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INTRODUCTION 
hen it comes to mobile networks, the fifth 

generation (5G) technology, which has reportedly 

been introduced in several regions of the world 

while many others are still awaiting its introduction, has shown 

promise. Even better, a variety of application areas have been 

suggested, some of which are currently being used like; self-

driving cars, unmanned aerial vehicles (UAVs), and smart cities. 

In the situations of these applications, the benefit of 5G 

technology would result in an exponential improvement. 

Wide area network (WAN) technology used in the 5G network 

supports all communication profiles used in industrial settings. 

Agility is a primary goal in the design of factories according to 

the industry 4.0 paradigm. Rearrangeable production line 

modules, automated guided vehicles, autonomous robots, 

linked worker solutions, and even drones are a few of the key 

technologies that enable such agility in factories. 

In accordance with International Telecommunication Union 

(ITU) standards, these applications have now been divided and 

classified into three use cases or service types. They are: 
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1) eMBB (Enhanced Mobile Broadband)  
2) uRLLC (Ultra Reliable Low-Latency Communications) 
3) mMTC (Massive Machine-type Communications) (Massive Machine-type 

Communications) (Sanou, 2018) 
 

The ITU has gradually implemented a number of standards in the information technology 
(IT) sector to control how people interact with technology while taking into account 
maximum performance. The ITU also established standards before 5G was available to 
control how consumers interacted with technology and applications in general. 
These numerous use cases are supported by the various quality of service (QoS) needs for 
5G wireless networks in terms of data rate, dependability, and latency. Network slicing in 
cloud radio access networks (C-RANs) allows mobile network operators (MNOs) to 
virtualize network resources, such as transmit power and physical resource blocks (PRBs), 
in the shared physical network. Given the restricted resources in the remote radio heads 
(RRHs), it is essential to allocate resources among network slices efficiently to enhance 
system throughput while still meeting the QoS requirements of the users (Pocovi et al., 
2018). 
For 5G wireless systems to function effectively, they must be able to support both mobile 

broadband and ultra-reliable low latency communications (or non-bursty and bursty 

traffic) on the same network without favouring one over the other. 

traffic, is the main cause of this puncturing. In addition to Q-learning, a joint power 

and resource block allocation was done in order to get around this issue. The 

scheduling of resources was done using Q-learning in order to get the best 

multiplexing possible without puncturing eMBB resources. As a result, a scheduling 

pattern was created that enhanced reliability by increasing throughput and reducing 

latency. The suggested algorithm was implemented using MATLAB 5G and Deep 

Learning toolboxes. The algorithm (OLRT-Q) was compared to three other 

algorithms and there were some favourable conclusions. According to analysis, a 16% 

throughput boost over LRT-Q and a 47.7% increase over LR-Q at 2 Mbps (the case with 

the highest load) were recorded. At 1.5 Mbps, we noticed an increase of 12.2% and 

33.16% in performance over LRT-Q and LR-Q, respectively. It outperformed LRT-Q and 

LR-Q in the case of a 1 Mbps load scenario by 9.44% and 19.09%, respectively. There is 

an improvement in throughput by 13.36% compared to LR-Q and a 9.58% increase 

compared to LRT-Q under the lowest load scenario permitted by the standard (0.5 

Mbps). 
 
Keywords: eMBB, Latency, OLRT-Q, Reliability, Throughput, URLLC. 
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On the one hand, gigabit per second data rates (with a bandwidth of several hundred 

MHz) and modest latency is supported by broadband traffic, or eMBB. On the flip side, 

URLLC traffic demands very high dependability (99.999%) and extremely short delays – 

low latency (0.25–0.3 msec/packet) (Anand et al., 2018). 

To meet these diverse needs, the 3rd Generation Partnership Project (3GPP) standards 

body has developed an original superposition/puncturing framework for multiplexing 

URLLC and eMBB traffic in 5G cellular systems. The Key Performance Indicators (KPIs) or 

Quality of Service (QoS) criteria for each of these standards are used as a metric to assess 

that specific use case or service category. 

