
MJSAT 4 (3) 210-216

ABSTRACT

KEYWORDS

ARTICLE HISTORY

`

Utilizing the Artificial Neural Network Approach for the Resolution of First-Order

Ordinary Differential Equations

Khadeejah James Audu*1, Marshal Benjamin1, Umaru Mohammed1 and Yusuph Amuda Yahaya2

1Department of Mathematics, Federal University of Technology Minna, Nigeria.
2Department of Mathematics, Pen Resource University, Gombe, Nigeria.

1. INTRODUCTION
Modeling various phenomena in science, engineering, and

other fields often involves first-order Ordinary Differential
Equations (ODEs) [1]. While traditional numerical methods
like Euler's method and the Runge-Kutta method have been
useful, they can be computationally demanding for complex or
nonlinear ODEs. This study aims to address this challenge by
employing Artificial Neural Networks (ANNs) to solve first-
order ODEs representing physical processes. Developed by
Frank Rosenblatt in 1958, ANNs have proven effective for
solving both linear and nonlinear differential equations [2].
Notable applications include a Deep Learning Library for
Solving Differential Equations [3], physics-informed neural
networks for high-speed flows [4], and feed-forward neural
networks with trainable delay [5]. Several studies have explored
using ANNs to approximate ODE solutions, such as training
neural differential equations on time series [6], optimizing
enhanced artificial neural networks for ODEs [7], and applying
multilayer neural networks to solve systems of differential
equations [8]. These approaches demonstrate the practicality
and efficiency of using ANNs for solving ODEs in various
domains [9].

In the field of computational mathematics, the creation and
use of the ANN for first-order ODE offers a fresh and extremely
motivated method. The expanding significance of faithfully
modeling real-world processes in domains like science and
engineering, where ODE is essential, is the driving force behind
this issue. The need for better ODE-solving techniques that can
yield more precise and reliable solutions, therefore expanding
our knowledge and problem-solving skills across a range of
scientific and engineering applications, is the driving force
behind this research.

This study addresses the fundamental task of resolving
first-order ODEs, crucial for modeling dynamic systems in
various scientific and engineering domains. While traditional
numerical methods have long been employed for this purpose,
they may encounter challenges with stiff equations or high-
dimensional systems, motivating the exploration of alternative
computational techniques. Inspired by the success of artificial
neural networks (ANNs) in diverse fields, this research
investigates the application of ANNs to solve first-order ODEs.
The novelty lies in adapting ANNs, known for their capacity to
learn complex patterns, to tackle numerical solution tasks

MJSAT
Malaysian Journal of Science

and

Advanced Technology

journal homepage: https://mjsat.com.my/

Ordinary Differential Equations (ODEs) play a crucial role in various scientific and
professional domains for modeling dynamic systems and their behaviors. While traditional
numerical methods are widely used for approximating ODE solutions, they often face
challenges with complex or nonlinear systems, leading to high computational costs. This
study aims to address these challenges by proposing an artificial neural network (ANN)-
based approach for solving first-order ODEs. Through the introduction of the ANN
technique and exploration of its practical applications, we conduct numerical experiments
on diverse first-order ODEs to evaluate the convergence rate and computational efficiency
of the ANN. Our results from comprehensive numerical tests demonstrate the efficacy of the
ANN-generated responses, confirming its reliability and potential for various applications in
solving first-order ODEs with improved efficiency and accuracy.

First-Oder ODE
Artificial Neural Network

Computational Efficiency
Numerical echnique
Convergence Analysis

Received 9 February 2024
Received in revised form
28 March 2024
Accepted 20 May 2024
Available online 16 June 2024

© 2024 The Authors. Published by Penteract Technology.

This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/).

 *Corresponding author:

E-mail address: Khadeejah James Audu < k.james@futminna.edu.ng >.

https://doi.org/10.56532/mjsat.v4i3.265

2785-8901/ © 2024 The Authors. Published by Penteract Technology.

