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Abstract 

Lassa fever, a viral infection transmitted by rodents, has emerged as a significant global health 

concern in recent times. It continues to garner significant attention daily basis owing to its rapid 

transmission and deadly nature. In this study, the Homotopy Perturbation Analysis was conducted to 

examine the spread and control of Lassa fever. The human population was categorized into 

susceptible, exposed, infected, and recovered compartments, while the rodent population was divided 

into susceptible and infected recovered compartments. By applying the Homotopy Perturbation 

Analysis to the nonlinear differential equations associated with these compartments, we were able to 

obtain the analytical solution for the spread and control of Lassa fever. The nonlinear differential 

equations were integrated into the Homotopy Perturbation framework and solved to form a power 

series solution. Finally, the final approximate solutions were obtained and simulation results were 

generated from the general solution graphically. 

Keywords — Homotopy Perturbation Method, Lassa fever, Nonlinear Differential Equations 

1.  INTRODUCTION 

In light of their rapid transmission and the severity of diseases such as HIV/AIDS, measles, 

tuberculosis, cholera, diarrhea, COVID-19, and Lassa fever Lassa fever infection continues to 

receive a lot of attention daily (Olumuyiwa et al., 2020; Agbata et al., 2021). Lassa Fever is a 

zoonotic illness characterized by acute hemorrhagic symptoms, which is caused by the Lassa virus. 

This virus is primarily transmitted from animals to humans, with the Mastomys natalensis serving as 

its reservoir host. (Rodent) (Akinpelu and Akinwande, 2019; Anorue and Okeke, 2020). According to 

reports, one in every five infections leads to a severe case of the disease, wherein the virus impacts 

crucial organs like the liver, spleen, and kidneys (WHO, 2017). The virus can be transmitted to 

individuals by coming into contact with household items, food, water, or air that has been 

contaminated by the droppings or urine of infected multimammate rats (Mastomyces natalensis). 

Additionally, direct contact with infected rats or exposure to the virus blood, tissue, secretions, or 

excretions of a person with Lassa virus can lead to person–person transmission. Contaminated 

medical equipment, like reused needles, also poses a risk of transmission (CDC, 2019; Collins and 

Okeke, 2021; Anorue and Okeke, 2020;  Bakare et al., 2020). 

The period of incubation for Lassa fever can vary between 6 to 21 days. The initial symptoms 

typically include fever, weakness, and malaise, followed by headache, sore throat, muscle pain, chest 

pain, nausea, vomiting, diarrhoea, cough, and abdominal pain. In severe cases, patients may 

experience facial swelling, fluid accumulation in the lungs, bleeding from various parts of the body, 

low blood pressure, presence of protein in the urine, shock, seizures, tremors, disorientation, and 

even coma in advanced stages (Sulaiman and Ibrahim, 2018; WHO, 2017). Fatal cases typically 

result in death within 14 days of onset. The disease becomes particularly severe in the late stages of 

pregnancy, with over 80% of cases experiencing maternal death and/or fetal loss during the third 

trimester (Sulaiman and Ibrahim, 2018; WHO, 2017). 
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Ribavirin appears to be an effective antiviral drug for treating for Lassa fever virus during the initial 

stages of the illness (WHO, 2017). In the event of a Lassa fever outbreak within a community, swift 

isolation of infected individuals, proper infection prevention and control measures, and thorough 

contact tracing are essential to halt the spread of the disease. It is crucial to promote “community 

hygiene” practices that deter rodents, such as securing food in rodents-proof containers, disposing of 

garbage away from homes, and maintaining clean living spaces. Additionally, family members 

should take precautions to avoid contact with blood and bodily fluids when caring take precautions 

to avoid contact and bodily fluids when caring for sick individuals, while healthcare and laboratory 

workers must adhere to strict infection control protocols to minimize the risk of exposure to 

contaminated materials (WHO, 2017; CDC, 2019; Adebayo et al., 2015). 

Dr. Ji Huan He, a Chinese researcher, introduced Homotopy Perturbation Method (HPM) in 1998 to 

solve both linear and nonlinear differential and integral equations. This method, which involves a 

series expansion, is particularly useful in tacking non-linear partial differential equations Jiya (2010). 

