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Abstract.  

In this paper, different programming languages such as R, MATLAB and Python; framework 
such as Sci-kit learn; and algorithms such as Regression and Artificial Neural Network (ANN) 
were used to compute radio refractivity in Abuja, Northcentral Nigeria. The upper air data of 
atmospheric parameters were collected from the Nigerian Meteorological Agency (NiMet), 
Abuja, Nigeria with a radiosonde. The data collected are pressure, temperature and relative 
humidity. The algorithm with the best results for radio refractivity computation was 
selected, though it was observed that all the algorithms utilised for the computation 
performed well. However, the ANN performed best as predicted and actual values of radio 
refractivity were closely related and relative errors were lower compared to other 
programming languages and algorithms. Hence, it was concluded that using ANN along with 
MATLAB would be the best algorithm and programming language for computing radio 
refractivity successfully. 

Keywords: Atmospheric parameters, machine learning, refractivity 

1. Introduction 

Radio wave propagation is motivated by the traits of the atmosphere and may be 
scattered, absorbed, reflected or refracted because of diverse atmospheric behaviours 
(Adeniji et al., 2021). The troposphere is part of the atmosphere that is closest to human life 
and starts from the earth’s surface to a height of approximately 10 km at the poles and 17 
km at the equator (Hall, 1979). Radio links in the troposphere are usually affected by 
pressure, temperature and relative humidity (Adeniji et al., 2021). These parameters disturb 
the frequency and power of the radio signal (Afolabi, et al., 2019). Radio waves have 
significant applications in radio communications, disaster forecasting, aerospace, and 
environmental monitoring or impact assessments. The application of radio waves is not only 
restricted to the foregoing as it is also being used in medical fields (Wallnöfer et al., 2020). 
Also, poor propagation lessens the proper functioning of a communication link, thereby 
resulting in signal decline at the receiver end. The refractivity changes in the troposphere 
depend on different factors and consequently on radio waves effects such as refraction and 
interference from radio stations.  Radio refractivity, n is described as the ratio of radio wave 
propagation velocity in free space to its velocity in an exact medium. It is mathematically 
written as: 
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        (1) 

Here, the velocity in a loose space is denoted by vf, while vm describes its velocity with 
respect to a specified medium. In the troposphere, radio wave propagation is evaluated 
primarily based on variations in air refractivity. The use of radiosonde by the Nigerian 
meteorological agency to record meteorological data is expensive and tedious (Afolabi, et 
al., 2019). This was why radiosonde accents were discontinued for over two decades in most 
places in Nigeria. Hence, some research efforts in the past such as Igwe and Adimula (2009) 
and Igwe (2010), at the time, could not get current upper air data for their analyses. 
Unfortunately, also, predicted or computed values from models used for forecasting radio 
refractivity are most times far from the measured values, thereby giving higher error 
margins. Thankfully, in recent times, the introduction of soft computing methods which can 
handle larger number of atmospheric data (Igwe et al., 2017; Igwe et al., 2021) has been able 
to reduce this error in the prediction of radio refractivity, thus giving more accurate results. 

This paper, therefore, aims at computing radio refractivity by employing different 
machine learning languages and atmospheric data of temperature, pressure and relative 
humidity, thereby determining the best algorithm from the computational results. 

2. Methodology 

Atmospheric parameters within a three-year time frame were used to compute radio 
refractivity using different machine learning programming languages. Then the best 
algorithm with the best results for computing radio refractivity was selected. The data 
collected include pressure, temperature and relative humidity. A radiosonde device was 
used for the data measurement and collection.   

The atmospheric radio refractive index, n, was computed using:  

       (2) 

N is the radio refractivity, and it is given as:   

                                         (N-units)        (3)

 where: 

Pd: dry atmospheric pressure (hPa) 

e: water vapour pressure (hPa) 

T: absolute temperature (K) 

2.1 Machine learning and predictive modeling methods 

2.1.1 Regression model 

As an introduction, notation for regression models are presented. Let Y denote the 
response (dependent) variable, and let X = X1, X2,...,Xp denote a list or vector of predictor 
variables (also called covariables or independent descriptors or concomitant variables). 
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These predictive variables are assumed to be constant for a given individual or subject of the 
population of interest. Let β = β0, β1, ..., βp denote the list of regression coefficients 
(parameters). Β0 is an optional intercept parameter and β1, ..., βp are weights or regression 
coefficients corresponding to X1, ..., Xp. A matrix or vector notation is used to describe a 
weighted sum of the Xs: Xβ = β0 + β1X1 + ...+ βpXp, where there is an implicit X0 = 1. A 
regression model is hence, stated in terms of a connection between the predictors X and the 
response Y. Let C (YX) denote a property of the distribution of Y given X (as a function of X). 
For example, C (YX) could be E (YX). The regression model was used to compute atmospheric 
parameters and radio refractivity 

2.1.2 Scikit-learn framework 

The Scikit-learn model is an open-source python machine learning library designed to 
work alongside NumPy. It features various machine learning algorithms for classification, 
clustering, and regression. The Scikit-learn model was also used to compute atmospheric 
parameters and radio refractivity. 