This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/).

https://doi.org/10.56532/mjsat.v4i3.265
https://creativecommons.org/licenses/by-nc/4.0/

 Khadeejah James Audu et al./ Malaysian Journal of Science and Advanced Technology 211

typically associated with differential equations. The study's
primary contribution is twofold: firstly, it extends the
application domain of ANNs into mathematical modeling,
potentially offering a promising alternative to traditional
numerical methods. Secondly, it provides insights into the
effectiveness and limitations of ANNs for resolving ODEs,
advancing the understanding and potential utilization of ANN-
based approaches in computational mathematics. Through
rigorous experimentation and analysis, this research aims to
establish the feasibility and practical implications of employing
neural networks for ODE resolution, contributing to
advancements in computational science and engineering.

2. LITERATURE REVIEW
ODEs are mathematical expressions of the relationships

between a function and its derivatives. They are significant in
the fields of science and engineering because they are a crucial
tool for simulating and evaluating dynamic systems. Numerous
phenomena, including economic systems, physical processes,
biological dynamics, and many more, are regulated by
underlying principles that ODEs capture. ODEs are used in
science to describe the behavior and evolution of physical
systems, such as the movement of celestial planets, chemical
reaction dynamics, and optimal disease propagation. [10] as
well as [11]. Scientists can understand complex relationships,
predict results, and examine the effects of various factors by
using ODEs to express the governing equations.

Control systems, robotics, fluid dynamics, and electrical
circuits all use ODEs. Engineers utilize ODEs to predict and
optimize system performance, develop efficient algorithms, and
make well-informed decisions on the behavior and stability of
systems. Control systems can ensure stability and intended
results by using ODEs, which provide a mathematical
framework for process analysis and design. [12] presented a
signal-based method for detecting electrical abnormalities in
three-phase AC induction motors (IM) using an automated
computer-control system. A dedicated physical prototype was
intentionally designed, developed, and constructed for
experimental validation.

The significance of ODEs lies in their ability to represent
complex systems' dynamic behavior, temporal evolution, and
interactions among several variables. In order to gain a better
understanding of system dynamics, they give scientists and
engineers the capacity to predict, simulate, and mathematically
describe genuine phenomena.

The fundamental concepts of the natural world are better
understood by scientists and engineers, who can also come up
with creative solutions for problems that arise in the real world.

As a bridge between theoretical models and empirical data,
ODEs help validate and enhance mathematical models.
Researchers can improve ODE-based models' accuracy and
dependability, enabling comparing model predictions with real
data can lead to more accurate forecasts and better decision-
making. One of the key reasons ODEs are important in the
scientific and engineering sectors is that they provide a
mathematical foundation for understanding and describing
dynamic systems. They facilitate the analysis of complex
systems, enable modeling and prediction, and offer a
framework for developing practical solutions. Because ODEs
may be used to recognize and describe the fundamental
concepts that underlie the behavior of different systems, they

are critical to the advancement of research, technology, and
innovation.

Addressing the computational challenge of solving large-
scale linear equations is paramount in numerical computation.
Authors in [13] introduced an innovative method utilizing deep
neural networks for solving such equations. In their study [14]
introduced and constructed an artificial neural network model
designed to predict a student's likelihood of passing a specific
class, while ensuring the confidentiality of personal or sensitive
information that could jeopardize student privacy.

Various studies have explored the utilization of neural
networks for solving differential problems, employing diverse
optimization techniques within a procedural framework.

3. DESCRIPTION OF THE ARTIFICIAL NEURAL

NETWORK
An alternative to conventional methods that need

discretization and approximation is the artificial neural network
(ANN), which shows promise as a method for solving ODEs.
Each differential equation is presented as a "optimization
problem" in this paradigm, denoting a change in viewpoint. The
ANN technique makes use of the network's ability to solve
optimization problems, in contrast to approaches that depend on
decomposing and approximating differential equations.

This cutting-edge method revolutionizes problem-solving
by utilizing neural networks. The ANN can automate the
procedure entirely by methodically learning and adapting to
ODEs as optimization problems. An approach to ODEs that is
dynamic and adaptable is made possible by the network's
capacity to solve issues on its own and learn from the data that
is sent to it. This change from customary practices suggests a
more comprehensive and flexible approach to problem solving.

