
MJSAT 4 (3) 210-216 

ABSTRACT 

 

KEYWORDS 

 

ARTICLE HISTORY 

` 
 

 

 

 

 

Utilizing the Artificial Neural Network Approach for the Resolution of First-Order 

Ordinary Differential Equations 

 

Khadeejah James Audu*1, Marshal Benjamin1, Umaru Mohammed1 and Yusuph Amuda Yahaya2  

 
1Department of Mathematics, Federal University of Technology Minna, Nigeria. 
2Department of Mathematics, Pen Resource University, Gombe, Nigeria. 

 

 

 

  

 

 

 

 

 

 

 

 

1. INTRODUCTION 
Modeling various phenomena in science, engineering, and 

other fields often involves first-order Ordinary Differential 
Equations (ODEs) [1]. While traditional numerical methods 
like Euler's method and the Runge-Kutta method have been 
useful, they can be computationally demanding for complex or 
nonlinear ODEs. This study aims to address this challenge by 
employing Artificial Neural Networks (ANNs) to solve first-
order ODEs representing physical processes. Developed by 
Frank Rosenblatt in 1958, ANNs have proven effective for 
solving both linear and nonlinear differential equations [2]. 
Notable applications include a Deep Learning Library for 
Solving Differential Equations [3], physics-informed neural 
networks for high-speed flows [4], and feed-forward neural 
networks with trainable delay [5]. Several studies have explored 
using ANNs to approximate ODE solutions, such as training 
neural differential equations on time series [6], optimizing 
enhanced artificial neural networks for ODEs [7], and applying 
multilayer neural networks to solve systems of differential 
equations [8]. These approaches demonstrate the practicality 
and efficiency of using ANNs for solving ODEs in various 
domains [9].  

In the field of computational mathematics, the creation and 
use of the ANN for first-order ODE offers a fresh and extremely 
motivated method. The expanding significance of faithfully 
modeling real-world processes in domains like science and 
engineering, where ODE is essential, is the driving force behind 
this issue. The need for better ODE-solving techniques that can 
yield more precise and reliable solutions, therefore expanding 
our knowledge and problem-solving skills across a range of 
scientific and engineering applications, is the driving force 
behind this research. 

This study addresses the fundamental task of resolving 
first-order ODEs, crucial for modeling dynamic systems in 
various scientific and engineering domains. While traditional 
numerical methods have long been employed for this purpose, 
they may encounter challenges with stiff equations or high-
dimensional systems, motivating the exploration of alternative 
computational techniques. Inspired by the success of artificial 
neural networks (ANNs) in diverse fields, this research 
investigates the application of ANNs to solve first-order ODEs. 
The novelty lies in adapting ANNs, known for their capacity to 
learn complex patterns, to tackle numerical solution tasks 
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typically associated with differential equations. The study's 
primary contribution is twofold: firstly, it extends the 
application domain of ANNs into mathematical modeling, 
potentially offering a promising alternative to traditional 
numerical methods. Secondly, it provides insights into the 
effectiveness and limitations of ANNs for resolving ODEs, 
advancing the understanding and potential utilization of ANN-
based approaches in computational mathematics. Through 
rigorous experimentation and analysis, this research aims to 
establish the feasibility and practical implications of employing 
neural networks for ODE resolution, contributing to 
advancements in computational science and engineering. 

 

2. LITERATURE REVIEW 
ODEs are mathematical expressions of the relationships 

between a function and its derivatives. They are significant in 
the fields of science and engineering because they are a crucial 
tool for simulating and evaluating dynamic systems. Numerous 
phenomena, including economic systems, physical processes, 
biological dynamics, and many more, are regulated by 
underlying principles that ODEs capture. ODEs are used in 
science to describe the behavior and evolution of physical 
systems, such as the movement of celestial planets, chemical 
reaction dynamics, and optimal disease propagation. [10] as 
well as [11]. Scientists can understand complex relationships, 
predict results, and examine the effects of various factors by 
using ODEs to express the governing equations.  

