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Abstract 

The bacterium campylobacter is the cause of campylobacteriosis, a major cause of foodborne illness that 

goes by the most common name for diarrheal illnesses. This paper develops and analyzes a new 

mathematical model for campylobacteriosis. It is demonstrated that in cases where the corresponding 

reproduction number is smaller than unity, the model's disease-free equilibrium is both locally and globally 

stable. The numerical simulation results indicate that increasing the treatment rate for both symptomatic 

and asymptomatic disease-infected individuals resulted in a decrease in the number of asymptomatic and 

symptomatic individuals, respectively, and a rise in the population's number of recovered individuals.  

Keywords: Reproduction number, stability, mathematical simulation, campylobacteriosis. 

 

1.0 Introduction 

The bacterium campylobacter is the source of campylobacteriosis, a major cause of foodborne illness that 

is thought to be the most prevalent indicator of diarrheal illnesses (WHO, 2020). The World Health 

Organization estimates that the burden of food-borne illnesses claims the lives of approximately 33 million 

healthy people and causes 1 in 10 people to become ill. The majority of illnesses resulting from eating 

unsafe food are diarrheal diseases, accounting for 550 million illnesses per year, of which 220 million are 

in children under the age of five (WHO, 2020). The majority of the time, campylobacter infections are 

mild (asymptomatic); however, in very young children, the elderly, and people with compromised immune 

systems, they can be fatal (symptomatic) (WHO, 2020, Health direct, 2024). 

Common symptoms of campylobacter infection are; fever, cramping in the stomach, and diarrhea, which 

is frequently bloody. After diarrhea, nausea and vomiting are possible. Following infection, symptoms 

typically appear two to five days later and persist for approximately one week. Some people experience 

complications like arthritis, irritable bowel syndrome, and temporary paralysis (CDC, 2023). The majority 
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of people with campylobacter infections recover without the need for antibiotics, Centers for Disease 

Control and Prevention reported that (patients are advised to stay hydrated for the duration of their 

diarrhea), however severe cases may require antibiotic treatment. The groups most likely to experience 

severe cases of the disease are the elderly (65 years of age and older), pregnant women, and individuals 

with weakened immune systems (CDC, 2019). 

 

Throughout the years, mathematical models of infectious diseases have offered helpful insights into the 

dynamics of infectious disease transmission, prevention, and control (Gulmel et al., 2018 are one example 

of this). However, only a small number of mathematical models have been created and applied to 

campylobateriosis in order to comprehend the disease's dynamics of transmission, management, and 

prevention; for instance, refer to (Rawson et al. 2019, Nyasagare et al. 2019, Osman et al. 2020, Chuma 

and Mussa, 2021). In 2019, Rawson and colleagues created and studied a mathematical model of the 

campylobacter in broiler flocks dynamics. In their investigations, the pathways of infection among co-

housed birds were modeled using a system of stochastic differential equations. Nyasagare et al. (2019) 

developed and examined a mathematical model of campybacteriosis in animal and human populations 

using the S-I-R approach. Using an S-I-R model for both human and animal populations, Osman et al. 

(2020) developed and examined a mathematical model for campylobacteriosis using a modified finite 

difference method with optimal control. Chuma and Mussa (2021) created and examined an epidemic 

model that included sanitation control, treatment, and public health education to explain the dynamics of 

the campylobacteriosis disease. They did not divide the exposed class into asymptomatic and symptomatic 

classes in their work. A novel deterministic mathematical model for analyzing the dynamics of 

campylobacteriosis transmission in a population is presented in this work. The following presumptions 

form the basis of the model: 

(i) The exposed class is split into asymptomatic and symptomatic classes, respectively. This is in 

line with the information obtained from (Osman et al. 2020, Health direct, 2024). 

 

(ii) Asymptomatic individuals can recover without treatment and equally develop symptoms to 

progress to the symptomatic class while symptomatic patients might need antibiotics treatment 

(CDC, 2019). 
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In all the aforementioned mathematical models of Campylobacteriosis, none of them considered the 

assumptions (i) and (ii). Hence, in the present study, the exposed class have been split into the 

asymptomatic and symptomatic classes. Also, treatment of the asymptomatic and symptomatic patients 

are included as intervention strategies in our model to curtail the spread of the disease in the population.  