Artificial neural networks have the potential to solve ODEs
because of their innate ability to recognize patterns, adapt, and
optimize efficiently. Neural network automation simplifies the
process and has the potential to address complicated and non-
linear systems that may be difficult to handle with conventional
techniques. This method represents a paradigm change in the
way differential equations are thought about and handled,
creating opportunities for more adaptable and efficient
problem-solving in technical and scientific fields.

Consider the following first-order ODE:

𝑑

𝑑𝑡
= 𝑞(𝑡, 𝑠), 𝑡 ∈ [𝑎, 𝑏] 𝑠(0) = 𝑠0 (1)

The defined ANN takes in the input vector

()1 2 3, , ,..., nT t t t t= , and outputs a scalar (,)N t p where t refers to

the inputs and p denotes the adjustable weights and bias. The
ANN is depicted in figure 1.

 Khadeejah James Audu et al./ Malaysian Journal of Science and Advanced Technology 212

Figure 1: A network of connected block

The neural network defined consists of a hidden layer of k

units as shown in figure 1. For each input vector, the weighted
sum for the hidden layer is calculated.

𝑧𝑖 = 𝑏𝑖 + ∑(𝑝𝑖𝑗𝑡𝑖)

𝑛

𝑗=𝑖

(2)

where bi refers to the optional bias and pij refers to the
weights acting on the vector T. The sum zi is acted upon by a
sigmoid function given as:

𝜎(𝒛𝒊) =
1

1+𝑒−𝑧𝑖
 (3)

Given the hidden weights denoted as the vector

()1 2 3, , ,..., nV v v v v= , the final scalar output is given as:

𝑁(𝑡, 𝑝) = ∑ 𝑣𝑖𝜎(𝑧𝑖) = 𝑣𝑖𝜎 (𝑏𝑖 + ∑ 𝑝𝑖𝑗𝑡𝑖

𝑛

𝑗=𝑖

)

𝑘

𝑖=1

(4)

where k refers to the number of units in the hidden node.

According to the universal approximation theorem,
utilizing a neural network enables an approximation of the
solution of N with arbitrary precision. Therefore, N can be
regarded as a neural network of T.

𝜕

𝜕𝑡𝑘
𝑧𝑖 =

𝜕

𝜕𝑡𝑘
(𝑏𝑖 + ∑ 𝑝𝑖𝑗𝑡𝑖

𝑛
𝑗=𝑖) (5)

𝜕

𝜕𝑡𝑘
𝜎(𝑧𝑖) = 𝜎′(𝑧𝑖)

𝜕

𝜕𝑡𝑘
𝑧𝑖 = 𝑝𝑖𝑘𝜎′(𝑧𝑖) (6)

for first order ODE

𝑑𝑁

𝑑𝑡
= 𝜎′𝑣1(𝑝1𝑡)𝑝1 (7)

for second order ODE

𝑑2𝑁

𝑑𝑡
= 𝜎′′𝑣1(𝑝1𝑡)𝑝1

2 (8)

Hence all the derivatives of N with respect to the input T
can be found. Through back propagation, we can always find
the derivative of the output with respect to the input cases of
multilayer which is called automatic differentiation.

Recall the ODE given in (1). Assuming , then the
optimization problem is formed as a loss function given as the
mean square of the ODE and the boundary conditions:

𝐿2 = ∑ |
𝑑𝑁𝑁(𝑡𝑖)

𝑑𝑡
− 𝑞(𝑡𝑖 , 𝑠)|

𝐼

2

+ |𝑁𝑁(0) − 𝑠0|2
(9)

Thus, the original ODE is represented as an optimization
issue which is shown in equation (9), and is solved using the
Adam optimizer algorithm.

3.1 Utilizing Optimization and Backpropagation Techniques to
Train Neural Networks

There are three distinct processes in the training process of
a neural network, which is constant;

1. Feed the input data into the neural network, the data flows
from layer to layer until output is retrieve z* = network (t,
w).

