
06 05

Scientific Journal of Mehmet Akif Ersoy University, 2025, 8(1), Page:16-34 

Research Article 

*Corresponding Author Email: jamiu.garba@st.futminna.edu.ng   
Submitted: 03.01.2025 Revision Requested: 06.03.2025 Last Revision Received: 10.03.2025  
Accepted: 13.03.2025 Published Online: . .2025  
 
Cite this article as: Garba, J., Audu, K. J., Mohammed, U., Taimiyu, A. T. (2025). Numerical Solution of First and Higher 
Order IVPs Via a Single Continuous Block Method. Scientific Journal of Mehmet Akif Ersoy University, 8(1): 16-34. 
DOI: https://doi.org/10.70030/sjmakeu.1611387                                                                                                                                     https://dergipark.org.tr/sjmakeu                                                                                                                                                                                                            
                                  
                                Content of this journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. 

 

Burdur 

Mehmet Akif Ersoy 

University Press 

 

Jamiu Garba1* , Khadeejah James Audu 1 , Umaru Mohammed1 , Abd’gafar Tunde Tiamiyu1  

1Department of Mathematics, Faculty of Physical Sciences, Federal University of Technology, Minna, Nigeria 

 

This article focuses on the development and implementation of a single continuous collocation numerical scheme for solving first and higher-

order ordinary differential equations (ODEs). By employing the interpolation and collocation technique on power series as basis function, we 

were able to come up with a continuous scheme from which block methods for effectively solving first and higher order ODEs were derived. 

This is better and faster than the traditional way of developing a continuous scheme for a specific order of ODE. The method's accuracy is 

determined to be of order seven, establishing its consistency. Results from the implementation of our method show its applicability on 

nonlinear equations and application problems from first, second, third, and fourth order ODEs that are of significant implications on various 

fields in physics, engineering, biology and mathematics. Furthermore, the numerical results generated by the method reveal its effectiveness 

and accuracy, and also its superiority over some methods that exist in literature. 

 Accuracy, Collocation, Continuous scheme, First order ODEs, Higher order ODEs, Interpolation 

Mathematical modeling entails the ability to transform issues from a particular field of application into workable 
mathematical expressions, whose theoretical and numerical evaluations provide understanding, solutions, and 
recommendations that are advantageous for the initial applications [35]. Numerous fundamental laws of nature in 
Physics, Chemistry, Biology, and astronomy are most effectively articulated through differential equations [34]. Their 
applications are widespread in mathematics, particularly in geometry, as well as in engineering, behavioural sciences, 
industrial mathematics, artificial intelligence. This kind of problem can be represented using either first-order or higher-
order ODEs. First-order ODEs are commonly used in studying problems for example, determining the movement of an 
object that is ascending or descending while experiencing air resistance, and calculating the current in an electrical 
circuit; population expansion; radioactive decay; mixture problems; and so on. Second-order ODEs are also commonly 
used while analyzing vibrating systems, electromagnetism, and electrical circuits with capacitors, resistors, and 
inductors. Third order differential equations can also be used to solve physical problems like thin film flow, 
electromagnetic waves and gravity-driven flows. In general, solutions to differential equations are used to forecast the 
behavior of a system at a later time or in an unknown location. But there aren't many analytical ways to solve ODEs in 
a continuous or closed form, and nonlinear ODEs can be hard to solve or may not have a closed form of solution at all.  
 
Given the challenges associated with solving most of these problems, numerous researchers have focused extensively 
on applying numerical methods to provide approximate solutions for differential equations. Numerical methods are 
particularly effective for addressing mathematical problems, leveraging the speed and efficiency of modern digital 
computers in performing arithmetic operations [42]. The process of solving these problems with high-precision digital 
computers typically begins with initial data, followed by the execution of suitable algorithms to produce the desired 
outcomes [43]. Common approaches for solving IVPs are classified into single-step methods, such as the Runge-Kutta 
methods [21, 43], and multistep methods [1 – 10]. 
 
Over the years, various techniques for deriving continuous linear multistep methods (LMMs) aimed at directly solving 

IVPs have been extensively discussed in the literature. Key techniques include collocation, interpolation, integration, 
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and the use of interpolating polynomials. Basis functions like power series, Chebyshev polynomials, Legendre 

polynomials, and trigonometric functions have been used for this purpose.  (see [7, 10,17, 18, 22, 44, 45, 46]). 