The HPM method utilizes a power series to convert the original non-linear differential equation into 

a series of linear differential equations Padma et al. (2021). This method combines the traditional 

perturbation and the homotopy method Anorue and Okeke (2020), providing a direct approach to 

obtaining analytical or approximatively solutions for a wide range of problems in various domains, 

by integrating topological homotopy with traditional perturbation techniques Otoo et al, this 

approach has proven successful in solving linear and nonlinear functional equations, yielding exact 

solutions and ensuring accurate quantitative predictions using the Homotopy Perturbation technique 

(HPM) Mechee and Al-Juaifri (2018). The accuracy of the Homotopy Perturbation Method (HPM) 

has led to its application in epidemic modeling. 

2. Literature Review 

In the study conducted by Mechee and Al-Juaifri (2018), they suggested utilizing the Homotopy 

Perturbation method approach for the SIR model with vital dynamics and constant population. The 

application of this approach yielded an effective and highly precise approximate solution. Padma et 

al. (2021) also employed the Homotopy Perturbation Method to solve the SIR infectious disease 

model by integrating vaccination. The (HPM) was utilized to derive an approximate solution for each 

compartment of the model. The resulting approximate solution was then utilized to visually represent 

the model, providing a better comprehension of the dynamics of the infectious disease. Furthermore, 

Ayoade et al. (2020) introduced Homotopy Perturbation Method to a SIR mumps model and the 

theoretical outcomes validated the effectiveness and suitability of HPM in solving epidemic models. 

Ojo et al. (2021) developed a deterministic model using systems of ordinary differential equations to 

investigate the transmission dynamic of Lassa fever in the population. The population was divided 

into human and rodent compartments. Their findings suggest that implementing control strategies 

and methods aimed at reducing rodent populations and minimizing transmission from rodents to 

humans would contribute to the effective management of Lassa fever in the population. In a separate 

study, Padma et al. (2021) utilized the modified Homotopy perturbation method to solve and analyze 

the transmission of the SIR model of this disease. The derived analytical expression of the population 

of the susceptible group S(t), the infected group I(t), and the recovered group R(t) at all-time values. 

The Homotopy Perturbation Method was then applied to the nonlinear differential equations 

representing the different compartments. By incorporating the nonlinear differential equations into 

Homotopy Perturbation constructor, they obtained the analytical solution for the transmission 

dynamics of Lassa fever in the form of a power series.  Peter and Awoniran (2018) utilized the 

modified Homotopy perturbation method to solve and examine the transmission of the SIR model of 
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the particular disease. The analytical expression for the population of the susceptible group S(t), the 

infected group I(t), and the recovered group R(t) is derived for all time. Hence, this study aims to 

employ the Homotopy Perturbation Method to deduce the analytical solution of the spread and 

control of Lassa fever. The study also addresses the impact of different parameters, we conducted 

numerical simulation using MAPLE 17 and compared the results with our analytical findings. In this, 

article, we employ the homotopy perturbation analysis to investigate the spread and control of Lassa 

fever. 

2.1. Basic Ideas of Homotopy Perturbation Method 

The fundamental concept of HPM is demonstrated in this section.  

Consider (1) that provides the differential equation 

, 

( ) ( ) 0,A U f r− = r                    (1)

  

subject to the boundary condition (2). 

, 0
U

B U
n

 
= 

 
,   r                    (2) 

A is a general differential operator, B is a boundary operator, ( )rf  is a known analytical function 

and Γ represents the boundary of the domain Ω. The operator A can be split into linear (L) and 

nonlinear (N) components. Hence, equation (1) can be expressed as (3). 

( ) ( ) ( ) 0L U N U f r+ − =                    (3) 

An artificial parameter p can be embedded in (3) as (4). 