2. Examine the neural network's output against the intended
output to determine the error.

𝐸 =
(𝑧∗ − 𝑧)

2

(10)

3. Reduce inaccuracy by adjusting neural network parameters
through gradient descent

𝑝 ← 𝑝 − ∞
𝜕𝐸

𝜕𝑝
 (11)

4. Restart from scratch.

3.2 Algorithm for the Artificial Neural Network

1. Library imports necessary for training a neural network
to estimate the solution of a first-order ODE and
visualize the outcome are as follows:

● Import torch: PyTorch, a library offering tensor
computations and automatic differentiation, is an
ideal option for neural network implementation.

● Import torch.nn as nn: This imports the PyTorch
neural network module ('nn'), which encompasses
classes and functions for defining and training
neural network models.

● Import torch.optim as optim: This imports the
PyTorch optimizer module ('optim'), utilized for
updating model parameters during training, such
as Adam and SGD.

● Import matplotlib. pyplot as plt: This imports the
Matplotlib library, commonly used for creating
visualizations such as plots and graphs. In this
case, Matplotlib is utilized to visualize the training
loss and compare predicted values with the exact
solution of the ODE.

2. NN Definition: This section outlines a fundamental
neural network structure, consisting of input, hidden,
and output layers.

3. Model and Device Setup: The code determines the
computational device, either GPU or CPU, and
relocates the neural network accordingly.

4. Question formulation: This section defines the
mathematical function along with its initial condition.

5. Loss function/Optimization: This section determines
the learning rate of the network and handles
optimization.

 N(t,p) T

k units of the hidden layer

 Khadeejah James Audu et al./ Malaysian Journal of Science and Advanced Technology 213

6. Data preparation: This involves setting up the input
data and initial conditions. Then proceed to design the
ANN architecture using the values predicted by the
model as exact solution.

7. Training loop: The network is trained for a finite
number of epochs, computes the loss, backpropagates
the gradients, and updates the network parameters.

8. Prediction generation: The code generates predictions
by applying the trained network to a range of input
values and stores the results.

9. Visualization: This encompasses plotting the loss
curve.

Figure 2: The process flow of the ANN approach.

4. IMPLEMENTATIONS AND RESULTS
This section focuses on utilizing the neural network

approach to solve specific first-order ODEs, as illustrated in
Figure 3. The numerical computations and experiments are
conducted within a Python environment, specifically using
Jupyter Notebook, and the results are analyzed and discussed
accordingly.

Experiment 1: We employ the ANN approach to resolve:

𝑑𝑧

𝑑𝑡
= 𝑡2 − 4𝑧 by the conditions 𝑡0 = 0, 𝑧0 = 1

Solution of Exact: 𝑧(𝑡) =
1

32
+

31𝑒−4𝑡

32
+

𝑡2

4
−

𝑡

8

The generation of the training dataset can be approached
through various methodologies. One of such method involves
the utilization of the exact solution within a predetermined
interval, such as [0,1]. This approach is particularly effective
when the exact solution is known and can be accurately
represented within the specified interval.

However, in instances where the exact solution is
unknown, alternative strategies must be employed. A study
conducted by [7] advocates for the use of logistic regression
models over a defined interval. This method allows for the
generation of a training dataset even in the absence of a known
exact solution, thereby expanding the applicability of this
approach to a wider range of scenarios.

Table 1. Computational Outcome for Experiment 1

Points {t}

of

Training

Values

of Exact

Values

of ANN

ANN Error

(Absolute)

0.0 1.0000000000 0.9975615740 2.4384260×10-3

0.1 0.6706225276 0.6668983698 3.7241578×10-3

0.2 0.4515374005 0.4484636486 3.0737519×10-3

0.3 0.3080318868 0.3070761859 9.557009×10-4

0.4 0.2168372571 0.2169048488 0.6.75917×10-5

0.5 0.1623560488 0.1619767845 3.792643×10-4

0.6 0.1341329962 0.1327966154 1.3364000×10-3

0.7 0.1251597404 0.1234643161 1.6954000×10-3

0.8 0.1307384074 0.1297434270 9.949800×10-4

0.9 0.1477198452 0.1479196250 1.997800×10-4

1.0 0.1739932895 0.1742707193 2.774300×10-4

 The neural output converges within the designated
accuracy range, as shown in Table 1, which offers a thorough
summary of error minimization at 11 training points that are
equally spaced. At these precise times throughout the neural
network's training rounds, the table probably illustrates the
progressive decrease in mistakes. The neural network's
predictions approach the desired or true values throughout
training, reaching a level of accuracy that satisfies
predetermined criteria, as indicated by the convergence of the
neural output. In addition to providing insight into the neural
network's capacity to gradually improve predictions and reach
convergence within the given accuracy constraints, this table is
a useful tool for evaluating the neural network's effectiveness in
minimizing mistakes across different training phases.