The key system capacity concerns for eMBB users are:  Extreme Throughput, Enhanced 

Spectral Efficiency, and Extended Coverage.  

Users of uRLLC are more focused on mission-critical applications, and some key KPIs for 

these applications include: low latency; high reliability; high availability; and location 

precision. 

Users of massive-machine type communications (mMTC) are primarily concerned with 

Extreme Density, which includes: Energy Optimization, High Connection Density, Low 

Complexity, and Extended Coverage. 

Studying these three use cases, it has been suggested that there is a strong possibility 

that a user would only be required to use one or, at most, two of them at any given time 

because each of them has quite different applications and attributes. In the time-

frequency domain or spectrum, whether we are thinking about the orthogonal or non-

orthogonal slicing of resources in the wireless network, there is often a designated single 

frequency channel for mMTC. This means that eMBB and uRLLC users typically share other 

network blocks, especially in non-orthogonal slicing because in orthogonal slicing there 

are dedicated blocks for uRLLC traffic that are not utilized by any other sort of traffic, 

whether it is idle or not (Pocovi et al., 2018). 

As a result, numerous research on multiplexing eMBB and uRLLC use cases have been 

conducted because, more often than not, their packets co-exist or at the very least 

interact in the wireless network architecture. It has been observed that many 

compromises arise as a result of this multiplexing and coexistence, and these tradeoffs 

need to be handled. 

It is important to note that several approaches have been put out for dealing with the 

tradeoffs that arise when the two use cases coexist. It could be tempting to want to give 

up one for the other because their demands are distinct from one another. For instance, 

we observe that puncturing happens with respect to the resources of eMBB traffic as 

uRLLC users are given higher priority during resource allocation in order to meet their 

latency demands. This finally results in throughput degradation as it affects eMBB users. 
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In essence, the aim of this work is to multiplex URLLC and eMBB for optimal allocation of 

5G radio resources. The research's goals are to: Develop a pattern for scheduling 

throughput, latency, and dependability utilizing Q-learning in an effort to accomplish this 

goal and to compare and contrast throughput and latency results with industry standards 

in order to access the quality of research. 

 

METHODOLOGY 

This section describes how a multi-agent Q-learning algorithm is employed to increase 

throughput, reliability, and minimize latency, all of which are directly related to the 

delivery of packet data rates. 

 

SOFTWARE 

The MATLAB simulator will be used for this work, and a discrete-level simulator built on 

the MATLAB 5G toolbox will be used for simulations. The 5G and Deep Learning Toolboxes 

will be employed. Usually, the need to write codes when using toolboxes is largely 

eliminated and makes the work easier and more efficient. However, the 5G and Deep 

Learning Toolboxes didn’t appear on MATLAB until its 2019 version. 

 

METHOD EMPLOYED 

Before moving forward, there are a few issues that need to be resolved in order for us to 

achieve our aim. The eMBB packets would be modeled with Poisson traffic and the URLLC 

packets need to be modeled with both Poisson & CBR traffics since it is a bursty kind of 

packet. 

We would then multiplex packets of both forms of traffic on a 5G time-frequency grid 

which will enable us to address the puncturing issue that typically occurs when eMBB and 

URLLC packets are multiplexed.  

On a number of gNodeBs that support eMBB and URLLC users, our suggested algorithm 

would be put to the test using the 5G-NR Rel. 15 standard. The flexible resource 

distribution offered by the 5G-NR standard is made possible by Transmit Time Intervals 

(TTIs) of varying length. Resolution in the time direction is based on OFDM symbol slots 

of 2, 4, 7, or 14. The standard encourages the rapid transfer of messages that are perfectly 

suited for URLLC communication by using the greatest resolution possible, which is TTI of 

2 OFDM symbols. To address the high throughput demands of eMBB users, larger 

resolutions—like TTI of 14 OFDM symbols—are utilized. The total downlink bandwidth, B 

MHz, is split into NRB resource blocks, each of which consists of 12 consecutive subcarriers, 

in terms of spectrum distribution. Additionally, as mentioned in (Specification, 2018), a 

Resource Block Group is formed by contiguous resource blocks (RBG).  
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Let a set of K RBGs with a size of [NRB / K] resource blocks be denoted by the symbol, ҟ. To 

reduce the number of states in our Q-learning technique, we would use RBG as our 

allocation unit in the frequency direction. Additionally, each kth RBG is given a transmission 

power, pk,j, via the jth gNodeB. The Q-learning algorithm, which would be referenced later 

aims to improve transmission power assignments and RBG allocation. 