Researchers have found linear multistep method very useful in solving ODEs. Some authors [7, 10, 11, 12] have develop 

effective methods for first order ODEs while [6, 13, 27, 35, 42, 44] have implemented linear multistep methods on 

second order ODEs with comparative accuracy. Other higher ODEs have been solved numerically by [2, 14, 15 31, 37, 

39, 43, 47, 48, 49]. All of the linear multistep methods developed by these researchers were for a specific order of 

ODEs. Recently Kuboye and Adeyefa [22] developed a linear multistep method for first, second and third order ODEs. 

 
In this research, we derive a single continuous technique from a hybrid block approach that effectively handles first, 

second, third, and fourth-order initial value problems. The subsequent portion of this article describes the method's 

derivation, while the third sets out the analysis that ensures the method's validity. In part four, a variety of numerical 

problems are addressed, results are displayed graphically, and the method's efficacy is demonstrated by comparing 

absolute errors to those of recent existing methods in literature. In section five, we offer broad conclusions on our 

findings.  

 
The general form of the ODE is expressed as follows:   

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )

1

1 1

0 0 0 0 0 0

, ,...,

, ,...,
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z z t z t z t
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 = = =

                (1) 

 

As stated in the introduction, the continuous representation of our method will be generated from one of the 

orthogonal basis functions, preferably the power series, due to its ease of usage. Therefore, the approximate solution 

to (1) is as follows: 

( )
1
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j

j

j

Z t c t
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=

=                     (2) 

where m and n are respectively the number of interpolation and collocation points. We derive a two-step linear 

multistep method using (2) with degree m + n – 1  = 10. (2) is interpolated at nt t=  and the first, second and third 

derivatives are collocated at 2nt t +=  . Furthermore, we collocate the fourth derivative at distinct points 

1 3 5 7
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We solved for the unknowns using the matrix inversion method via a mathematical software – Maple 2015; and then 

substitute 'jc s  values back into (2) to obtain the continuous scheme in the form:  
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Evaluating (4) at the non-interpolating points gives 6 discrete schemes that form the block method as follows:  
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At this point, following the approaches adopted in [18, 27, 28], the order of accuracy of our method is:  

( )7,7,7,7,7,7
T

 and error constants given as 
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We show the working of equation (10) as follows: 
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The techniques described in sections (5) through (10) can typically be represented using a matrix-based difference 
equation, which is detailed in the following steps.: 
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and the matrices ( ) ( ) ( )1 0 1
, , , , ,A A B C D E  and ( )0

E are matrices whose elements are given by the coefficients of the 

block method.  
 
Definition 3.1. The newly developed two-step hybrid block method (5 – 10) is considered zero-stable if and only if the 

first characteristic polynomial ( )t has roots that satisfy 1t  , and for the roots 1t  , their multiplicity does not 

exceed one. The characteristic function of this newly derived method is presented below: 
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the solution of which is ( )0,0,0,0,0,1 = . Hence, our method is zero-stable. 

 
Definition 3.2. If the order of the hybrid block approach is greater than or equal to one, it is consistent. Our method is 

consistent as a result of order p=7. 

Theorem 3.1. Zero stability and consistency are adequate requirements for the convergence of a linear multistep 

method [26, 17, 27]. The new hybrid block technique is convergent due to its zero-stability and consistency. 

To analyze the stability characteristics of the developed scheme, it is applied to a standard test problem.  

( )2 3 4, z, , , Re 0ivz z z z z z z      = = = =             (14) 

to yield  

( ) 1w wZ w Z −= ,    w z=                 (15) 

 where the matrix ( )w  is given as: 

( ) ( ) ( )( ) ( ) ( )( )
1

1 1 0 02 3 4 4w Z wF w G w P w Q Z w Q
−

= − − − − +             (16) 

The Matrix ( )w  has eigenvalues ( )60,0,0,0,0, , and the dominant eigenvalue 𝜆6: ℂ → ℂ is a rational function with 

real coefficients given by  

( )
( )

( )

Y w
R w

X w
=  

 The stability region is illustrated in Figure 1, indicating that the method is A-stable. 

 

Fig 1. Region of absolute stability of the method  
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The recently developed hybrid block method is applied to both first and higher-order ODEs. This continuous approach 
results in a primary discrete two-step multi-derivative block method (as outlined in equations 5 – 10), along with 
supplementary methods that are integrated and utilized as a block method to generate approximations concurrently. 