Fig. 4a. Loss Plot concerning Problem 1

 Khadeejah James Audu et al./ Malaysian Journal of Science and Advanced Technology 214

Fig. 4b. Exact and Predicted Values Plot concerning
Problem 1

Astounding insights into the neural network's iteration
behavior are provided by Figure 4a. During the initial phases,
the network exhibited a quick integration of the pattern into the
ODE, demonstrating its effective learning abilities. The graphic
represented this transitional phase, with the network aiming to
stabilize around the 0.2 point on the loss axis. The network
reached stability at 0.00 on the loss axis after 1500 iterations,
which is noteworthy because it shows a convergence towards
the actual solution. Figure 4b provides additional validation of
the convergence, indicating that the neural network accurately
matched the real solution as stability at 1.0 is reached. The
accuracy with which the Artificial Neural Network (ANN)
method resolves the first-order ODE is demonstrated by this
convergence to the correct solution potential as a strong
computational instrument in these kinds of uses. The network's
learning and convergence operations in solving the ODE are
visually confirmed by the graphical representation in the
figures.

Experiment 2: The following linear initial value problem is:

𝑑𝑧

𝑑𝑡
= 𝑒−2𝑡 − 5𝑧, at 𝑡0 = 0, 𝑧0 = 1

Solution of Exact: 𝑧(𝑡) =
(2𝑒−5𝑡+𝑒−2𝑡)

3

Table 2. Computational Outcome for Experiment 2

Points {t}

of the

Training

Values

of Exact

Values

of ANN

ANN Error

(Absolute)

0.0 1.0000000000 0.9966232181 3.3767819×10-3

0.1 0.6772640944 0.6730039120 4.2601824×10-3

0.2 0.4686929882 0.4664441943 2.2487939×10-3

0.3 0.3316906691 0.3313499391 3.407300×10-4

0.4 0.2399998605 0.2397259176 2.739429×10-4

0.5 0.1773498058 0.1765649021 7.849037×10-4

0.6 0.1335894465 0.1327142864 8.751601×10-4

0.7 0.1023305878 0.1018679067 4.626811×10-4

0.8 0.0795092732 0.0795983225 8.90493×10-5

0.9 0.0625056326 0.0628914014 3.857688×10-4

1.0 0.0496037267 0.0497684479 1.647212×10-4

A graphic depiction of the convergence of network

predictions to the precise solution, at a given degree of

precision, may be found in Table 2. The iterative process by
which the network improves its predictions at each step and gets
closer to the actual or precise solution is probably depicted in
the table. For assessing the neural network's accuracy and
dependability in approximating answers within the specified
accuracy requirements, this convergence is essential. The
entries in the table most likely show how, during training, the
difference between the network's predictions and the precise
answer decreased, highlighting the network's capacity to adjust
its outputs until they almost match the required accuracy
requirements. Table 2 is an invaluable resource for
comprehending the dynamic and iterative characteristics of the
neural network's learning process, demonstrating its ability to
make precise predictions.

Fig. 5a. Loss Plot concerning Problem 2

Fig. 5b. Exact and Predicted Values Plot concerning Problem
1

Here, the figure 5a shows that the network is learning and
unlearning between 0.20-0.15 and at point 0.00 it perfectly
learned the pattern all on the loss axis with 1000 iteration on the
epoch axis. Furthermore, Figure 5b shows a plot of convergence
of ANN to the exact solution at point 1.0 on the t-axis.