 

2.0 Model Formulation 

The total population at time t , denoted by )(tN , is divided into the human ( ))(tNh  and animal ( )( )tNv  

populations. The total population of humans is further sub-divided into the five mutually-exclusive 

compartments of the susceptible ( )( )tSh , exposed ( ))(tEh , asymptomatic ( ))(tIa , symptomatic ( ))(tI s , 

and recovered ( ))(tI a  humans. Also, the total animal population is sub-divided into the susceptible ( )( )tSv  

, infected ( ))(tI v  and recovered ( ))(tRv  sub-population. Thus, 

)()()( tNtNtN vh +=  

),()()()()()( tRtItItEtStN hsahhh ++++=                                          (2.1) 

).()()()( tRtItStN vvvv ++=  

The susceptible population (for both human and animals) are recruited through immigration at rates 

( )vh  , respectively. Humans in hE class progresses to class aI  and sI at rate   while   is the 

proportion of humans that progressed to class aI . The humans in classes aI  and sI  recover from 

campylobacteriosis at rates 1 and 2 , respectively. Furthermore, natural death rate ( )vh   occurs in all 

the epidemiological classes of human (animal) population while humans (animals) in classes sI  and vI  

suffer an additional Campylobacteriosis induced death at a rate ( )vh  , respectively. Humans and other 

animals that are susceptible to the disease can contract campylobacteriosis by eating contaminated food 

or water or by coming into close contact with infected humans or animals (i.e. those in the aI , sI  and vI  

classes), at a rate 1  and 2 , respectively, given by 

( )vsa III ++1 ,                                                             (2.2) 

and   

( ).2 vsa III ++                                                              (2.3) 

Animals recover from campylobacteriosis at a rate 3 .  
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Figure 1. Schematic diagram for model (2.4). 

Table 1:  Description of variables and parameters in the Campylobacteriosis model (2.4). 

Variables/parameters Interpretation 

hS  Susceptible human population 

hE  Exposed human population 

aI  Asymptomatic human population 

sI  Symptomatic human population 

hR  Recovered human population 

vS  Susceptible animal population 

vI  Infected animal population 

vR  Recovered animal population 

( )vh   Recruitment rate into the susceptible human (animal) compartments 

( )21   Infection rates 

  Progression rate 
  Proportion of exposed humans moving to class aI  
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  Progression rate from aI to sI  

( )21   Treatment rates for the human 

3  Treatment rate for the animals 

( )vh   Human (animal) natural death rate 

( )vh   Loss of immunity 

( )vh   Human (animal) disease-induced death rate 

  Force of infection 

 

When all of these definitions and presumptions are combined, the system of differential equations in (2.4) 

yields the new Campylobacteriosis model. Figure 1 displays the model's flow diagram, and Table 1 lists 

the variables in the model. 

,
)(

1 hhhhhh

h RSS
dt

tdS
 +−−=  

  ,)1(
)(

1 hhh

h ES
dt

tdE
 +−+−=  

( ) ,
)(

1 ahh

a IE
dt

tdI
 ++−=  

( ) ( ) ,1
)(

2 shhah

s IIE
dt

tdI
 ++−+−=     (2.4)                       

,)(
)(

21 hhhsa

h RII
dt

tdR
 +−+=  

,
)(

2 vvvvvv

v RSS
dt

tdS
 +−−=  

( ) ,
)(

32 vvvv

v IS
dt

tdI
 ++−=  

( ) .
)(

3 vvvv

v RI
dt

tdR
 +−=  

where the forces of infection for human and animals are as given in equations (2.2) and (2.3), respectively.  

 

Theorem 2.1.: When starting with positive data, every solution in the model (2.4) stays positive over time. 

Additionally, the model is a dynamic system on the area that has, 35

21 ++ = with, 
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( ) ,:,,,,1







 

=++++=
h

h

hhsahhhsahh NRIIESRIIES


 

( )






 

=++=
v

v

vvvvvvv NRISRIS


:,,2 ,                     (2.5) 

 

Proof. Following similar approach as in Gumel et al., (2018), it is easy to see that the following first-order 

inequality equations follow from the equations for humans (susceptible individuals) and animals 

(susceptible animals) in model (2.4): 

( ) ,01 ++ hh

h S
dt

dS
 and ( ) 02 ++ vv

v S
dt

dS
  

Applying integrating factor to the inequalities  

( ) 


d

S

h

h
t

][ 1

exp)(
+= ,

( ) 


d

S

v

v
t

][ 2

exp)(
+= , 

and observing that 

                                          𝛼𝑆ℎ(𝑡) [
𝑑𝑆ℎ(𝑡)

𝑑𝑡
+ (𝛽1𝜆 + 𝜇ℎ)𝑆ℎ] =

𝑑𝑆ℎ𝛼𝑆ℎ

𝑑𝑡
, 

𝛼𝑆𝑣(𝑡) [
𝑑𝑆𝑣(𝑡)

𝑑𝑡
+ (𝛽1𝜆 + 𝜇𝑣)𝑆𝐴] =

𝑑𝑆𝑣𝛼𝑆𝑣
𝑑𝑡

, 

then integrating from 0 to gives 0)( tS
h

 and 0)( tS
v

 at all times, respectively, with respect to time. 