2.1.3 Artificial neural network model 

 Artificial neural network (ANN) with MATLAB as its machine learning algorithm was 
likewise used to compute atmospheric parameters and radio refractivity. The machine 
learning process involves: i. Data Preparation ii. Feature Selection iii. Forecast Module. The 
data preparation involves cleaning and organising the data to make it suitable for building 
and training the model. The feature selection stage helps selects the appropriate features 
for the model. The last stage (i.e. Forecast Module) involves using the ANN to compute the 
radio refractivity from the selected features. The ANN was employed to make the 
computation via model training. The ANN architecture was used to train the data 
(temperature, pressure, and humidity) and make refractivity computation. 

3. Results and discussion 

The data was prepared, analysed and computations were made based on the selected 
algorithms. The results from these analyses are hereby presented. 

3.1 Computation using regression analysis 

The computations of atmospheric parameters were carried out first before the computation 

of radio refractivity was done using regression. The results revealed that pressure decreases as 

altitude increases (as shown in Figure 1). At a height of 110 m, it was observed that pressure 

was 1000 hPa. At 800 m, it was observed that atmospheric pressure had reduced to 922 hPa. 

Relative humidity was directly proportionally to height (as shown in Figure 2). At a height of 

100 m, relative humidity was 50%. However, at a height of 805 m, relative humidity rose to 

79%. 
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Figure 1: Relationship between Pressure and Height 

 

Figure 2: Relationship between Relative Humidity and Height 

 

The predicted and actual values of the atmospheric parameters and relative errors (RE)  are 

presented in Table 1. It was observed that the relative errors were less than 0.5%. This 

suggests that the regression model used for this study has a high accuracy. 

Table 1: Actual and predicted values of atmospheric parameters using Regression 

Mnth Hght Act  
Pres 

Pred  
Pres 

RE Act 
Tem 

Pred 
Tem 

RE Act 
RH 

Pred 
RH 

RE 

Jan 1569 850 850 0.001 20.3 25.1 0.002 88 90.1 0.001 

Feb 1711 835 849 0.002 20.3 20.7 0.003 31 34.4 0.003 

Mar 495 958 957 0.002 31.9 31.9      0.000 54 54.0 0.000 

Apr 1460 859 870 0.008 19.1 19.7 0.001 56.7 59.0 0.002 

May 827 925 970 0.003 21.9      22.2 0.001 55 55.2 0.001 
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Jun 789 928 930 0.002 23.5 23.7 0.000 86 87.3 0.001 

Jul 1518 855 860 0.004 20.8      20.7 0.001 86 86.0 0.000 

Aug 1109 896      896 0.001 24.3      24.7 0.001 81 83.4 0.002 

Sep 380 880 900 0.007 21.3 21.5 0.001 50 50.1 0.001 

Oct 1897 816 821 0.004 18.7 19.2 0.003 84 87 0.003 

Nov 392 970 971 0.003 32.8 33.7 0.001 42 42.2 0.002 

Dec 399 972       974 0.002 30.0 30.3 0.000 57 58.1 0.001 

 

3.2 Prediction using scikit-learn framework 

Scikit-learn framework (A python machine learning library) was also used for the 

atmospheric data prediction in this work. The comparison between the predicted and actual 

values of pressure is shown in Figure 3. The predicted and actual values of pressure agree 

well with each other till day 100. However, as shown in Figure 4, the predicted and actual 

relative humidity values are far from each other. The comparison between the predicted and 

actual values of temperature is given in Figure 5. The error is again less than 0.5%, which 

guarantees the accuracy of the suggested scikit-learn framework. 

 

Figure 3: Comparison between predicted and actual values of pressure in relation to days 

 

               Figure 4: Comparison between predicted and actual values of relative humidity in relation to days 
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Figure 5: Comparison between predicted and actual values of temperature in relation to days  

 

Also, the predicted and actual values of temperature, pressure, and humidity with the 
various computed relative errors were compared as shown in Table 2. The study reveals that 
the error margins between the predicted and actual values were a bit high. For instance, the 
relative error for atmospheric pressure in June was 0.08 %. 