 1 2,n ny y+ +
 at a block points  1 2,n nx x+ +

, 1 , 0,..., N 2,n nh x x n+= − = − on a partition  ,a b , where ,a b  is the 

interval of integration, h is the constant step-size, n is a grid index and 0N   is the number of steps. We obtain 

initial conditions at 2 , 0,1,..., 2nx n N+ = −  , using the computed values 2ny +   over smaller intervals 

   0 2 2, ,..., , .N Nx x x x−
 For example, when  1 20, ,n y y=  are acquired at the same time across the smaller interval 

 0 2,x x , as 0y  is established from the initial value problem, for  3 42, ,n y y=  are also acquired simultaneously over 

the smaller interval  3 4,x x , as is now understood from the earlier section, and so forth. Consequently, the smaller 

interval  2,n nx x +
 does not overlap, and the solutions derived in this manner are more precise than those obtained 

through traditional predictor-corrector methods. Similar approach is applied to higher order ODEs considered – the 
first, second and third derivatives of the continuous scheme are evaluated at all points to cater for the higher derivative 
terms in the general higher order ODEs considered. We present the graphical solution of the problems and compare 
absolute errors with some existing methods in the literature. 
 

The block method (5) to (10) is used directly on some first order problems. 
  
Problem 1: The SIR model is an epidemiological framework that tracks the hypothetical number of individuals within a 

closed population who are affected by an infectious disease over time. This type of model derives its name from the 

interconnected equations that describe the populations of susceptible individuals S(t), infected individuals I(t), and 

recovered individuals R(t). It serves as an effective and simple model for various infectious diseases, such as measles, 

mumps, and rubella. The model is represented by the three interconnected equations provided below.:  

( )1
dS

S IS
dt

 = − −  

dI
I I IS

dt
  = − +  

dR
R I

dt
 = +  

where ,   and   are positive parameters. Define z to be:   

z S I R= + +    

and adding (13), (14) and (15), the following evolution equation for z is obtained.  

( )1z z = −   

Kuboye and Adeyefa [22] solved this problem with the following parameters:  

( )
1 1

, 0 , 0.1
2 2

z h = = =   

Exact solution: ( ) 1 tz t e  −= −   
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Fig 2. The profile solution for problem 1 Fig 3. The profile solution for problem 2 

Problem 2: We consider the Riccati differential equation solved in Khalsaraei et. al. [20]  

( )21 2 ; 0 0, 0 10z z z z t = + − =     

Exact solution: ( )
1 2 1

1 2 tanh 2 log
2 2 1

z t t
  −

= + +    +  

  

Problem 3: We consider the nonlinear system of stiff chemical problem solved in Akinfenwa et. al. [11] 
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
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The exact solution is given as ( ) ( ) ( )1 2

exp( 2 )
, exp

2

t
z t z t t



−
= − = −

+
 where 10000 = .  

 

 

 

 

 

 

 

 

 

                          

 

 

 

 

 

 

 

 

Fig 4. The profile solution for problem 3 
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Table 1. Error comparison for Problem 1 

t Error in [22] 

( )0.1h =  

Error in [19] 

( )0.1h =  

Error in [4] 

( )0.1h =  

Error in New 

method ( )0.1h =  

0.1 3.84610-13 1.99810-15 9.10410-15 4.73610-22 
0.2 7.31910-13 3.88610-15 7.10510-15 6.22510-22 
0.3 1.04410-12 5.44010-15 8.88210-15 1.02110-21 
0.4 1.32410-12 6.99410-15 2.12110-14 1.12710-21 
0.5 1.57510-12 8.21610-15 1.36810-13 1.45910-21 
0.6 1.79710-12 9.54810-15 7.98310-13 1.52910-21 
0.7 1.99510-12 1.05510-14 3.69910-12 1.80510-21 
0.8 2.16810-12 1.13210-14 - 1.84510-21 
0.9 2.32010-12 1.22110-14 - 1.84510-21 
1.0 2.45210-12 1.28810-14 - 2.08610-21 

 
Table 2. Error comparison for Problem 2 

t Error in [19]  

( )0.05h =  

Error in [4]  

( )0.1h =  

Error in New method 

( )0.1h =  

1 1.41810-11 9.10410-15 2.16810-11 
2 7.23410-13 7.10510-15 1.05210-12 
3 1.16310-13 8.88210-15 5.21610-14 
4 2.13210-14 2.12110-14 3.14410-15 
5 2.66410-15 1.36810-13 1.97010-16 
6 4.44110-16 7.98310-13 1.23310-17 
7 4.44110-16 3.69910-12 7.21310-19 
8 4.44110-16 - 4.70210-20 
9 4.44110-16 - 2.97710-21 