According to our system model, each gNodeB has an equivalent amount of transmission 

buffers to the attached users. The downlink scheduler of each TTI distributes resources 

to users who are active or who have pending data transfers. In particular, the scheduler 

implements joint power and RBG allocation while taking the QoS requirements of URLLC 

and eMBB users into account. In contrast to eMBB users, whose traffic is exclusively 

modeled using Poisson arrivals, URLLC users’ traffic is represented using a combination 

of CBR and Poisson arrivals. 

Link capacity between the User Equipment, UE i and gNodeB j is computed thus: 

 

𝐶𝑖,𝑗 = ∑ 𝜔𝑘𝑙𝑜𝑔2(1 +
𝑝𝑘,𝑗𝑥𝑘,𝑖,𝑗𝑔𝑘,𝑖,𝑗

𝜔𝑘𝑁0+∑ 𝑝𝑘,𝑚𝑥𝑘,𝑖,𝑚𝑔𝑘,𝑖,𝑚𝑚 𝜖 𝐽
𝑚 ≠ 𝑗

)𝐾
𝑘=1    (1) 

 

N0 is the single-sided power spectral density of additive white Gaussian noise, and wk is 

the bandwidth of the kth RBG. xk,i,j is the link allocation indicator of the RBG, pk,j is the 

transmit power of the jth gNodeB on the kth RBG, and gk,i,j is the channel co-efficient.  

The link allocation indicator of link (k,i,m) is denoted by xk,i,m, the channel coefficient is 

gk,i,m and the transmit power of the mth interfering gNodeB is pk,m. 

“Equation (1)” shows that reducing interference is essential for boosting throughput. 

Ineffective power management will significantly affect edge users, reducing throughput 

as a result. 

As indicated in “(2)”, there are three components that make up packet latency: 

 

𝑇 = 𝑇𝑞 + 𝑇𝑡𝑥 + 𝑇ℎ𝑎𝑟𝑞                                                    (2) 

 

where 𝑇𝑡𝑥 stands for transmission delay, 𝑇𝑞 for queuing time, and 𝑇ℎ𝑎𝑟𝑞 for HARQ re-

transmission round-trip delay. 𝑇ℎ𝑎𝑟𝑞 = 4.TTI is our default assumption in line with (Esswie 

et al., 2018). During HARQ, a retransmitted packet has a greater priority than a brand-new 

packet. 

      

The transmission delay of user i linked to gNodeB j can be calculated by dividing the packet 

length Li,j by the connection capacity Ci,j, as illustrated below: 
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𝑇𝑖,𝑗
𝑡𝑥 =

𝐿𝑖,𝑗

𝐶𝑖,𝑗
        (3) 

 

The ideal power allocation and, consequently, interference mitigation have a substantial 

impact on transmission delay in addition to throughput, as demonstrated in “(3)”. 

Transmission rate, on the other hand, has an impact on the Radio Link Control (RLC) layer. 

There is less segmentation as the rate rises. The transmission latency is thereby 

decreased. Additionally, giving a user access to more RBGs enlarges the assigned 

transport block, reducing the bandwidth. 

The queuing time in “(2)” corresponds to the scheduling delay of the MAC scheduler. 

Therefore, the scheduler must schedule URLLC traffic as soon as it arrives and limit the 

number of HARQ re-transmissions in order to provide URLLC users with a 1ms response 

time. We assume that there can be only one HARQ re-transmission in order to achieve the 

smallest delay possible. On the other hand, limiting re-transmissions may lead to a higher 

Packet Drop Rate (PDR) and hence lower reliability. For edge users in particular, the 

effects of such poor reliability might be disastrous. In our suggested algorithm, 

transmission power control based on RBG achieves great reliability while minimizing 

latency. 