Nevertheless, the remaining equations are not amenable to this direct method. However, the conservation 

law is obtained by summing the model's first five and final three equations (2.4). 

h
h h h h s

v
v v v a v

dN
N I

dt

dN
N I

dt

 

 


=  − − 


=  − −


         (2.6)   

                             

Thus, the general a priori estimates below can be demonstrated to hold using a standard comparison 

theorem. 

( ) ( ) ( )

( ) ( ) ( )

0 0 exp 1 exp

0 0 exp 1 exp

h h

v v

t th
h h

h

t tv
v v

v

N t N

N t N

 
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



− −

− −

 
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 (2.7) 
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We determine that there is only one global solution in the domain  . The right-hand side of the model 

(2.4) is locally Lipschitz (Stuart and Humphties 1998). Consequently, the dynamical system on   in 

model (2.4). Conversely, if a solution is found outside of the area  , that is, 
h

h

hN



  and 

v

v

vN



 , 

then the conservation law mentioned above implies that 0
dt

dNh  and 0
dt

dNv . Thus, it can be seen from 

the estimates above that )(tNh  tends to 
h

h




 and )(tNv  tends to 

v

v




as .→t . As a result, the region   

is interesting. 

 

3         Mathematical Analysis  

3.1       Asymptotic Stability of Disease-free Equilibrium (DFE) 

The DFE of the model (2.4) is given by  

            ).0,0,,0,0,0,0,(),,,,,,,( 00000000

1

v

v

h

h
vvvhsahh RISRIIESE




==   

Using model (2.4) and an operator method for the next generation (van den Driessche and Watmough, 

2002), the local stability of 1E will be established. It follows that matrices F  and V , the notation found 

in van den Driessche and Watmough (2002) is used for the new infection terms and the remaining 

transition terms, respectively. 





























=

v

v

v

v

v

v

h

h

h

h

h

h

F

























222

111

0

0000

0000

0

 and ,

000

0

000

000

6

43

2

1





















−−
=

k

kk

k

k

V


 

where, 

 

        (3.1). 

 

Hence, the effective reproduction number of the model (2.4), denoted by ,cR is given by 

).(),(),(
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443221

vvvvhh
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kkk

kkkk
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641

241163

kkk

kkkk
R

vh

hvvh
c



 +
=                                                                 (3.2) 

The following findings are derived from the Theorem 2 Van den Driessche and Watmough's (2002)  

Lemma 3.1: The DFE ( )1E  of the model (2.4) is locally asymptotically stable whenever 1cR  and 

unstable if otherwise. 

The threshold quantity cR  measures the average number of new Campylobacteriosis infections generated 

by an index case in a completely susceptible population (van den Driessche and Watmough, 2002). 

Specifically, cR denotes the mean quantity of newly acquired Campylobacteriosis infections within the 

human (animal) population, resulting from the introduction of a single infected individual into a fully 

susceptible human (animal) population. Lemma 3.1's epidemiological implication is that, if the initial sizes 

of the model's subpopulation are within the DFE's )( 1E basin of attraction, campylobacteriosis can be 

eradicated from the population when cR  is less than unity. As a result, a small number of humans or 

animals carrying the infection may enter the community; this will not cause significant outbreaks of the 

disease, and it will eventually go extinct. It is vital to demonstrate that the DFE is globally-asymptotically 

stable (GAS) if 𝑅𝑐 < 1 and the initial subpopulation sizes do not affect the eradication of 

campylobacteriosis.   

Theorem 3.2. The DFE )( 1E  of the model (2.4) is globally asymptotically stable in   whenever 1cR . 

Proof. The proof of Theorem 3.2 will be established using the Theorem of comparison (Lakshmikantham 

et al., 1989). The following is the matrix-vector form for the equations on the model's (2.4) infected 

components: 

                             ( ) ),(11
)(

21 tLH
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S
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dt

tdL

v

v

h

h

















−−








−−−=                                                 (3.3)          

where T

vvhsah tRtItRtItItEtL ))(),(),(),(),(),(()( = and the matrices F and V are given in section 3. 

Furthermore, 
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and 
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Since 1H and 2H are nonnegative matrices and )()( tNtS hh  and )()( tNtS vv   in , it follows that  

                                             )()][(
)(

tLVF
dt

tdL
−                                                                    (3.4) 

The differential inequality system (3.4) is stable whenever 𝑅𝑐 < 1, based on the fact that all of the matrix 

eigenvalues have negative real parts. Thus, according to comparison theorem of (Lakshmikantham et al

1989). 