Table 2: Actual and predicted values of atmospheric parameters using Scikit-learn Framework 

Mnth Hght Act  
Pres 

Pred  
Pres 

RE Act 
Tem 

Pred 
Tem 

RE Act 
RH 

Pred 
RH 

RE 

Jan 1570 925.0 925.1 0.01 18.0 18.1 0.01 81 81.5 0.04 

Feb 1570 925.0 925.6 0.06 18.0 18.3 0.03 94 94.2 0.02 

Mar 831 925.0 925.5 0.05 18.5 18.4 0.01 69 69.2 0.02 

Apr 1565 925.0 925.3 0.03 19.0 19.3 0.03 54 54.4 0.01 

May 1561 925.0 925.5 0.05 18.7 18.5 0.02 82 82.4 0.02 

Jun 1550 925.0 925.8 0.08 17.8 17.4 0.04 94 94.5 0.01 

Jul 827 925.0 925.1 0.01 19.1 19.4 0.03 86 86.0 0.00 

Aug 1546 925.0 925.4 0.04 18.8 18.4 0.04 87 87.2 0.02 

Sep 1570 925.0 925.8 0.08 19.7 19.5 0.02 67 67.5 0.05 

Oct 1549 925.0 925.5 0.05 20.2 20.3 0.01 76 76.6 0.05 

Nov 1570 925.0 925.7 0.07 19.1 19.4 0.03 80 80.5 0.03 

Dec 1570 925 925.2 0.02 25 25.2 0.02 84 84.2 0.01 

3.3 Prediction using artificial neural network  

For artificial neural network prediction, information for evaluating the quality of the 
trained network is available from the error histogram shown in Figure 6. This gives the 
distribution of the residuals between targets and network outputs. The histogram is also 
able to indicate outliers. It was observed that most errors lie between - 1.036 and - 1.955. 
Although the outputs were slightly larger than the targets, the error for the best 
performance stood at -1.036. This indicates very low error values. 

Figure 6: Error histogram of target and artificial neural network 
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The scatter plot shown in Figure 7 reveal that the predicted values are closer to the actual 
values. The correlation coefficient between the ANN output and the target values were high. 
The r-squared values for training, validation and test are 0.94, 0.99 and 0.91 repectively. 

Figure 7: Scatter Plots showing Training, Validation and Test results for the ANN model 

 

The actual and predicted values of atmospheric parameters using artificial neural network 
is shown in Table 3. It was observed that the relative errors were lower than 0.5% for each 
parameter. The relative errors for pressure, relative humidity and temperature were 
between 0.001 and 0.003 in most instances. 

Table 3: Actual and predicted values of atmospheric parameters using artificial neural network 

Mnth Hght Act  
Pres 

Pred  

Pres 

RE Act 

Tem 

Pred 

Tem 

RE Act 

RH 

Pred 

RH 

RE 

Jan 1370 872 872.6 0.001 22.0 28.1 0.007 77 77.8 0.002 
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Feb 818 925 925.3 0.001 21.2 29.3 0.002 15 15.3 0.001 

Mar 1544 925 925.5 0.001 22.5 28.7 0.003 52 57.9 0.003 

Apr 1546 925 925.3 0.001 21.3 21.5 0.002 62 62.4 0.001 

May 1560 925 925.4 0.001 19.1 21.4 0.002 95 95.3 0.001 

Jun 1552 925 925.3 0.001 20.4 20.6 0.001 66 78.9 0.007 

Jul 1568 925 925.2 0.001 21.4 23.1 0.003 52 52.3 0.001 

Aug 1588 924 924.5 0.001 16.2 18.9 0.002 99 99.3 0.001 

Sep 1581 925 925.0 0.001 19.0 19.9 0.001 77 77.4 0.001 

Oct 1570 925 925.42 0.001 18.2 30.2 0.008 86 89.0 0.002 

Nov 1567 925 925.4 0.001 20.0 21.3 0.001 63 63.8 0.001 

Dec 832 1000 1000.32 0.001 23.0 23.4 0.001 68 69.7 0.002 

The actual and predicted values of refractivity, Ns using the three algorithms (Regression, 
Scikit learn and ANN) are shown in Tables 4 - 6. 