It is important to note that improving the latency and reliability of URLLC users is 

projected to have an effect on eMBB users' throughput performance as seen in “(1)”. This 

calls for a resource allocation strategy that balances URLLC and eMBB KPIs. In the section 

that follows, we go over our proposed method for power and resource block allocation, 

which is based on Q-learning and aims to jointly maximize throughput for eMBB users and 

latency and reliability for URLLC users. 

 

Q-learning Algorithm (OLRT-Q) 

The suggested algorithm (OLRT-Q) is based on decentralized reinforcement learning and 

uses a Q-learning algorithm to execute resource allocation on each gNodeB. A Markov 

Decision Process (MDP), which includes agents, states, actions, a reward function, and a 

policy, is how Q-learning is formally described. The foundation of Q-learning is interaction 

with the environment and learning through trial-and-error rewards given for acceptable 

or desired behaviors. In more detail, an agent decides on a course of action, carries it out, 

and is rewarded based on how well the action was completed. Until the agent discovers 

an action selection strategy that maximizes its total discounted reward, this cycle is 

repeated. To determine the quality of the visited state action pair, Q-learning employs an 

iterative update, as follows: 
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𝑄𝑛𝑒𝑤(𝑠(𝑡), 𝑎(𝑡)) ← (1 − 𝛼). 𝑄(𝑠(𝑡), 𝑎(𝑡)) + 𝛼 . [𝑟(𝑡) + 𝛾.max
𝑎

𝑄𝑜𝑙𝑑(𝑠(𝑡+1), 𝑎)]   

    (4) 

Where 𝑄𝑛𝑒𝑤(𝑠(𝑡), 𝑎(𝑡)) is the Q-value of the state-action pair (𝑠(𝑡), 𝑎(𝑡)) at the tth iteration, 

𝛼 is the learning rate, 𝛾 is the discount factor, and 𝑟(𝑡) is the instantaneous reward. Since 

Q-values are stored in a Q-table that is indexed by states and actions, the size of the Q-

table is governed by the state-action space. 

OLRT-Q, the proposed algorithm is a Q-learning algorithm with a reward function that 

aims to improve the latency and reliability of URLLC users as well as the throughput of 

eMBB users. The algorithm will refer to the combined power and resource block 

allocations that are carried out by agents, or gNodeBs, as actions. To keep the size of the 

Q-table manageable, we would arrange 8 consecutive resource blocks into an RBG, and 

the agent would allocate RGBs. States in the suggested algorithm, which represent the 

effects of other agents' actions, are driven by observations from the environment. It is 

particularly difficult to reduce user interference when trying to increase throughput, 

reliability, and decrease latency. As a result, the states are made to represent the typical 

Signal to Interference Noise Ratio (SINR) attained by users connected to each gNodeB 

thus: 

𝑆𝑘,𝑗 = {
𝑆0     𝛾𝑘,𝑗̅̅ ̅̅ ̅ ≥ 𝛾𝑡ℎ

𝑆1   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                    (5) 

𝛾𝑘,𝑗̅̅ ̅̅ ̅ is the estimated value of the kth RBG’s SINR value on average, and is defined as: 

𝛾𝑘,𝑗̅̅ ̅̅ ̅ = 𝛽 𝛾𝑘,𝑗
𝑈̅̅ ̅̅ ̅ + (1 − 𝛽)𝛾𝑘,𝑗

𝐸̅̅ ̅̅ ̅                                             (6) 

𝛾𝑘,𝑗
𝑈̅̅ ̅̅ ̅ is the average SINR of URLLC users and 𝛾𝑘,𝑗

𝐸̅̅ ̅̅ ̅ is the average SINR of eMBB users. 𝛽 is 

the priority controlling factor given to URLLC and eMBB users, 𝛾𝑡ℎ is a threshold SINR 

value. 𝛾𝑡ℎ usually is chosen to maintain high probability of decoding. The reward function 

is finally formulated to reward actions that achieve the proposed objectives: 