10 4.44110-16 - 1.85010-22 

 
Table 3. Error comparison for Problem 3 

t 
iz  Error in [20] 

( )0.0001h =  

Error in [11] 

( )0.01h =  

Error in [26]  

( )0.1h =  

Error in New 
method  

( )0.1h =  

3 ( )1z  

( )2z  

1.77910-20 

2.07910-20 
2.03010-19 

1.44010-14 
3.79010-22 
2.99810-18 

1.97210-23 
1.98110-18 

5 ( )1z  

( )2z  

2.49310-19 

4.66410-13 
1.20010-20 

3.21010-15 
1.6010-21 

6.74010-19 
6.01910-25 

4.46810-19 

 
10 

( )1z  

( )2z  

5.74310-20 

6.34610-12 
1.11010-20 

4.38010-17 
7.12010-20 

9.08010-21 
5.46610-29 

6.02110-21 

   

In order to implement our method on second order IVPs, we take the first derivative of the continuous scheme (4) and 

evaluated at points 
1 3 5 7

, 0, , ,1, , ,2
4 4 4 4

n jt j+

 
= 

 
 with the block schemes (5 – 10). 

Problem 4: Consider the nonlinear second order IVP from Abdelrahim and Omar [1].  
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( ) ( ) ( )
2
, 0 1, 0 0.5z t z z z  = = =  

The exact solution is: ( )
1

arctan 1
2

z t h t
 

= + 
 

 

Problem 5: Cooling of a body. Source: Kwanamu et. al. [24] 

The temperature z degree of a body t minutes after being placed in a certain room, satisfies the differential equation  

( )
2

0

80
3 0, 0 60,

9t

d z dz dz
z

dt dt dt =

+ = = = −   

With the analytic solutions: ( ) 3
80 100

3 3

t

z t e
−

= +   

 

 

 

 

 

 

 

 

Fig 5. The profile solution for problem 4                    Fig 6. The profile solution for problem 5 

 

 

 

 

 

 

 

 

 
Fig 7. The profile solution for problem 6 

Problem 6: Consider the nonlinear problem:  

32 0z z− =  (Source: Ogunlaran & Kehinde [30]) 

with the following initial conditions 



 
Jamiu Garba, Khadeejah James Audu, Umaru Mohammed, Abd’gafar Tunde Tiamiyu 

 

Scientific Journal of Mehmet Akif Ersoy University, 2025: 8(1) 25 

( ) ( )1 1,z 1 1z = = −  and 
0.1

40
h =  

Exact solution: ( )
1

Z t
t

=  

Table 4.  Error comparison for Problem 4 

t Error in [1] 

1

30
h
 

= 
 

 

Error in [7] 

( )0.1h =  

Error in new 
method 

( )0.1h =  

Error in New 

method
1

30
h
 

= 
 

 

0.1 1.31010-16 1.95710-13 1.53910-15 6.55210-20 
0.2 3.97510-14 6.04010-13 6.45910-15 2.93410-19 
0.3 1.02110-14 1.26210-12 1.79110-14 7.77110-19 
0.4 3.30410-13 3.71510-12 3.97210-14 1.72610-18 
0.5 - 7.91910-12 8.69810-14 3.58810-18 
0.6 - 1.41610-11 1.78110-13 7.35310-18 
0.7 - 3.61610-11 3.98710-13 1.53110-17 
0.8 - 7.47310-11 8.52210-13 3.30610-17 
0.9 - 1.33510-10 2.18210-12 7.53810-17 
1.0 1.29310-12 4.31710-10 5.16010-12 1.84410-16 

 

Table 5.  Error comparison for Problem 5, h = 0.1 

t Error in [38]  Error in [41]  Error in [33]  Error in [24]  Error in New 
method 

0.1 3.55010-11 2.30010-17 7.47610-06 - 9.00010-23 
0.2 4.58010-11 1.71010-16 2.93910-05 4.00010-18 3.60010-22 
0.3 7.00010-11 4.37010-16 6.48010-05 9.00010-18 8.30010-22 
0.4 6.50010-11 8.13010-16 1.12810-05 1.70010-17 1.45010-21 
0.5 3.33010-11 1.29010-15 1.72510-04 2.60010-17 2.23010-21 
0.6 4.20010-11 1.86410-15 2.43110-04 3.80010-17 3.17010-21 
0.7 4.38010-11 2.52510-15 3.23810-04 5.10010-17 4.24010-21 
0.8 1.07010-10 3.26910-15 4.13910-04 6.50010-17 5.41010-21 
0.9 6.58010-11 4.08910-15 5.12710-04 8.10010-17 6.72010-21 
1.0 1.690010-10 4.98010-15 6.19510-04 9.70010-17 8.14010-21 