Table 4: Actual and predicted values of Refractivity, Ns using Regression 

Mnth 1st Year 2nd Year 3rd Year 

Act 
Ns 

Pred 
Ns 

RE Act 
Ns 

Pred 
Ns 

RE Act 
Ns 

Pred 
Ns 

RE 

Jan 235.57 268.23 0.24 303.97 297.03 0.23 372.37 325.83 0.17 

Feb 241.27 270.63 0.22 309.67 299.43 0.21 378.07 328.23 0.23 

Mar 246.97 273.03 0.24 315.37 301.83 0.21 383.77 330.63 0.31 

Apr 252.67 275.43 0.24 321.07 304.23 0.25 389.47 333.03 0.27 

May 258.37 277.83 0.27 326.77 306.63 0.26 395.17 335.43 0.25 

Jun 264.07 280.23 0.23 332.47 309.03 0.23 400.87 337.83 0.35 

Jul 269.77 282.63 0.24 338.17 311.43 0.13 406.57 340.23 0.34 

Aug 275.47 285.03 0.27 343.87 313.83 0.14 412.27 342.63 0.37 

Sep 281.17 287.43 0.24 349.57 316.23 0.17 417.97 345.03 0.32 

Oct 286.87 289.83 0.26 355.27 318.63 0.12 423.67 347.43 0.31 

Nov 292.57 292.23 0.24 360.97 321.03 0.18 429.37 349.83 0.38 

Dec 298.27 294.63 0.23 366.67 323.43 0.10 435.07 352.23 0.34 

Table 5: Actual and predicted values of Refractivity, Ns using Scikit-learn 

Mnth 1st Year 2nd Year 3rd Year 

Act 
Ns 

Pred 
Ns 

RE Act 
Ns 

Pred 
Ns 

RE Act 
Ns 

Pred 
Ns 

RE 

Jan 358.60 341.32 0.12 363.59 353.32 0.21 363.59 358.60 0.23 

Feb 360.12 342.32 0.18 363.59 354.32 0.21 363.59 358.60 0.21 

Mar 361.13 343.32 0.21 363.59 355.32 0.25 363.59 358.60 0.24 

Apr 363.59 344.32 0.22 363.59 358.60 0.23 363.59 358.60 0.22 
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May 363.59 345.32 0.23 363.59 358.60 0.24 363.59 358.60 0.24 

Jun 363.59 346.32 0.20 363.59 358.60 0.23 363.59 358.60 0.24 

Jul 363.59 347.32 0.16 363.59 358.60 0.21 363.59 358.60 0.24 

Aug 363.59 348.32 0.22 363.59 358.60 0.23 363.59 358.60 0.24 

Sep 363.59 349.32 0.23 363.59 358.60 0.23 363.59 358.60 0.24 

Oct 363.59 350.32 0.24 363.59 358.60 0.21 363.59 358.60 0.24 

Nov 363.59 351.32 0.22 363.59 358.60 0.24 363.59 358.60 0.24 

Dec 363.59 352.32 0.22 363.59 358.60 0.23 363.59 358.60 0.24 

 

Table 6: Actual and predicted values of Refractivity, Ns using ANN 

Mnth 1st Year 2nd Year 3rd Year 

Act 
Ns 

Pred 
Ns 

RE Act 
Ns 

Pred 
Ns 

RE Act 
Ns 

Pred 
Ns 

RE 

Jan 358.60 357.30 0.21 363.59 352.49 0.22 363.59 356.14 0.20 

Feb 360.12 359.01 0.20 363.59 353.56 0.21 363.59 355.87 0.23 

Mar 361.13 360.10 0.23 363.59 352.53 0.23 363.59 352.82 0.21 

Apr 363.59 362.60 0.21 363.59 356.76 0.20 363.59 350.80 0.22 

May 363.59 357.95 0.21 363.59 356.40 0.21 363.59 353.13 0.21 

Jun 363.59 359.24 0.20 363.59 355.34 0.22 363.59 353.91 0.22 

Jul 363.59 360.94 0.21 363.59 358.00 0.25 363.59 354.85 0.22 

Aug 363.59 358.38 0.22 363.59 357.30 0.23 363.59 346.59 0.23 

Sep 363.59 359.57 0.21 363.59 357.19 0.21 363.59 353.59 0.20 

Oct 363.59 356.39 0.21 363.59 353.49 0.25 363.59 353.59 0.24 

Nov 363.59 355.19 0.24 363.59 357.65 0.21 363.59 353.59 0.21 

Dec 362.59 354.22 0.22 363.59 357.31 0.21 363.59 353.59 0.22 

From Tables 4-6, it is observed that refractivity values are lower for the first year, 
whereas higher values were observed for the remaining 2 years. It is also noticed that 
predicted refractivity values were closer to actual values with the relative error values less 
than 0.5% in all the years. However, radio refractivity computation using artificial neural 
network gave better results. This agrees with the conclusions of Javeed et al. (2018) and 
Ayantunji et al. (2019). They concluded that neural networks can be used for successful 
estimations of atmospheric parameters of humidity, pressure, and refractivity. 

4. Conclusion 

Radio refractivity has been computed using different algorithms and frameworks in this 
paper. The best algorithm was selected as the most appropriate. Regression analysis with R 
programming language, scikit-learn framework with Python programming language and 
artificial neural network with MATLAB were employed to compute selected atmospheric 
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parameters (pressure, temperature, relative humidity) and radio refractivity. The results 
revealed that the computed relative errors for the atmospheric parameters and radio 
refractivity were relatively low. In all, the computed values of all the atmospheric 
parameters and refractivity were close to their respective actual values, with less than 0.5% 
relative errors. Also, refractivity values were lower for the first 1 year, whereas higher values 
were observed for the remaining 2 years. However, computation of radio refractivity using 
artificial neural network was better in comparison to other algorithms. 
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