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Abstract 

This study presents a mathematical model that explores the impact of thermal radiation effects on 

temperature and concentration on magnetohydrodynamic (MHD) flow in the presence of chemical 

reaction in a porous medium. The governing partial differential equations were non-

dimensionalized, transformed to ordinary differential equations using harmonic solution technique 

and solved using perturbation method. The results which were presented graphically, highlight 

several key observations. Specifically, an increase in Grashof number, Dufour number, and 

porosity parameter leads to higher velocity profiles. Furthermore, Radiative parameters are found 

to reduce the fluid temperature. The findings of this work will be crucial in optimizing processes 

in areas like combustion, cooling systems and environmental control technology where such 

complex interactions are prevalent.   

Keywords: Dufour number, Grashof number, harmonic solution technique, Magneto-

hydrodynamic 

1.Introduction 

In many scientific, industrial, and environmental applications, natural convection arising from the 

buoyancy effect produced by density changes in a fluid is one of the key phenomena affecting such 

cases. Such applications include nuclear waste disposal, catalytic reactors, and energy systems 

requiring efficient temperature control and security (Riley et al., 2006). Jimoh and Abdullahi (2023) 

examined the effect of chemical reaction and viscous dissipation in MHD flow over an inclined 

porous plate for heat and mass transfer. They discovered that an increase in Peclet number, Grashof 

number, and heat source parameter strengthens velocity and temperature profiles. The internal 

energy dissipation modified the thermal and concentration boundary layers. 

 

Zubi (2018) examined the conducting fluid and material flow of an to and fro movement flow over 

a perpendicular Porous medium. He discovered that the fluid velocity rises when the parameters of 

the interaction species and porous rises, and also rises when the parameters of magnetism 

reduce.Sandhya et al. (2020) investigated how Magnetohydrodynamics flow across a 

perpendicular flow passage  during a chemical reaction is affected by mass and heat transfer. The 

thermal diffussion influence an perpendicular plate on the flow region have been attempted to be 
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explained with the aid of the thermal region, interaction species,and heat emission. To solve the 

dimensional higher derivatives equations, the closed analytical approach was applied. As the 

Grashof, modified Grashof, and Soret numbers increase, the fluid velocity also increases 

 

3. Model Formulation 

In this study, the effects of a variable temperature and concentration inclined moving plate under 

an external transverse field and flowing through porous medium the unsteady free convection 

viscous incompressible radiative fluid were investigated. A Cartesian coordinate system is set up, 

where the x-axis is taken along the plate while the y-axis is taken normal to it. A field of strength 

B, would act on the system perpendicularly to the plate in the y-direction such that it influences the 

motion of the electrically conducting fluid. The plate has been inclined with respect to the 

horizontal by an angle 𝜃, which provides a more realistic representation of practical applications 

such as geophysical fluid dynamics, industrial heat exchangers, and astrophysical flows. Low 

magnetic Reynolds numbers give rise to a consideration of induced field being negligible, such that 

it is the applied field only which acts on the flow. 

It is assumed initially that both the fluid and plate are kept at equal temperature 𝑇0 and 

concentration 𝐶0 thereby establishing a thermodynamic equilibrium. For time t>0, the plate is 

supposed to be accelerated exponentially with a velocity function U(t)in its own plane. At the same 

time temperature and concentration at the plate surface are assumed to vary linearly with time 

giving an unsteady thermal and solutal boundary condition. This study also considers a strong 

chemical reaction that takes part in the fluid species, which affects the concentration profiles as 

well as diffusion rates. The radiative heat transfer is assumed to consider that the fluid is optically 

thin gray medium in which no scattering takes place, thus only emission and absorption contributes 

for the exchange of radiative energy. This gives a special formulation to capture how the combined 

effects of magnetism, radiation, chemical reaction and porous media would affect temperature, 

concentration and velocity distribution in an MHD flow system and provides useful insight into 

engineering and environmental applications. 
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Where, 

 is the  velocity on horizontal component u
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 absorption coefficient 

  static internal friction 

 is the velocity on fluid, 

g constant gravity of the earth, 

is the accelerating parameter, 

 is a measure of how much a material's volume increases in response to a change in temperature., 

refers to the measure of how the volume of a substance changes in response to variations in 

mass transfer processes, particularly when influenced by temperature changes., 

 is a measure of the medium's ability to allow fluids, such as liquids or gases, to flow through 

its interconnected pore spaces., 

 refers to the rate at which thermal energy is transferred through electromagnetic radiation across 

a given surface area., 

∞ is incline angle 

𝜎 is the heat conducting fluid , 

 degree flow 

  distance degree flow, 

K amount of heat energy flow 

𝐾𝑐
* reaction species, 

  heat source parameter, 

 heat at constant pressure, 

amount of solute presence, 

 distance solute presence, 

Dr is the Dufour number 

Dm is the mass diffusivity, 

The initial and boundary conditions are given by, 
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Non – dimensionalisation 