 

Table 6. Error comparison for Problem 6 

t Exact Solution Error in [30] Error in New method 

1.0025 0.997506234413965 3.16010-17 5.40010-29 
1.0050 0.995024875621891 7.55010-17 2.48010-28 
1.0075 0.992555831265509 1.19010-16 5.65010-28 
1.0100 0.990099009900990 1.51010-16 1.00510-27 
1.0125 0.987654320987654 1.81010-16 1.56610-27 
1.0150 0.985221674876847 2.22010-16 2.24110-27 
1.0175 0.982800982800983 2.63010-16 3.03110-27 
1.0200 0.980392156862745 2.93010-16 3.92910-27 
1.0225 0.977995110024450 3.21010-16 4.93610-27 
1.0250 0.975609756097561 3.59010-16 6.04410-27 

 



Numerical Solution of First and Higher Order IVPs Via a Single Continuous Block Method  

 

Scientific Journal of Mehmet Akif Ersoy University, 2025: 8(1) 26 

In order to implement our method on third order IVPs, we take the first and second derivatives of the continuous 

scheme (4) and evaluated at points 
1 3 5 7

, 0, , ,1, , ,2
4 4 4 4

n jt j+

 
= 

 
 with the block schemes (5 – 10).  

Problem 7: Consider the nonlinear IVP:  

( ) ( ) ( ) ( )2 1 ; 0 1, 0 0.5, 0 0z tz z z z z    = + = = =   

The exact solution is: ( ) 1 1
tan 1

2
z t t−  

= + 
 

  

Source: Yakusak &. Owolanke [47] 

Problem 8: Consider the nonlinear ODE 

( ) ( ) ( )5

3 1 1
; 0 1, 0 , 0

8 2 4
z z z z

z
  = = = = −   

Exact solution: ( )
1

1
z t

t
=

+
  

Source: Adeyeye & Omar [8] 

Problem 9: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2sin cos sin ; 0 0, 0 1, 0 0z tz tz t t t t t z z z   = − + − + = = =   

Exact solution: ( ) ( )sinz t t=   

Source: Source: Adeyeye & Omar [8] 

 

Table 7. Error comparison for Problem 7 

t Error in [47] 

( )0.01h =  

Error in [9] 

( )0.01h =  

Error in [31] 

( )0.01h =  

Error in New 
method

( )0.01h =  

0.1 9.60910-12 1.93110-08 2.04310-14 4.40110-24 
0.2 7.07210-10 5.60810-07 8.37110-14 3.66110-23 
0.3 6.69310-09 3.75510-06 2.81310-13 1.35310-22 
0.4 3.14210-08 1.34010-05 7.66710-13 3.66510-22 
0.5 1.05110-07 3.25910-05 1.85310-12 8.55410-22 
0.6 2.85210-07 5.81610-05 4.16310-12 1.85510-21 
0.7 6.77710-07 7.15210-05 8.96510-12 3.90510-21 
0.8 1.46710-06 2.56410-05 - 8.22410-21 
0.9 2.98310-06 1.70910-04 - 1.77410-20 
1.0 6.18910-06 6.70610-04 - 4.00310-20 
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Fig 8. The profile solution for problem 7               Fig 9. The profile solution for problem 8 

 

 

 

 

 

 

 

 

Fig 10. The profile solution for problem 9 
 

Table 8. Comparison of errors for Problem 8 

t Exact Solution Error in [8] 

( )0.1h =  

Error in New 
method

( )0.1h =  

Error in New 
method

( )0.01h =  

0.2 1.095445115010332226913940 2.18110-11 3.89010-13 3.87010-21 
0.4 1.183215956619923208513466 7.07010-11 1.81210-12 2.24210-20 
0.6 1.264911064067351732799557 1.34810-10 4.67310-12 5.89110-20 
0.8 1.341640786499873817845504 2.10610-10 9.03810-12 1.13810-19 
1.0 1.414213562373095048801689 2.96410-10 1.49010-11 1.87110-19 
1.2 1.483239697419132589742279 3.91410-10 2.22510-11 2.78510-19 
1.4 1.549193338482966754071706 4.94710-10 3.10610-11 3.87710-19 
1.6 1.612451549659709930473323 6.05910-10 4.12810-11 5.14210-19 
1.8 1.673320053068151095956344 7.24210-10 5.29010-11 6.57610-19 
2.0 1.732050807568877293527446 8.49210-10 6.58610-11 8.17410-19 
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Table 9. Error comparison for Problem 9 

t Exact Solution Error in [8] 

