝑐𝑜𝑠𝑤𝑡

𝑡0

0

𝑑𝑡                         (60) 

Hence,  

                                                 ∫
𝑏𝐹𝑜

𝑇𝑝
cos (𝑤𝑡)

𝑡0

0

𝑑𝑡 =
𝑏𝐹𝑜

𝑤𝑇𝑝
𝛾 sin(𝑤𝑡)                 (61) 

Consequently, the final solution for the magnetization 𝑀𝑦,of any molecule of oxygen at any 

point (𝑟, 𝑧, 𝑡) in the lungs is given as 

𝑀𝑦(𝑟, 𝑧, 𝑡) =
4𝜎0

𝜋
∑ ∑ {

(1 − 𝑐𝑜𝑠𝑘𝜋)

𝑘𝜋
𝑠𝑚
𝑎

𝐽1 (
𝑠𝑚
𝑎

)
𝑒−𝐷𝑡(

𝑠𝑚
𝑎

)2+(
𝑘𝜋
𝐿

)2} {𝐽0 (
𝑠𝑚

𝑎
𝑟)} 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿

∞

𝑚=1

∞

𝑘=1

 

+
𝑏𝐹𝑜

𝑤𝑇𝑝
𝛾 sin(𝑤𝑡)                                                                                                            (62) 

 

3.0 Graphical Representation 

The graphs of free flow of oxygen along a healthy trachea and along a diseased trachea are presented 

as follows: 

Case 1 – Free Flow of Oxygen Case 2 – Diseased Condition 

 

Figure 1a: Magnetization against radius and direction of 

flow when t is 7e-14 

  

Figure 1b: Magnetization against radius and direction of 

flow  

when t is 7e-14 
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Figure 2a: Magnetization against radius and direction of 

flow when t is 7e-13 

Figure 2b: Magnetization against radius and direction of 

flow  

when t is 7e-13 

 

Figure 3a: Magnetization against radius and direction of 

flow when t is 7e-12 

 

 

Figure 3b: Magnetization against radius and direction of 

flow  

when t is 7e-12 

 

Figure 4a: Magnetization against radius and direction of 

flow when t is 1e-14 

 

 

Figure 4b: Magnetization against radius and direction of 

flow  

when t is 7e-11 
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Figure 5a: Magnetization against radius and direction of 

flow when t is 1e-11 

Figure 5b: Magnetization against radius and direction of 

flow  

when t is 1e-10 

 

Figure 6a: Magnetization against radius and direction of 

flow when t is 1e-10 

 

Figure 6b: Magnetization against radius and direction of 

flow  

when t is 1e-9 

 

4.0 Discussion 

4.1 Discussion on Graphs of Free Flow 

Figures 1a to 6a show the graphs of Magnetization plotted against radius (10mm (1cm)) and line of 

flow in the trachea. The magnetization ranges from 1.26026E-05 to 0.18 (point of relaxation). The 

graphs demonstrate magnetization values that decayed in accordance with free induction decay (FID) 

without any sign of obstruction or hinderance both at the inhalation and exhalation stages. This is 

summarily depicted in Figure 7 and 8. It can be inferred that the manner of decay of the magnetization 

which is being read as signal lay credence to the fact that there is free flow of oxygen. Hence there is 

no disease that is prevalent.  

 

Figure 7: Magnetization against Time for Free flow condition (Normal Trachea during Inhalation) 

 

Figure 8: Magnetization against Time for Free flow condition (Normal Trachea during Exhalation) 
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4.5 Discussion on Graphs of Diseased Condition 

Figures 1b to 6b show the graphs of Magnetization plotted against radius (
𝑟

𝑎
 became 5mm (0.5cm)) and 

line of flow in the trachea. The magnetization ranges from 1.26026E-05 to 1.5 (point of relaxation). The 

graphs demonstrate an irregularly oblique portion when the magnetization was about to enter relaxation 

stages of both the inhalation and exhalation stages. This is a sign of obstruction or hinderance at these 

stages. Figures 9 and 10 summarily depict these two situations. The inference from these is that 

narrowing of the lung as a result of tracheomalacia is responsible for the unusual shape of the graph. 

 

 

 

 

 

 

 

 

Figure 9: Magnetization against Time for diseased condition (Diseased condition during Inhalation) 

 
Figure 10: Magnetization against Time for diseased condition (Diseased condition during exhalation) 
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