𝜌𝑘,𝑗
𝑈 = {

1 − max
𝑖∈Ữ

(𝑇𝑖,𝑗
𝑞
)2      𝛾𝑘,𝑗̅̅ ̅̅ ̅ ≥ 𝛾𝑡ℎ

−1                         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                              (7) 

𝜌𝑘,𝑗
𝐸 =

2

𝜋
tan−1(𝐶𝑘,𝑗

𝐸̅̅ ̅̅ ̅)                                                        (8) 

𝜌𝑘,𝑗 = 𝛽 𝜌𝑘,𝑗
𝑈 + (1 − 𝛽)𝜌𝑘,𝑗

𝐸                                             (9) 

where 𝜌𝑘,𝑗
𝑈  is the reward for URLLC users on the kth RBG, 𝜌𝑘,𝑗

𝐸  is the reward for eMBB users, 

𝜌𝑘,𝑗 is the overall reward for the jth gNodeB. The average throughput of eMBB users is 

represented by 𝐶𝑘,𝑗
𝐸 , whereas the final packet queuing delay of the ith URLLC user (𝑖 ∈ Ữ) 

is represented by 𝑇𝑖,𝑗
𝑞

. “Equation (8)” addresses the KPIs of both URLLC and eMBB users 

by modifying parameter 𝛽. By rewarding the agent with a value proportionate to the 

queuing delay as long as its reliability reaches a predetermined threshold, such as the SINR 
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threshold, “(6)” specifically aims to reduce the latency and reliability of URLLC users. In 

fact, the reward value is determined by the URLLC packets on the queue for the shortest 

time. This means that the suggested algorithm will attempt to shorten the longest 

potential queue time. Additionally, increasing the average SINR has a significant impact 

on total latency since it reduces packet segmentation and transmission delay. Overall, 

“(6)” motivates the MAC scheduler to immediately assign URLLC users to better RBGs, 

producing minimal latency and high dependability. 

 “Equation (7)” aids eMBB users in increasing throughput, which raises the reward value 

almost to one. Using the parameter 𝛽 in “(8)”, we can obtain the balance between the 

opposing KPIs. 

 

The proposed algorithm's steps for each agent (gNodeB) are thus represented: 

1: Initialization: Q-table ← 0, 𝛼, 𝛾 and 𝜖. 

2: for TTI t = 1 to T do 

3: Step 1: Agent (that is, gNodeB) receives uplink report (that is, SINR) from its attached 

users. 

4: Step 2: Compute the reward as in Eq. (6), (7), and (8). 

5: Step 3: Update the Q-value of the current state-action pair as in Eq. (4). 

6: Step 4: Observe and transit to next state as in Eq. (5). 

7: Step 5: Select the next action based on 𝜖 –greedy policy. 

8: Step 6: Repeat at Step 1. 

9: end for 

 

SIMULATION PARAMETERS 

Table1 is a summary of network and Q-learning parameters used to implement our 

simulations in this work. 

 

TABLE 1: NETWORK PARAMETERS 

Parameters Values 

Network environment 5 gNodeBs and 500-meter inter-site distance in the 3GPP 

Urban Macro (UMa) network  

PHY configuration Subcarrier spacing of 15 kHz  

Each resource block has 12 subcarriers.  

K = 13 (number of RBGs)  

TTI of 2 OFDM symbols (0.1429 ms)  

15 dB Tx/Rx antenna gain  
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40 dBm maximum transmission power (Specification, 

2017) 

Carrier configuration B = bandwidth of 20 MHz  

100 resource blocks (NRB)  

4 GHz carrier frequency  

HARQ Round-trip latency of 4 TTI 

HARQ is asynchronous with 6 processes 

1 HARQ re-transmission maximum  

Propagation 128.1 + 37.6 log10 (D [Km]) 

5dB Noise Figure 

5dB Penetration loss 

Shadowing = Log-Normal Shadowing (8dB) 

User distribution Stationary distribution 

Uniform or even distribution 

50 URLLC packets (10packets / cell) 

25 eMBB packets (5packets / cell) 

Traffic model Payload size = 32 byte 

URLLC = Poisson (80%) + CBR (20%) 

eMBB = Poisson (100%) 

URLLC Load/Cell  [0.5: 0.5: 1] Mbps 

eMBB Load/Cell 0.5 Mbps 

Q-Learning α = 0.5 

γ = 0.9 

ε = 0.05 

β = 0.1 

 

where α is learning rate, γ is discount factor, ε is 

exploration probability and β is controlling factor. 