( )0.1h =  

Error in New 
method

( )0.1h =  

Error in New 
method

( )0.01h =  

0.1 0.099833416646828152307 6.66110-16 7.85110-19 3.43510-27 
0.2 0.19866933079506121546 3.91410-15 3.02810-18 1.91910-26 
0.3 0.29552020666133957511 1.24310-14 8.18010-18 6.47210-26 
0.4 0.38941834230865049167 2.88710-14 1.77910-17 1.53810-25 
0.5 0.47942553860420300027 5.60110-14 3.33910-17 3.01710-25 
0.6 0.56464247339503535720 9.69210-14 5.66710-17 5.24310-25 
0.7 0.64421768723769105367 1.54710-13 8.93310-17 8.38310-25 
0.8 0.71735609089952276163 2.32610-13 1.33310-16 1.26110-24 
0.9 0.78332690962748338846 3.34610-13 1.90410-16 1.81210-24 
1.0 0.84147098480789650665 4.64410-13 2.62710-16 2.50910-24 

 

Problem 10: Consider the oscillatory problem arising from ship dynamics: 

( ) ( ) ( ) ( ) ( )3 2 cos 0; 0 1, 0 0, 0 0, 0 0ivz z z t z z z z    + + + = = = = =   

Where 0 = for existence of the exact solution: ( ) ( )2cos cos 2z t t t= −   

Source: Familua & Omole [16] 

Problem 11: Consider the nonlinear problem: 

( ) ( ) ( ) ( ) ( ) ( )
2 2 24 e 1 4 ; 0 1, 0 1, 0 3, 0 1iv tz z zz t t t z z z z    = − − + − + = = = =  

Exact solution:  ( ) 2 tz t t e= + . (Source: Familua & Omole [16]) 

Problem 12: consider the nonlinear sinusoidal problem: 

( ) ( ) ( ) ( ) ( ) ( )2 2sin cos 1; 0 1, 0 0, 0 1, 0 0ivz z t t z z z z  = + − − = − = = =  

Exact solution:  ( ) ( )cosz t t= − . Source: Tiamiyu et al. [43] 

 

 

 

 

 

 

 

 

                    Fig 11. The profile solution for problem 10                  Fig 12. The profile solution for problem 11 
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Fig 13. The profile solution for problem 12 
 

Table 10. Error comparison for Problem 10 ( )0.003125h =  

t Error in [16] 
(Block mode) 

Error in [16] 
(P-C mode) 

Error in [45] Error in New Method 

0.003125 6.68610-13 5.68610-10 1.90010-19 3.65710-36 
0.006250 1.45810-11 1.76810-10 2.30010-19 1.26210-35 
0.009375 1.08310-10 5.91010-09 8.60010-19 4.23310-35 
0.001250 3.91810-10 5.76810-09 1.38010-18 1.04210-34 
0.015625 1.02510-09 1.10010-08 3.53010-18 2.27110-34 
0.018750 2.21710-09 6.89910-08 5.31010-18 4.35910-34 
0.021875 4.22610-09 4.63610-08 8.88010-18 7.72810-34 
0.025000 7.35810-09 5.78810-07 3.92210-17 1.27610-33 
0.028125 1.19710-08 2.24610-07 5.84610-17 2.00110-33 
0.031250 1.84610-08 2.84610-07 8.47710-17 3.00110-33 

 
Table 11. Error comparison for Problem 10 using different values of h 

t Exact solution Error in New method

( )0.01h =  

Error in New method

( )0.1h =  

0.1 0.99999167499652860438 3.47710-27 4.19610-18 
0.2 0.99986719911195714198 5.22510-26 1.43710-17 
0.3 0.99933105226749824584 2.52210-25 4.75610-17 
0.4 0.99790057330915505191 8.07510-25 1.15710-16 
0.5 0.99492052670511528095 1.93810-24 2.478310-16 
0.6 0.98958301770794685383 3.94110-24 4.67010-16 
0.7 0.98095229007588226219 7.13710-24 8.08810-16 
0.8 0.96799382462962246366 1.18610-23 1.30210-15 
0.9 0.94960705358355858551 1.84410-23 1.98110-15 
1.0 0.92466091697090496135 2.71810-23 2.87410-15 
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Table 12. Error comparison for Problem 11 