Equations (1), (2), (3), and (4) are non-dimensionalised using the following dimensionless 

variables 
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After non-dimensionalization, equations (1), (2), (3) and (4) becomes 
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 Materials and Methods  

The aforementioned equations (6), (7) and (8) are the interconnected partial differential equations 
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that give an efficient approach to solving them by using harmonic solution method. This method 

helps in the transformation of PDEs to a system of ordinary differential equations with subsequent 

analytical solution. The analytical solution will then take the form in which the fluid velocities, 

temperatures, and concentrations in the area close to the plate are expressed as follows: 

u(y,t)=u(y)eiwt, 
2( , ) ( ) ,iwty t y e = ( , ) ( ) ,iwty t y e =                                                     (11)  

By Substituting equation (11) into equations (6), (7), and (8), the following equations are obtained: 
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  By applying perturbation method, Let 
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By substituting equations (21) into (18), (19) and (20) and equating corresponding terms on both 

sides, the following equations are obtained: 

 For order 0, 𝐺𝑟𝜃 
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The boundary value problems (22) to (27) are solved by the method of undetermined coefficients 

and obtained the following results: 
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The general solution of equations (1), (2) and (3) with the associated boundary and initial 

conditions (4) is therefore in the form of: 
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RESULTS 

This part elaborates on the effects of important dimensionless parameters on fluid velocity, 

temperature distribution, and concentration of species. The Grashof number, thermal interaction 

species variable, radiation parameter, Schmidt number, Dufour number, porosity parameter, and 

field parameter were some of the considered parameters. 

                                                                                                                                                                                                            

3.1 Figures 

 

Figure 1 : Graph of Velocity  against Time  for varies Values of thermal Grashof 

number . 

( ),u y t ( )t
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Figure 2  : Diagram of Velocity of the Fluid  against time  for varies Values of 

thermal Chemical reaction parameter . 

 

 

 

Figure 3  : Graph of Velocity of the Fluid ( ),u y t  against Distance ( )y  for Different Values 

of thermal Grashof Number ( )rG  . 
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Figure 4 : Graph of Species Concentration  over Time  for Different Values of 

thermal Chemical reaction parameter . 

 

Figure 5 : Graph of Temperature of the Fluid ( ),y t  against Distance ( )y  for Different 

Values of thermal chemical reaction parameter ( )cK . 
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Figure 6 : Graph  of Temperature  against Distance  for Different Values of 

Radiative variables . 

4. Results and Discussion  

Figure 1 shows how the fluid's flow changes on time in relation to  thermal Grashof number. It is 

observed that the velocity of the fluid rises faster  with rise  in the thermal 

Grashof number ( )rG  at steady time. Figure 2 show how the fluid's flow changes on time in relation 

to the thermal chemical reaction parameter. It is observed that the velocity of the fluid 

reduces  with rise  in the thermal chemical reaction parameter . 

Figure 3 shows how the heat Grashof Number affects the fluid's velocity as a function of distance. 

It is observed that the velocity of the fluid rises faster  with rise  in the thermal Grashof 

number ( )rG  at steady time. Figure 4 shows the effect of thermal chemical reaction parameter on 

the concentration  of the fluid .It is observed that the species concentration of the fluid 

reduces  with rise  in the thermal Grashof number ( )rG  at steady time. 

 Figure 5 shows the effect of thermal chemical reaction parameter ( )cK  on the temperature of the 

fluid ( ),y t .It is observed that temperature of the fluid ( ),y t  rises with rise in the thermal 
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chemical reaction parameter ( )cK at steady time. Figure 6 shows the effect of the radiative 

parameter  on the temperature of the fluid ( ),y t .It is observed that the temperature of the 

fluid ( ),y t reduces with rise in the thermal chemical reaction parameter ( )cK  at steady time.  

 

5. Conclusion 

The  analysis of mathematical model was studied out to examine how thermal radiation affects the 

degree of hotness and interaction species profiles in a Magnetohydrodynamic (MHD) flow within 

a porous material. The harmonic solution method was used to analytically solve the system's 

coupled, non-linear, dimensionless partial differential equations. Understanding the impact of 

different dimensionless parameters—which were graphically depicted on the behavior of the 

system was the main goal of the study. The results of this analysis shed important light on how 

various parameters affect the temperature distribution, species concentration, and fluid flow over 

time and space. With possible applications in domains like engineering, environmental science, and 

industrial processes where such conditions are pertinent, these findings advance our knowledge of 

heat and mass transport events in MHD flows under the impact of thermal radiation and chemical 

reactions. 

In contrast, components like the Thermal Chemical Reaction, and Grashof number tend to decrease 

the fluid velocity over time, slowing down the flow; additionally, the Radiative Parameter was 

found to decrease the fluid's temperature against time, indicating its cooling effect; and finally, the 

Thermal Chemical Reaction and Schmidt number were observed to lower the species concentration 

against time, reflecting their impact on the distribution of species concentration in the fluid. 
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