Control systems, robotics, fluid dynamics, and electrical 
circuits all use ODEs. Engineers utilize ODEs to predict and 
optimize system performance, develop efficient algorithms, and 
make well-informed decisions on the behavior and stability of 
systems. Control systems can ensure stability and intended 
results by using ODEs, which provide a mathematical 
framework for process analysis and design. [12] presented a 
signal-based method for detecting electrical abnormalities in 
three-phase AC induction motors (IM) using an automated 
computer-control system. A dedicated physical prototype was 
intentionally designed, developed, and constructed for 
experimental validation. 

The significance of ODEs lies in their ability to represent 
complex systems' dynamic behavior, temporal evolution, and 
interactions among several variables. In order to gain a better 
understanding of system dynamics, they give scientists and 
engineers the capacity to predict, simulate, and mathematically 
describe genuine phenomena. 

The fundamental concepts of the natural world are better 
understood by scientists and engineers, who can also come up 
with creative solutions for problems that arise in the real world.   

As a bridge between theoretical models and empirical data, 
ODEs help validate and enhance mathematical models. 
Researchers can improve ODE-based models' accuracy and 
dependability, enabling comparing model predictions with real 
data can lead to more accurate forecasts and better decision-
making. One of the key reasons ODEs are important in the 
scientific and engineering sectors is that they provide a 
mathematical foundation for understanding and describing 
dynamic systems. They facilitate the analysis of complex 
systems, enable modeling and prediction, and offer a 
framework for developing practical solutions. Because ODEs 
may be used to recognize and describe the fundamental 
concepts that underlie the behavior of different systems, they 

are critical to the advancement of research, technology, and 
innovation. 

Addressing the computational challenge of solving large-
scale linear equations is paramount in numerical computation. 
Authors in [13] introduced an innovative method utilizing deep 
neural networks for solving such equations. In their study [14] 
introduced and constructed an artificial neural network model 
designed to predict a student's likelihood of passing a specific 
class, while ensuring the confidentiality of personal or sensitive 
information that could jeopardize student privacy. 

Various studies have explored the utilization of neural 
networks for solving differential problems, employing diverse 
optimization techniques within a procedural framework. 

 

3. DESCRIPTION OF THE ARTIFICIAL NEURAL 

NETWORK 
An alternative to conventional methods that need 

discretization and approximation is the artificial neural network 
(ANN), which shows promise as a method for solving ODEs. 
Each differential equation is presented as a "optimization 
problem" in this paradigm, denoting a change in viewpoint. The 
ANN technique makes use of the network's ability to solve 
optimization problems, in contrast to approaches that depend on 
decomposing and approximating differential equations. 

This cutting-edge method revolutionizes problem-solving 
by utilizing neural networks. The ANN can automate the 
procedure entirely by methodically learning and adapting to 
ODEs as optimization problems. An approach to ODEs that is 
dynamic and adaptable is made possible by the network's 
capacity to solve issues on its own and learn from the data that 
is sent to it. This change from customary practices suggests a 
more comprehensive and flexible approach to problem solving. 

Artificial neural networks have the potential to solve ODEs 
because of their innate ability to recognize patterns, adapt, and 
optimize efficiently. Neural network automation simplifies the 
process and has the potential to address complicated and non-
linear systems that may be difficult to handle with conventional 
techniques. This method represents a paradigm change in the 
way differential equations are thought about and handled, 
creating opportunities for more adaptable and efficient 
problem-solving in technical and scientific fields. 

Consider the following first-order ODE: 

 
𝑑

𝑑𝑡
= 𝑞(𝑡, 𝑠), 𝑡 ∈ [𝑎, 𝑏]   𝑠(0) = 𝑠0 (1) 

 
The defined ANN takes in the input vector 

( )1 2 3, , ,..., nT t t t t= , and outputs a scalar ( , )N t p  where t refers to 

the inputs and p denotes the adjustable weights and bias. The 
ANN is depicted in figure 1. 
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Figure 1: A network of connected block 

 
The neural network defined consists of a hidden layer of k 

units as shown in figure 1. For each input vector, the weighted 
sum for the hidden layer is calculated. 