t Error in [16] Error in [23] Error in New 
method 

0.031250 1.14910-12 1.78810-10 2.00010-24 

0.062500 1.88510-11 1.13410-08 9.00010-24 

0.093750 9.78010-11 1.19610-07 2.30010-23 

0.125000 3.16610-10 6.40110-07 4.80010-23 

0.156250 7.90910-10 2.34910-06 9.00010-23 

0.187500 1.67610-09 6.57310-06 1.50010-22 

0.218750 3.16910-09 1.61010-05 2.340010-22 

0.250000 5.51210-09 3.50110-05 3.45010-22 

0.281250 8.99510-09 6.98510-05 4.87010-22 

0.312500 1.39610-08 1.24510-04 6.62010-22 

 
Table 13. Error comparison for Problem 11 using different values of h 

t Exact solution Error in New method

( )0.1h =  

Error in New method

( )0.01h =  

0.1 1.11517091807564762481 8.20010-19 2.43010-27 
0.2 1.26140275816016983392 2.96010-18 1.89110-26 
0.3 1.43985880757600310398 8.00010-18 6.31710-26 
0.4 1.65182469764127031782 1.70610-17 1.48610-25 
0.5 1.89872127070012814685 3.17310-17 2.88110-25 
0.6 2.18211880039050897488 5.29810-17 4.94710-25 
0.7 2.50375270747047652162 8.24610-17 7.81110-25 
0.8 2.86554092849246760458 1.21110-16 1.16010-24 
0.9 2.86554092849246760458 1.70710-16 1.64510-24 
1.0 3.71828182845904523536 2.23210-16 2.25110-24 

 
Table 14. Error comparison for Problem 12 

t Exact solution  Error in [43] 

( )0.01h =  

Error in New 
method

( )0.01h =  

0.1 – 0.995004165278025766095561987804 1.40010-29 5.58010-29 
0.2 –0.980066577841241631124196516748 8.24010-28 8.46510-28 
0.3 –0.955336489125606019642310227568 7.82510-27 4.23610-27 
0.4 –0.921060994002885082798526732052 3.69710-26 1.33110-26 
0.5 –0.877582561890372716116281582604 1.20910-25 3.23410-26 
0.6 –0.825335614909678297240952498955 3.14810-25 6.67510-26 
0.7 –0.764842187284488426255859990192 7.02110-25 1.23010-25 
0.8 –0.696706709347165420920749981642 1.40010-24 2.08810-25 
0.9 –0.621609968270664456484716151407 2.56410-24 3.32310-25 
1.0 –0.540302305868139717400936607443 4.39310-24 5.03110-25 

 

Problem 13. And lastly, we also consider the following nearly sinusoidal problem in first-order system of equations. 
Source: (Akinfenwa et. al., [10]) 

( )

( )

1 1 2 1

2 1 2 2

21 2sin , 0 2

998 999 999cos 999sin , 0 3

z z z t z

z z z t t z

 = − + + =

 = − + − =
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Exact solution: ( ) ( )1 22 sin , 2 cost tz t e t z t e t− −= + = +     

 
Table 15: Error comparison for Problem 13 

           HBSDBDF [10] New Method  

h  Maximum 

error 

Relative error Maximum 

error 

Relative error ROC 

0.4 78.9924 10−   

95.9042 10−  

114.5695 10−  

73.6279 10−   111.2119 10−  
101.8909 10−  - 

0.2 92.6294 10−  141.6035 10−  132.2570 10−  9.56 

0.1 111.8848 10−  171.7159 10−  163.0416 10−  9.87 

0.05 132.9376 10−  131.2826 10−  201.7479 10−  
193.1990 10−  9.94 

 

Figures 1–3 respectively display the graphical solution of the SIR model in problem 1, the nonlinear Riccati equation in 
problem 2 and the nonlinear system of stiff chemical equations in problem 3. In the graphs, we plotted the results 
generated from our method (red boxes) and the exact solution (blue line). It is easily seen that the new method agrees 
with the analytical solutions to the problems. Going further, Table 1 shows the comparison of absolute errors for 
Problem 1. It is shown that the newly derived method has a computational advantage over the methods in ([22], [19] 
and [4]). Also in Table 2, we show the absolute errors of some methods and ours, for different step sizes in solving 
problem 2. A comparison of our method with [4] using the same step size (h = 0.1) indicates that our method 
outperforms the method in [4], and further comparison with the method in [19] (whose step size is smaller) also 
indicates the superiority of our method over the one in [19]. Table 3 presents a comparative analysis of absolute errors 
for problem 3 using different step sizes. We solved the nonlinear chemical stiff problem using the step size (h = 0.1) 
and analysis shows that our method performs better than the methods in [26] (with the same step size), [11] (whose 
step size is h = 0.01) and [20] (with step size h = 0.0001).  
 