 

 

RESULTS AND DISCUSSION 

In addition to the previously mentioned techniques, the network and Q-learning 

parameters in Table1 will be tested and implemented. The outcomes of the tests and 

simulations will then be examined and contrasted with those from our benchmark in 

literature, i.e. (Elsayed & Erol-kantarci, 2019). 

We run simulations using our discrete-level simulator, based on the MATLAB 5G toolbox, 

as mentioned earlier. In our simulations, we look at 5 gNodeBs, each of which has 10 
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URLLC and 5 eMBB users. While eMBB traffic is entirely based on Poisson arrivals, URLLC 

traffic is a mix of 20% CBR and 80% Poisson arrivals. The payload size is 32 bytes for all 

users. Additionally, whereas eMBB traffic loads are set at 0.5 Mbps, URLLC traffic loads 

per cell range from 0.5 to 1 Mbps. Ten simulation runs' worth of simulation results for 

5000 TTIs are combined, averaged, and presented with a 95% confidence interval. In this 

work, we use TTI of 2 OFDM symbols, the best time resolution, as our scheduling interval. 

The action space of Q-learning based algorithms consists of power and RBG allocations. 

13 RBGs are utilized for a system bandwidth of 20 MHz, with the first 12 RBGs containing 

8 resource blocks in a row and the last RBG containing 4 resource blocks in a row. 

According to (Specification, 2017) the maximum transmission power of the gNodeB is set 

at 40 dBm, and the power allocation, 𝜌𝑘,𝑗, is selected from a range of 0 to 3 dBm. Finally, 

a SINR threshold of 𝛾𝑡ℎ = 20 dB is used to maintain a high possibility of successful 

reception. 

Performance of the proposed method is evaluated using URLLC and eMBB traffic KPIs, 

that is, latency and reliability for URLLC and throughput for eMBB. 

 

RESULTS FOR eMBB KPI (THROUGHPUT)
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Figure 1: eMBB Users Cumulative Throughput [Mbps] against Traffic Load of URLLC 
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The aggregate throughput of eMBB users under various URLLC traffic loads per cell, 

ranging from 0.5 Mbps to 1 Mbps, is depicted on the graph in Figure1. In fact, improving 

the throughput performance of eMBB users should have an impact on increasing the 

traffic load on URLLC. The PPF algorithm (Pocovi et al., 2018) has a very low throughput 

because it hardly takes into account eMBB users, as shown in Figure1. As a result, it is clear 

that throughput, an eMBB KPI, has declined. Additionally, as the authors heavily took into 

account eMBB users, Figure1 depicts the LR-Q algorithm, which has a substantially higher 

throughput than PPF. In comparison to the two algorithms previously described, the LRT-

Q algorithm was able to achieve better improvement since it used the Q-learning 

algorithm. In fact, compared to LR-Q and the PPF approach, the throughput of the LRT-Q 

is increased by 29% and 21 times, respectively, in the scenario with the highest load. Even 

with a 0.5 Mbps proposed load, the LRT-Q has twice the throughput of PPF. 

OLRT-Q, our method, produced a noticeable change when compared to the other three 

algorithms. It is important to note that as the URLLC loads per cell rise from 0.5 Mbps to 

1 Mbps, there is a slight, essentially negligible decrease in throughput at each cell. 

Although it is difficult to tell if there is an increase or decrease in URLLC loads per cell 

when they move from 0.5 Mbps to 1 Mbps because the values appear to be the same, we 

can still see that there has been improvement over the preceding algorithms, PPF, LR-Q, 

and LRT-Q. 