( ) ( ) ( ) 0L U p U f r+ − =                    (4) 

Where [0,1]P  is an embedding parameter (also called as an artificial parameter) 

Using the homotopy technique, proposed by He (1999), we construct a homotopy;  

: ( , ) : [0,1]H v r p R →  which satisfies (5) 

( ) ( ) ( ) ( ) ( ) ( )0,P 1 0H V P L V L U P A V f r= − − + − =                       (5) 

And (6) 

( ) ( ) ( ) ( ) ( ) ( )0 0,P 0H V L V L U PL U p N V f r= − + + − =                   (6) 

At 0p =  

0(v,0) (v) (u ) 0H L L= − =                    (7) 
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And  at 1p =  

(v,1) (u) (u) (r) 0H L N f= + − =                  (8) 

The transition process of p  from zero to unity is just that of ( ),  v r p from ( )0u r to ( )u r . In 

topology, this is referred to as deformation 0(v) (u )L L− and (u) (u) (r)L N f+ − is called homotopic. 

Following the HPM, we can introduce the embedding parameter p as a small parameter and express 

that the solutions of equations (7) and (8)can be written as a power series p as indicated in  (9) 

2
0 1 2 ...V V pV p V= + + +                    (9) 

The results in the approximate solution of equation (1) may then also be obtained as (10) 

2
0 1 2lim ...

1

U v v pv p v

p

= = + + +

→
                 (10) 

Which is the convergence series solution 

3. Methodology 

3.1 Disease Model  

The nonlinear differential equations system is derived from the compartments model and 

incorporated in the Homotopy Perturbation Method. Subsequently, the equations were resolved to 

obtain analytical solutions for individual compartments. The spread of Lassa fever involves the 

interplay between human populations and rodent populations Usman and Adamu, (2018). 

In this study, a six-compartmental model for the spread and control of Lassa fever is constructed 

using ordinary differential equations. The total human population at time t denoted by N is divided 

into four compartments namely; susceptible ( )hS t , exposed ( )hE t , infectious ( )hI t , and recovered 

( )hR t . Thus, the total human population ( )hN t is given as: 

( )hN t = ( )hS t + ( )hE t + ( )hI t + ( )hR t                    

(11) 

Again, the total rodent population at a time t denoted by ( )rN t which is divided into two 

compartments, namely: susceptible rodents ( )rS t and infectious rodents ( )rI t . Thus, the total rodent 

population ( )rN t is given as: 

( )rN t = ( )rS t + ( )rR t                  (12) 

3.2 Formulation of the Model 

1)Susceptible Human ( hS ) 

This indicates the individuals within the entire human population that are susceptible to the 

disease. The population of susceptible humans hS is populated by immigration or birth at a rate 

h , and from recovered individuals due to their loss of immunity at the rate h hR . The 
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susceptible human population is depopulated by infection following effective contact with 

infected individuals at the rates. The parameter h  represents the effective transmission 

probability of humans, which could be through direct contact with contaminated food by the 

urine or excretes of an infectious infected rodent, or laboratory transmissions that is sharing of 

medical equipment with infectious individuals without adequate sterilization Mayowa and Emile, 

(2022).We assume that all susceptible humans are further reduced by natural death at rate h .  

2) Exposed Human ( hE ) 

The Exposed humans are those that carry the bacteria but are not capable of infecting susceptible 

humans. The exposed human population is proven from an infection occurring from the 

susceptible population. This populace is reduced by natural death h   and the disease progression 

to the infectious population at the rate  h . It is imperative to note that, exposed humans are 

infected with the Lassa fever virus but are not showing symptoms yet. Following the disease 

incubation period which is between 6 − 21 days (Sulaiman and Ibrahim, 2018; WHO, 2017). 

Such individuals progress to infectious population. This is the stage whereby they start showing 

symptoms of the disease.  

3) Infected Human ( hI ) 

An infected human is any individual who has the pathogen and shows symptoms of the disease. 

The infectious human compartment is generated as a result of the rate from the exposed human 

population. The population is reduced by the recovery rate due to treatment at rate h  and 

disease-induced death (death caused by Lassa fever) at the rate h  and natural death at the rate 

h . 

4) Recovered Human ( hR ) 

Following early treatment of individuals and diagnosed of Lassa fever disease, such individuals 

recover and progress to increase the recovered human population. However, since recovered 

individuals can be re-infected of the disease Mayowa and Emile, (2022) the recovered human 

populace is reduced by loss of immunity at rate h and natural death at the rate h .  