( ).0,0,0,0,0,0))(),(),(),(),(),((lim =
→

tRtItRtItItE vvhsah
t

                                                         (3.5) 

It can be shown by substituting (3.5) into (2.1) that 
h

h
hS




→  and 

v

v
vS




→ as .→t  thus,  

𝑙𝑖𝑚
𝑡→∞

(𝑆ℎ(𝑡), 𝐸ℎ(𝑡), 𝐼𝑎(𝑡), 𝐼𝑠(𝑡), 𝑅ℎ(𝑡), 𝑆𝑣(𝑡), 𝐼𝑣(𝑡), 𝑅𝑣(𝑡) = (
𝛬ℎ

𝜇ℎ
, 0,0,0,0,

𝛬ℎ

𝜇ℎ
, 0,0) = 𝐸1

∗.      

                                                                                                                                                    (3.6)       

Hence, every solution to the equation of the model (2.4) and initial conditions in  , approaches the DFE 

( )1E  as →t whenever 1cR  .The epidemiological implication of Theorem 3.2 is that irrespective of 

the number of infectives in the population, if the threshold quantity cR  can be kept below unity, 

campylobacteriosis will be effectively controlled in the community 

4 Numerical Simulation 

In this section, numerical simulations for the transmission dynamics of campylobacteriosis are performed 

on model (2.4) with the parameter values from Table 2 and the assumed initial data. The model (2.4) is 

solved numerically using MATLAB ODE45 solver. In Figure 2, an increase in the progression rate of the 

asymptomatic individuals to the symptomatic class experienced an increase in the population of the 

symptomatic individuals. In Figures 3 and 4 (as expected), an increase in the treatment rate of the 

asymptomatic and symptomatic individuals led to a decrease in the number of infected (both 

asymptomatic and symptomatic) individuals in the population. This suggests that if treatment of infected 

(both asymptomatic and symptomatic) individuals is deployed early enough, it will lead to the timely 

eradication of the disease in the population. 
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Table 2. The parameter values of the model (2.4) per year. 

Parameter Nominal value Reference 

1  0.03 Osman et al. (2020) 

2  0.004 Parshotama (2011) 

h  0.002 Osman et al. (2020) 

v  0.005 Osman et al. (2020) 

h  0.0001 Osman et al. (2020) 

v  0.0002 Parshotama (2011) 

  0.20 Assumed 
  0.6 Assumed 

  0.3 Assumed 

1  0.4 Assumed 

2  0.7 Assumed 

h  0.001 Osman et al. (2020) 

v  0.003 Osman et al. (2020) 

3  0.05 Parshotama (2011) 

h  0.004 Osman et al. (2020) 

v  0.007 Parshotama (2011) 

  0.5 Assumed 
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Figure 2. Simulation of model (2.4) showing the population of exposed, asymptomatic, symptomatic and 

recovered individuals. Here, the progression rate from the asymptomatic to symptomatic class   is varied 

from 0.20 to 0.80. 
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Figure 3. Simulation of model (2.4) showing the population of exposed, asymptomatic, symptomatic and 

recovered individuals. Here, the treatment rate of the asymptomatic individuals, 1  is varied from 0.20 to 

0.80. 
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Figure 4. Simulation of model (2.4) showing the population of exposed, asymptomatic, symptomatic and 

recovered individuals. Here, the treatment rate of the symptomatic individuals, 2  is varied from 0.20 to 

0.80. 

5 Conclusion 

In order to better understand the dynamics of Campylobacteriosis infection transmission in a population, 

this study offers a novel deterministic mathematical model with treatment as a control strategy. It is shown 

that for model (2.4), if the corresponding reproduction number is less than unity, the disease-free 

equilibrium (DFE) is locally asymptotically stable. The disease-free equilibrium was discovered to be 

globally asymptotically stable whenever the corresponding reproduction number is less than unity using 

the comparison theorem. The numerical simulation results show that a decrease in the population of 

asymptomatic individuals and an increase in the population of recovered individuals occurred when the 

treatment rate for both symptomatic and asymptomatic disease-infected individuals was increased. 

Few mathematical models have been developed to date to investigate the dynamics of campylobacteriosis 

transmission as well as its prevention and control. Therefore, additional investigation of the 
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Campylobacteriosis model in this work is required to determine model parameters related to the 

reproduction number that are essential to containing the disease's spread. In light of this, we suggest further 

analysis our model as follows: 

(i) Sensitivity analysis of the model parameters associated with the reproduction number be 

carried out. 

(ii) Further theoretical results, such as the type of bifurcation the model (2.4) can exhibit should 

be explored. 
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