According to analysis, we have a 16% throughput boost over LRT-Q and a 47.7% increase 

over LR-Q at 2 Mbps (the case with the highest load). Additionally, at 1.5 Mbps, we saw 

increases of 12.2% and 33.16 percent in performance over LRT-Q and LR-Q, respectively. 

We outperformed LRT-Q and LR-Q in the case of a 1 Mbps load scenario by 9.44% and 

19.09%, respectively. There is an improvement in throughput of 13.36% compared to LR-Q 

and a 9.58% increase compared to LRT-Q under the lowest load scenario permitted by the 

standard, or 0.5 Mbps. 

This analysis shows that, when compared to our baseline methods, the OLRT-Q, which 

was created by incorporating Q-learning in addition to power and resource block 

allocation, performs better in all compartments for throughput enhancement. 
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RESULTS FOR AVERAGE URLLC LATENCY FOR URLLC LOADS: 0.5 AND 1 MBPS 
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Figure.2: Average URLLC Latency [ms]; URLLC Loads: 0.5 and 1 Mbps; eMBB Load: 0.5 

Mbps 

 

Since latency is the KPI that needs to be adjusted and is one of the KPIs of URLLC users, 

the graph in Figure2 depicts the average delay of URLLC users with URLLC loads of 0.5 

and 1 Mbps while eMBB load is set at 0.5 Mbps. The Empirical Complementary Cumulative 

Distribution Function (ECCDF), shows how the load changes over time by cumulating the 

latencies of URLLC users in this scenario. It compares the varied latencies for the four 

algorithms OLRT-Q, LRT-Q, LR-Q, and PPF. However, comparing the main algorithm 

presented in this work, OLRT-Q, to each of the other algorithms in separate graphs might 

make Figure2 easier to read. 

 

COMPARING URLLC LATENCY OF OLRT-Q TO PPF 
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Figure 3:  Average URLLC Latency [ms] of OLRT-Q and PPF 
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The OLRT-Q algorithm, which is used in this work, and PPF, which was used in one of the 

earlier works on the subject, are the two algorithms that are compared in Figure3. It is 

crucial to remember that the lower the cumulative frequency, the better the proposed 

algorithm for that specific metric under consideration. In this instance, the lower latency 

values are preferable to those with higher latency for URLLC users. 

There are a few inferences we may make from the graph. OLRT-Q performs better than 

PPF in a number of areas. We can say that we have comparable latency values at the 10-1 

percentile by interpreting the ECCDF values as percentiles. We also have an overlap at the 

10-2 percentile, indicating that the values for the latencies there are nearly identical. When 

compared to the 10-3 percentile, the values start to diverge. We can now see that each 

URLLC load at 0.5 and 1 Mbps has a latency difference of about 0.3 ms. Here is where the 

superiority of our OLRT-Q algorithm becomes apparent. We have a latency difference at 

the 10-4 percentile of 0.25 ms at 1 Mbps load and 0.5 ms at 0.5 Mbps load. It is apparent 

that at this point, the OLRT-Q algorithm now outperforms the PPF much more. This shows 

that the level of latency that was accomplished in earlier works has been maintained and 

subsequently improved. 

 

COMPARING URLLC LATENCY OF OLRT-Q TO LR-Q 
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Figure 4: Average URLLC Latency [ms] of OLRT-Q and LR-Q 

 

The two algorithms that are compared in Figure4 are the one that is described in this 

work, OLRT-Q, and one that was employed in a prior study on the subject, LR-Q. 

The graph shows that OLRT-Q performs better than LR-Q in a number of categories. By 

converting the ECCDF values to percentiles, we can say that the 10-1 percentile latency 

values for both URLLC loads of 0.5 Mbps and 1 Mbps differ by roughly 0.5 ms. At the 10-2 
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percentile, latency values at 0.5 Mbps and 1 Mbps URLLC loads, respectively, differ by 

approximately 0.35 ms and 0.25 ms. The difference in latency for each of the URLLC loads 

at 0.5 and 1 Mbps, respectively, is roughly 0.45 ms and 0.60 ms at the 10-3 percentile. For 

the 10-4 percentile, there is a difference in latency of 0.35 ms at 0.5 Mbps load and 0.35 ms 

at 1 Mbps load. At this stage, our algorithm continues to perform better than the LR-Q. 