𝑧𝑖 = 𝑏𝑖 + ∑(𝑝𝑖𝑗𝑡𝑖)

𝑛

𝑗=𝑖

 
(2) 

 

where bi refers to the optional bias and pij refers to the 
weights acting on the vector T. The sum zi is acted upon by a 
sigmoid function given as: 

𝜎(𝒛𝒊) =
1

1+𝑒−𝑧𝑖
  (3) 

 

    
Given the hidden weights denoted as the vector 

( )1 2 3, , ,..., nV v v v v= , the final scalar output is given as: 

𝑁(𝑡, 𝑝) = ∑ 𝑣𝑖𝜎(𝑧𝑖) = 𝑣𝑖𝜎 (𝑏𝑖 + ∑ 𝑝𝑖𝑗𝑡𝑖

𝑛

𝑗=𝑖

)

𝑘

𝑖=1

 
(4) 

 

where k refers to the number of units in the hidden node. 

According to the universal approximation theorem, 
utilizing a neural network enables an approximation of the 
solution of N with arbitrary precision. Therefore, N can be 
regarded as a neural network of T.  

𝜕

𝜕𝑡𝑘
𝑧𝑖 =

𝜕

𝜕𝑡𝑘
(𝑏𝑖 + ∑ 𝑝𝑖𝑗𝑡𝑖

𝑛
𝑗=𝑖 )  (5) 

 
 

𝜕

𝜕𝑡𝑘
𝜎(𝑧𝑖) = 𝜎′(𝑧𝑖)

𝜕

𝜕𝑡𝑘
𝑧𝑖 = 𝑝𝑖𝑘𝜎′(𝑧𝑖)   (6) 

 

for first order ODE 

𝑑𝑁

𝑑𝑡
= 𝜎′𝑣1(𝑝1𝑡)𝑝1 (7) 

 

for second order ODE 

𝑑2𝑁

𝑑𝑡
= 𝜎′′𝑣1(𝑝1𝑡)𝑝1

2 (8) 

 

Hence all the derivatives of N with respect to the input T 
can be found. Through back propagation, we can always find 
the derivative of the output with respect to the input cases of 
multilayer which is called automatic differentiation. 

Recall the ODE given in (1). Assuming , then the 
optimization problem is formed as a loss function given as the 
mean square of the ODE and the boundary conditions:  

𝐿2 = ∑ |
𝑑𝑁𝑁(𝑡𝑖)

𝑑𝑡
− 𝑞(𝑡𝑖 , 𝑠)|

𝐼

2

+ |𝑁𝑁(0) − 𝑠0|2 
(9) 

 

 

Thus, the original ODE is represented as an optimization 
issue which is shown in equation (9), and is solved using the 
Adam optimizer algorithm. 

 

3.1 Utilizing Optimization and Backpropagation Techniques to 
Train Neural Networks  

There are three distinct processes in the training process of 
a neural network, which is constant; 

 

1. Feed the input data into the neural network, the data flows 
from layer to layer until output is retrieve z* = network (t, 
w). 

2. Examine the neural network's output against the intended 
output to determine the error.                                      

𝐸 =
(𝑧∗ − 𝑧)

2
 

(10) 

 

3. Reduce inaccuracy by adjusting neural network parameters     
through gradient descent          

𝑝 ← 𝑝 − ∞
𝜕𝐸

𝜕𝑝
  (11) 

 

4.   Restart from scratch. 

 

3.2 Algorithm for the Artificial Neural Network  

1. Library imports necessary for training a neural network 
to estimate the solution of a first-order ODE and 
visualize the outcome are as follows: 

● Import torch: PyTorch, a library offering tensor 
computations and automatic differentiation, is an 
ideal option for neural network implementation. 

● Import torch.nn as nn: This imports the PyTorch 
neural network module ('nn'), which encompasses 
classes and functions for defining and training 
neural network models. 

● Import torch.optim as optim: This imports the 
PyTorch optimizer module ('optim'), utilized for 
updating model parameters during training, such 
as Adam and SGD. 

● Import matplotlib. pyplot as plt: This imports the 
Matplotlib library, commonly used for creating 
visualizations such as plots and graphs. In this 
case, Matplotlib is utilized to visualize the training 
loss and compare predicted values with the exact 
solution of the ODE. 

2. NN Definition: This section outlines a fundamental 
neural network structure, consisting of input, hidden, 
and output layers. 

3. Model and Device Setup: The code determines the 
computational device, either GPU or CPU, and 
relocates the neural network accordingly. 