Experiment 3: This experiment engages the Artificial Neural

Network approach to compute the predicted values concerning

the ODE:

𝑑𝑧

𝑑𝑡
=

3

2
−

1

2
𝑧

 Khadeejah James Audu et al./ Malaysian Journal of Science and Advanced Technology 215

with respect to the initial condition stated as:

𝑧(𝑡0) = 4

Solution of Exact: 𝑧(𝑡) = 3 + 𝑒
−𝑡

2⁄

Table 3. Computational Outcome for Experiment 3

Points {t}

of the

Training

Values

of Exact

Values

of ANN

ANN Error

(Absolute)

0.0 4.0000000000 4.0002832413 2.832413×10-4

0.1 3.9512295723 3.9523916245 1.1620520×10-3

0.2 3.9048373699 3.9059658051 1.1284350×10-3

0.3 3.8607079983 3.8612987995 5.908012×10-4

0.4 3.8187308311 3.8186030388 1.277923×10-4

0.5 3.7788007259 3.7780096531 7.910728×10-4

0.6 3.7408182621 3.7395720482 1.2462139×10-3

0.7 3.7046880722 3.7032728195 1.4152527×10-3

0.8 3.6703200340 3.6690378189 1.2822151×10-3

0.9 3.6376280785 3.6367480755 8.800030×10-4

1.0 3.6065306664 3.6062524319 2.782345×10-4

Comparing the network predictions to the actual solution,

it is impressive how accurate they are given the initial condition
of 4. By training using the given initial condition, the neural
network appears to create predictions that are quite similar to
the actual values, as this remark shows. It is implied by the term
"very significant level of accuracy" that the outputs of the neural
network show a high degree of precision and consistency,
effectively approximating the genuine solution under the given
conditions. This finding highlights the efficiency of the
Artificial Neural Network (ANN) method in producing precise
outcomes, especially when the network's predictions are based
on the given initial state. By contrasting the actual solution with
the network predictions, it is possible to determine that the
performance of the neural network in this specific situation.

Fig. 6a. Loss Plot concerning Problem 3

Figure 6b. Exact and Predicted Values Plot concerning
Problem 3

Once the network completed 200 iterations on the epoch
axis, Figure 6a shows that the pattern was correctly understood
across all loss axes at the 0.00 point. The achievement of
consistency and accuracy in its forecasts suggests a
comprehensive learning process. Upon advancing to Figure 6b,
where the time (t) axis is at 1.0, the network generates an output
that exhibits surprising convergence to the true solution. With a
convergence at 1.0 on the t axis, the neural network
demonstrated its ability to produce correct outputs by roughly
approximating the genuine answer. Figure 6a shows the
network's learning trajectory, while Figure 6b shows the
network's convergence with the real solution. The network's
learning trajectory is illustrated by the graphs being compared.
The analysis's overall findings demonstrate the network's
effective learning and correctly estimating the answer to the
given challenge.

4. CONCLUSION
The research team has made significant strides in

developing an artificial neural network (ANN) architecture
specifically designed for the resolution of first-order ODEs. The
experimental results demonstrate that the proposed method
exhibits a remarkable convergence rate while maintaining
minimal errors in predicting outputs. A pivotal breakthrough
occurred through the identification and implementation of an
optimal learning rate within the ANN architecture. This optimal
learning rate plays a crucial role in minimizing the loss function,
showcasing a delicate balance that facilitates both accuracy and
efficiency in the solution approximation process.

When evaluating the ANN-based model, the quantitative
metric used is the ‘Root Mean Square Error.’ The computed
Root Mean Square Error value of 0.006508786788 reflects the
average deviation between the true function values and the
predictions made by the neural network. Remarkably, the
RMSE value is exceptionally small (close to zero), indicating
that, on average, the neural network’s predictions closely align
with the true function values. This high accuracy suggests that
the neural network effectively approximates values for any
given function.

The method's ability to swiftly converge to solutions for
first-order ODEs is noteworthy and holds promise for
applications in various scientific and technical fields. The
convergence's rapidity signifies the efficacy of the ANN-based

 Khadeejah James Audu et al./ Malaysian Journal of Science and Advanced Technology 216

approach, providing an efficient computational tool for
addressing complex mathematical problems.