This once more shows that we were able to keep and raise the level of latency that was 

accomplished in earlier research. 

 

COMPARING URLLC LATENCY OF OLRT-Q TO LRT-Q 
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Figure 5: Average URLLC Latency [ms] of OLRT-Q and LRT-Q 

 

The two algorithms that are compared in Figure5 are OLRT-Q, which is the algorithm that 

is presented in this work, and LRT-Q, which is the most advanced of the algorithms that 

we have compared to and was used in one of the earlier works on the subject. 

We can see from the graph that OLRT-Q performs better than LRT-Q in a number of areas. 

Using the ECCDF values as percentiles, we can say that for both URLLC loads of 0.5 Mbps 

and 1 Mbps, there are differences in latency values at the 10-1 percentile of about 0.25 ms. 

At the 10-2 percentile, latency values at 0.5 Mbps and 1 Mbps URLLC loads, respectively, 

differ by approximately 0.15 ms and 0.25 ms. The difference in latency for each of the 

URLLC loads at 0.5 and 1 Mbps, respectively, is about 0.5 and 0.7 ms at the 10-3 percentile. 

We have a latency difference at the 10-4 percentile of 0.35 ms at 1 Mbps load and 0.55 ms 

at 0.5 Mbps load. Now, our algorithm continues to perform better than the LRT-Q. The 

implication is that OLRT-Q has lower latency than other algorithms, as we also inferred 

from PPF and LR-Q. This once more shows that we were able to keep and raise the level 

of latency that was accomplished in earlier research. 
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RESULTS FOR AVERAGE PACKET DROP RATE 
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Figure 6: Average Packet Drop Rate [%]; eMBB Load: 0.5 Mbps 

 

Figure6 provides more information on the connection between the reliability and latency 

KPIs for URLLC users. After the initial re-transmission, latency can be reduced if we permit 

packets to be dropped. 

PPF has a re-transmission issue as a result of ineffective interference handling. Figure6 

shows that the PPF drop rate is rising as a result. While LRT-Q and LR-Q were only able to 

achieve packet drop rates of about 0.25 and 0.3%, respectively, thanks to their limitations 

on power allocation, OLRT-Q was able to achieve drop rates of less than 0.1%. In our worst-

case traffic load, OLRT-Q outperforms PPF, lowering the packet drop rate by 4%. It also 

outperforms LR-Q and LRT-Q by 3.4% and 2.7%, respectively. 

After 3000 TTI, or 428.5 ms, we finally noticed convergence of our OLRT-Q algorithm. The 

outcomes could not be plotted because of space limitations. 

 

CONCLUSION  

The difficulties with multiplexing URLLC and eMBB use cases on the same spectrum have 

successfully been addressed by this research work. The primary problem found is the 

depletion of eMBB users' resources. We have put into practice a technique using the Q-

learning algorithm that was successful in eradicating the initial issues and resolving the 

constraints identified in the studied literature. This approach also prevented us from 

negatively impacting URLLC users in an attempt to compensate for the constraints of 

eMBB users. There was an arrangement of resources where they could go beyond the 

spectrum if necessary. 



 

TIMBOU-AFRICA ACADEMIC PUBLICATIONS 
NOV., 2022 EDITIONS, INTERNATIONAL JOURNAL OF: 

 

 TIJSRAT 

SCIENCE RESEARCH AND TECHNOLOGY VOL. 11 

30 ISSN: 2623-7861 

In a nutshell, we have been able to increase throughput and reliability while drastically 

lowering packet latency. Thus, we may draw the conclusion that this work has brought 

the 5G world closer to the established requirements of 99.999% data rate and less than 1 

ms latency. 
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