4. Question formulation: This section defines the 
mathematical function along with its initial condition. 

5. Loss function/Optimization: This section determines 
the learning rate of the network and handles 
optimization. 

 N(t,p) T 

k units of the hidden layer 
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6. Data preparation: This involves setting up the input 
data and initial conditions. Then proceed to design the 
ANN architecture using the values predicted by the 
model as exact solution. 

7. Training loop: The network is trained for a finite 
number of epochs, computes the loss, backpropagates 
the gradients, and updates the network parameters. 

8. Prediction generation: The code generates predictions 
by applying the trained network to a range of input 
values and stores the results. 

9. Visualization: This encompasses plotting the loss 
curve. 

 

 
Figure 2: The process flow of the ANN approach. 

 

4. IMPLEMENTATIONS AND RESULTS 
This section focuses on utilizing the neural network 

approach to solve specific first-order ODEs, as illustrated in 
Figure 3. The numerical computations and experiments are 
conducted within a Python environment, specifically using 
Jupyter Notebook, and the results are analyzed and discussed 
accordingly. 

Experiment 1: We employ the ANN approach to resolve: 

𝑑𝑧

𝑑𝑡
= 𝑡2 − 4𝑧 by the conditions 𝑡0 = 0, 𝑧0 = 1 

Solution of Exact: 𝑧(𝑡) =
1

32
+

31𝑒−4𝑡

32
+

𝑡2

4
−

𝑡

8
 

The generation of the training dataset can be approached 
through various methodologies. One of such method involves 
the utilization of the exact solution within a predetermined 
interval, such as [0,1]. This approach is particularly effective 
when the exact solution is known and can be accurately 
represented within the specified interval. 

 

However, in instances where the exact solution is 
unknown, alternative strategies must be employed. A study 
conducted by [7] advocates for the use of logistic regression 
models over a defined interval. This method allows for the 
generation of a training dataset even in the absence of a known 
exact solution, thereby expanding the applicability of this 
approach to a wider range of scenarios. 

Table 1. Computational Outcome for Experiment 1 

Points {t} 

of 

Training  

Values 

of Exact 

Values 

of ANN 

ANN Error 

(Absolute) 

 

0.0 1.0000000000 0.9975615740 2.4384260×10-3 

0.1 0.6706225276 0.6668983698 3.7241578×10-3 

0.2 0.4515374005 0.4484636486 3.0737519×10-3 

0.3 0.3080318868 0.3070761859 9.557009×10-4 

0.4 0.2168372571 0.2169048488 0.6.75917×10-5 

0.5 0.1623560488 0.1619767845 3.792643×10-4 

0.6 0.1341329962 0.1327966154 1.3364000×10-3 

0.7 0.1251597404 0.1234643161 1.6954000×10-3 

0.8 0.1307384074 0.1297434270 9.949800×10-4 

0.9 0.1477198452 0.1479196250 1.997800×10-4 

1.0 0.1739932895 0.1742707193 2.774300×10-4 

 

 The neural output converges within the designated 
accuracy range, as shown in Table 1, which offers a thorough 
summary of error minimization at 11 training points that are 
equally spaced. At these precise times throughout the neural 
network's training rounds, the table probably illustrates the 
progressive decrease in mistakes. The neural network's 
predictions approach the desired or true values throughout 
training, reaching a level of accuracy that satisfies 
predetermined criteria, as indicated by the convergence of the 
neural output. In addition to providing insight into the neural 
network's capacity to gradually improve predictions and reach 
convergence within the given accuracy constraints, this table is 
a useful tool for evaluating the neural network's effectiveness in 
minimizing mistakes across different training phases. 

 

 

Fig. 4a. Loss Plot concerning Problem 1 
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Fig. 4b. Exact and Predicted Values Plot concerning 
Problem 1 

Astounding insights into the neural network's iteration 
behavior are provided by Figure 4a. During the initial phases, 
the network exhibited a quick integration of the pattern into the 
ODE, demonstrating its effective learning abilities. The graphic 
represented this transitional phase, with the network aiming to 
stabilize around the 0.2 point on the loss axis. The network 
reached stability at 0.00 on the loss axis after 1500 iterations, 
which is noteworthy because it shows a convergence towards 
the actual solution. Figure 4b provides additional validation of 
the convergence, indicating that the neural network accurately 
matched the real solution as stability at 1.0 is reached. The 
accuracy with which the Artificial Neural Network (ANN) 
method resolves the first-order ODE is demonstrated by this 
convergence to the correct solution potential as a strong 
computational instrument in these kinds of uses. The network's 
learning and convergence operations in solving the ODE are 
visually confirmed by the graphical representation in the 
figures. 