Furthermore, the research underscores the broader
implications of utilizing artificial neural networks for solving
differential equations. The method's proficiency in minimizing
errors and optimizing convergence rates positions it as a
valuable asset in scenarios where computational efficiency is
paramount. This research contributes to the evolving landscape
of neural network methodologies in mathematical problem-
solving, offering insights and potential applications in diverse
domains.

In summary, the research study has shown that the
constructed ANN architecture excels in solving first-order
ODEs, exhibiting robust convergence capabilities and an
optimized learning mechanism. These findings pave the way for
future investigations into the diverse applications of ANNs in
mathematical problem-solving. Such explorations hold promise
for significant advancements in computational efficiency and
precision, offering valuable insights for various fields reliant on
numerical simulations and modeling. In future research, the
focus will be on exploring how artificial neural networks
(ANNs) can effectively solve higher-order ODEs. This involves
developing specialized ANN architectures and optimizing
training algorithms to address the complexities of higher-order
ODEs. By conducting thorough experimentation and analysis,
we aim to enhance our understanding of the capabilities of
ANNs in resolving higher-order ODEs, contributing to
advancements in computational mathematics and scientific
modeling.

REFERENCES

[1] Mahata G., Raut D.S., Parida C., Baral S., & Mandangi S. (2022).

Application of First-Order Differential Equations. International Journal of

Engineering Science Technologies, 6(5), pp. 23-33.

[2] Lu L., Dagger, X. M., Dagger, Z. M., George, S. E. K. (2021). A Deep
Learning Library for Solving Differential Equations. Society for Industrial

and Applied Mathematics, 63 (1), pp. 208–228.

[3] Mao Z., Jagtap, A. D. & Karniadakis, G. E. Physics-informed neural

networks for highspeed flows. Computational Methods in Applied

Mechanics and Engineering, 360, pp. 209-225.

[4] Ji, X.A., Moln´ar, T.G., Avedisov, S.S., & Orosz, G. (2020). Feed-forward

neural networks with trainable delay. Learning for Dynamics and Control,

120(1), pp. 127–136.

[5] Turan, E.M., & J¨aschke, J. (2021). Multiple shooting for training neural

differential equations on time series. Control Systems Letters, 2(6), pp.

1897–1902.

[6] Li, S., Wang, X. (2021). Solving ordinary differential equations using an

optimization technique based on training improved artificial neural

networks. Soft Computing. 25(5), pp. 3713–3723.

[7] Okereke, R. N., Maliki, O. S., & Oruh, B. I. (2021). A Novel Method for
Solving Ordinary Differential Equations with Artificial Neural Networks.

Applied Mathematics, 12, pp. 900-918.

[8] Marchenko, N. A., Sydorenko, G. Y., & Rudenko, R. O. (2021). Using of

Multilayer Neural Networks for the Solving Systems of Differential

Equations. Bulletin of the National Technical University 'KhPI'. Series:
System Analysis, Management, and Information Technologies, 2(6), pp.

125-129.

[9] Arunachalam, S. (2022). Applications of Artificial Neural Networks to

Solve Ordinary Differential Equations. International Journal for Research

in Applied Science and Engineering Technology, 10, pp. 882-888.

[10] Rehan, Z. (2022). Application of First-Order Differential Equation to Heat

Convection in Fluid. Journal of Applied Mathematics and Physics, 8(8),

pp. 1456-1462.

[11] Tigist Y., & Teketel K. (2020). Applications of First-Order Ordinary

Differential Equation as Mathematical Model. Mathematical Theory and

Modelling, 10(3), pp. 1-17.

[12] See, A. K. B. & On, J J.Y. (2023). Revolutionizing Motor Health: IoT-

Driven Detection of Electrical Abnormalities in Three-Phase A.C.
Induction Motors. Malaysian Journal of Science and Advanced

Technology, 3(4), pp. 280-293

[13] Jiang, Z., Jiang, J., Yao, Q. & Yang., G. (2023). A neural network‑based

PDE solving algorithm with high precision.Scientific Reports, 13:4479.

[14] Chavez, H., Chavez-Arias, B., Contreras-Rosas, S., Alvarez-Rodríguez J.
M.& Raymundo, C. (2023) Artificial neural network model to predict

student performance using nonpersonal information. Frontier in

Education. 8(1106679), pp 1-11.