Problems 4–6 are second-order problems considered using the same block method as the first-order problems. 
Problem 4 is a nonlinear IVP, while Problem 5 is an application problem in the cooling of a body and Problem 6 is also 
a nonlinear problem. Their behavioural solutions are displayed in figures 4–6 demonstrating agreement in the 
numerical method that we derived and the exact solutions. To further validate the effectiveness of our method, we 
compare the absolute errors against those produced by existing techniques. This comparative analysis provides 
additional evidence supporting the superior performance of our approach.  Table 4 shows the comparison of errors for 
problem 4. It is shown that the new method with h = 0.1 outperforms the method in [7] with the same step size and 

that in [1] using the same step size of 1

30
h
 

= 
 

. Also, Table 5 shows the comparison of errors for Problem 5, which 

indicates the superiority of our method over those in [24, 33, 38, 41] using the same step size. And in Table 6, we show 
the numerical solution made by the new method, the absolute error and that in [30], it is shown that the new method 
is better in terms of accuracy.  
 
The nonlinear third-order initial value problems were the next class of ODEs we looked at in this paper. The graphical 
solutions of problems 7–9 are displayed in Figures 7– 9. Furthermore, comparative analysis for Problem 7 in Table 7 
indicates that our method is found to give better accuracy than the methods in [31], [47], and [9]. Similarly, analyses 
in Tables 8 and 9 also show that the newly derived method in this paper gives better accuracy than the method derived 
in [8] for problems 8 and 9, respectively. 
 
Finally, a class of fourth-order ODEs is also solved by our method. Figures 10–12 display the graphical solutions for 
problems 10–12, respectively. Problem 10 is solved by [16] using block mode predictor–corrector (P–C) of the linear 
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multistep method. Also, [45] solved this particular problem in the interval [0.003125, 0.03125] with h = 0.003125. Table 
10 shows the comparison of errors between our method, [16] and [33] as mentioned above. It has been demonstrated 
that the new block method provides a more accurate approximation for the application problem related to ship 
dynamics. We further compare our method for variable step sizes over [0, 1] using h = 0.1 and h = 0.01 and Table 11 
shows that the method gives better approximation as h becomes smaller. Similarly, the nonlinear equation in problem 
11 is also solved by [16] and [23] and the results in Table 12 assert that the newly derived method is superior in terms 
of accuracy to the methods in [16, 23]. Table 13 gives the comparison of errors in our method based on different step 
sizes. And in Table 14, the comparison of errors for problem 12 is made between our method and that in [43]. It is 
shown that as the numerical iteration progresses, our method gets closer to the exact solution than the method in [43]. 
 
Lastly, we incorporated the sinusoidal problem into a system of first-order equations, as addressed in [10]. We 
showcased the method's accuracy, rate of convergence (ROC), and strong stability characteristics. We calculated the 

maximum error, ( )( )max ,i iz t z−   relative error 
( )

( )
max

1

i i

i

i

z t z

z t

−

+
  and compared with the method in [10], which 

indicates that the new method has higher accuracy than the method in [10]. Also, the ROC 
2

2log
h

h

e

e

 
=  

 
, for different 

step sizes h, where 
he  is the maximum absolute error for each h is calculated as shown in Table 15. 

 

In this paper, a novel numerical method in the class of linear multistep method is developed for first order and higher 
order ODEs. The method is derived through the usual interpolation and collocation techniques with power series used 
as the basis function. Basic numerical properties as established in section 3 show that the method converges and A-
stable. The method conveniently solves first, second, third and fourth order IVPs as shown in Tables 1–15. Thirteen 
numerical problems were considered in all, with nonlinear equation as majority and some application problems. The 
numerical results generated by our method show its superiority over some existing methods as compared therein. The 
innovative aspect of this method lies in its capability to effectively solve first, second, third, and fourth order ordinary 
differential equations (ODEs) without requiring distinct numerical schemes for each type. Therefore, this new approach 
is proposed as a practical numerical algorithm for tackling first and higher order ODEs. In our upcoming research, we 
plan to expand this method to address partial differential equations. 
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