Experiment 2: The following linear initial value problem is: 

𝑑𝑧

𝑑𝑡
= 𝑒−2𝑡 − 5𝑧, at 𝑡0 = 0, 𝑧0 = 1 

 

Solution of Exact:  𝑧(𝑡) =
(2𝑒−5𝑡+𝑒−2𝑡)

3
 

Table 2. Computational Outcome for Experiment 2 

Points {t} 

of the 

Training 

Values 

of Exact 

Values 

of ANN 

ANN Error 

(Absolute) 

 

0.0 1.0000000000 0.9966232181 3.3767819×10-3 

0.1 0.6772640944 0.6730039120 4.2601824×10-3 

0.2 0.4686929882 0.4664441943 2.2487939×10-3 

0.3 0.3316906691 0.3313499391 3.407300×10-4 

0.4 0.2399998605 0.2397259176 2.739429×10-4 

0.5 0.1773498058 0.1765649021 7.849037×10-4 

0.6 0.1335894465 0.1327142864 8.751601×10-4 

0.7 0.1023305878 0.1018679067 4.626811×10-4 

0.8 0.0795092732 0.0795983225 8.90493×10-5 

0.9 0.0625056326 0.0628914014 3.857688×10-4 

1.0 0.0496037267 0.0497684479 1.647212×10-4 

 
A graphic depiction of the convergence of network 

predictions to the precise solution, at a given degree of 

precision, may be found in Table 2. The iterative process by 
which the network improves its predictions at each step and gets 
closer to the actual or precise solution is probably depicted in 
the table. For assessing the neural network's accuracy and 
dependability in approximating answers within the specified 
accuracy requirements, this convergence is essential. The 
entries in the table most likely show how, during training, the 
difference between the network's predictions and the precise 
answer decreased, highlighting the network's capacity to adjust 
its outputs until they almost match the required accuracy 
requirements. Table 2 is an invaluable resource for 
comprehending the dynamic and iterative characteristics of the 
neural network's learning process, demonstrating its ability to 
make precise predictions. 

Fig. 5a.  Loss Plot concerning Problem 2 

 

Fig. 5b. Exact and Predicted Values Plot concerning Problem 
1 

Here, the figure 5a shows that the network is learning and 
unlearning between 0.20-0.15 and at point 0.00 it perfectly 
learned the pattern all on the loss axis with 1000 iteration on the 
epoch axis. Furthermore, Figure 5b shows a plot of convergence 
of ANN to the exact solution at point 1.0 on the t-axis. 

Experiment 3: This experiment engages the Artificial Neural 

Network approach to compute the predicted values concerning 

the ODE: 

 

 
𝑑𝑧

𝑑𝑡
=

3

2
−

1

2
𝑧 



                                                    Khadeejah James Audu et al./ Malaysian Journal of Science and Advanced Technology                                             215 
    

with respect to the initial condition stated as: 

𝑧(𝑡0) = 4 

Solution of Exact: 𝑧(𝑡) = 3 + 𝑒
−𝑡

2⁄  

 

Table 3. Computational Outcome for Experiment 3  

Points {t} 

of the 

Training 

Values 

of Exact 

Values 

of ANN 

ANN Error 

(Absolute) 

 

0.0 4.0000000000 4.0002832413 2.832413×10-4 

0.1 3.9512295723 3.9523916245 1.1620520×10-3 

0.2 3.9048373699 3.9059658051 1.1284350×10-3 

0.3 3.8607079983 3.8612987995 5.908012×10-4 

0.4 3.8187308311 3.8186030388 1.277923×10-4 

0.5 3.7788007259 3.7780096531 7.910728×10-4 

0.6 3.7408182621 3.7395720482 1.2462139×10-3 

0.7 3.7046880722 3.7032728195 1.4152527×10-3 

0.8 3.6703200340 3.6690378189 1.2822151×10-3 

0.9 3.6376280785 3.6367480755 8.800030×10-4 

1.0 3.6065306664 3.6062524319 2.782345×10-4 

 
Comparing the network predictions to the actual solution, 

it is impressive how accurate they are given the initial condition 
of 4. By training using the given initial condition, the neural 
network appears to create predictions that are quite similar to 
the actual values, as this remark shows. It is implied by the term 
"very significant level of accuracy" that the outputs of the neural 
network show a high degree of precision and consistency, 
effectively approximating the genuine solution under the given 
conditions. This finding highlights the efficiency of the 
Artificial Neural Network (ANN) method in producing precise 
outcomes, especially when the network's predictions are based 
on the given initial state. By contrasting the actual solution with 
the network predictions, it is possible to determine that the 
performance of the neural network in this specific situation. 

 

Fig. 6a. Loss Plot concerning Problem 3 

 

Figure 6b. Exact and Predicted Values Plot concerning 
Problem 3 

Once the network completed 200 iterations on the epoch 
axis, Figure 6a shows that the pattern was correctly understood 
across all loss axes at the 0.00 point. The achievement of 
consistency and accuracy in its forecasts suggests a 
comprehensive learning process. Upon advancing to Figure 6b, 
where the time (t) axis is at 1.0, the network generates an output 
that exhibits surprising convergence to the true solution. With a 
convergence at 1.0 on the t axis, the neural network 
demonstrated its ability to produce correct outputs by roughly 
approximating the genuine answer. Figure 6a shows the 
network's learning trajectory, while Figure 6b shows the 
network's convergence with the real solution. The network's 
learning trajectory is illustrated by the graphs being compared. 
The analysis's overall findings demonstrate the network's 
effective learning and correctly estimating the answer to the 
given challenge. 

 

4. CONCLUSION                                  
The research team has made significant strides in 

developing an artificial neural network (ANN) architecture 
specifically designed for the resolution of first-order ODEs. The 
experimental results demonstrate that the proposed method 
exhibits a remarkable convergence rate while maintaining 
minimal errors in predicting outputs. A pivotal breakthrough 
occurred through the identification and implementation of an 
optimal learning rate within the ANN architecture. This optimal 
learning rate plays a crucial role in minimizing the loss function, 
showcasing a delicate balance that facilitates both accuracy and 
efficiency in the solution approximation process. 

When evaluating the ANN-based model, the quantitative 
metric used is the ‘Root Mean Square Error.’ The computed 
Root Mean Square Error value of 0.006508786788 reflects the 
average deviation between the true function values and the 
predictions made by the neural network. Remarkably, the 
RMSE value is exceptionally small (close to zero), indicating 
that, on average, the neural network’s predictions closely align 
with the true function values. This high accuracy suggests that 
the neural network effectively approximates values for any 
given function. 

The method's ability to swiftly converge to solutions for 
first-order ODEs is noteworthy and holds promise for 
applications in various scientific and technical fields. The 
convergence's rapidity signifies the efficacy of the ANN-based 
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approach, providing an efficient computational tool for 
addressing complex mathematical problems. 

Furthermore, the research underscores the broader 
implications of utilizing artificial neural networks for solving 
differential equations. The method's proficiency in minimizing 
errors and optimizing convergence rates positions it as a 
valuable asset in scenarios where computational efficiency is 
paramount. This research contributes to the evolving landscape 
of neural network methodologies in mathematical problem-
solving, offering insights and potential applications in diverse 
domains. 

In summary, the research study has shown that the 
constructed ANN architecture excels in solving first-order 
ODEs, exhibiting robust convergence capabilities and an 
optimized learning mechanism. These findings pave the way for 
future investigations into the diverse applications of ANNs in 
mathematical problem-solving. Such explorations hold promise 
for significant advancements in computational efficiency and 
precision, offering valuable insights for various fields reliant on 
numerical simulations and modeling. In future research, the 
focus will be on exploring how artificial neural networks 
(ANNs) can effectively solve higher-order ODEs. This involves 
developing specialized ANN architectures and optimizing 
training algorithms to address the complexities of higher-order 
ODEs. By conducting thorough experimentation and analysis, 
we aim to enhance our understanding of the capabilities of 
ANNs in resolving higher-order ODEs, contributing to 
advancements in computational mathematics and scientific 
modeling. 
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