     5)Susceptible Rodent ( rS ) 

Susceptible rodents’ population is established by the birth of rodents at a certain rate r .This group is 

reduced by natural death at a specific rate r , and is additionally decreased after being infected 

with Lassa virus from coming into contact with an infectious human or rodent at the rate. The 

parameters r  represents the effective transmission probability from human-to rodent and the 

effective transmission probability from rodent-to-rodent.  

5) Infected Rodent ( rI ) 

The infectious rodent population is derived from infection occurring from the susceptible rodent 

population, while depopulated by natural death of rodents at rate r .  
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3.3 Nonlinear Equations of the Model  

The nonlinear system of differential equations is obtained by merging the equations for the various 

compartments. 

 

( )

( )

( )

0

0

0

0

0

0

h
h h h h h h h

h
h h h h h

h
h h h h h h

h
h h h h h

r
r r r r r

r
r r r r

dS
R S S

dt

dE
S E

dt

dI
E I

dt

dR
I R

dt

dS
S S

dt

dI
S S

dt

  

 

   

  

 




= + − − = 


= − + =


= − + + =


= − + =


= − − =



= − = 


        

                          (13) 

Where, 

 h  Recruitment rate of humans through birth or immigration 

h  Immunity waning rate of humans 

h  Disease progression rate from exposed to infectious human 

h  Recovery rate of infectious humans 

h  Natural death rate of humans 

h  Disease induced death rate for humans 

h  Transmission probability from human-to-human and human-to-rodents 

r   Transmission probability from human-to-rodent and rodent-to-rodent 

r  Recruitment rate of rodents through birth 

r  Natural death rate of rodents 

          

Let the initial conditions or approximate are as follows;  

(0) ,E (0) , I (0) ,R (0) r , (0) , I (0)h o h o h o h o r o r oS s e i S k r= = = = = =            (14) 

3.4 Assumptions of Homotopy Perturbation Method  

To ascertain the analytical solution of the model, the embedding parameter " p " from (5) is utilized 

as a small parameter based on the Homotopy perturbation approach. It assumed that the solution of 

the equations can be represented as a power series in the form of (15) 
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2
0 1 2 ...V V pV p V= + + +                   (15)

  

Setting 1p = results in the approximate solution of equation (15) 

2
0 1 2lim ...

1

U v v pv p v

p

= = + + +

→
                (16)

  

This method retains all the advantages of the traditional perturbation method while removing its 

limitations. 

3.5 Application of the Homotopy Perturbation Method to the Compartmental Disease Model 

Equations 

 The Homotopy Perturbation Method is utilized to equations (13) by employing Homotopy 

constructor equation in order to obtain an approximate solution, 

( ) ( ) ( ) ( ) ( ) ( ) ( )0,    1            0H v p p L v L v p L v N v f r      = − − + + − =          (17) 

In order to initiate the process of deriving the analytical or approximate solution of the model, we 

employ Homotopy Perturbation assumption stated in (9) as per the assumption; 

( ) 2

0 1 2 ...hS t S pS p S= + + +                 (18)

  

( ) 2

0 1 2 ...hE t E pE p E= + + +                 (19) 

( ) 2

0 1 2 ...hI t I pI p I= + + +                 (20) 

( ) 2

0 1 2 ...hR t R pR p R= + + +                 (21) 

( ) 2

0 1 2 ...rS t K pK K S= + + +                 (22) 

( ) 2

0 1 2 ...rI t F FI F I= + + +                 (23) 

With the initial conditions given by 

(0) 0,E (0) 0, I (0) 0,R (0), (0) 0, I (0) 0 1,2,3,......hi hi hi hi ri ri iS S= = = = =  =  

Next, nonlinear differential (13) are substituted one after the other into the homotopy constructor in 

(17); 

Firstly, substituting the first equation (13) into (17) gives 

( )1 0h h h h h h h

dS dS
p p R S S

dt dt
  

 
− + + + − − = 

 
             (24) 
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0h h h h h h h

dS dS dS
p p p p R p S p S

dt dt dt
  − + + + − − =                 (25)

                           

0h h h h h h h

dS
p p R p S p S

dt
  + + − − =                (26) 

Again, substituting (18) and (21) into (26) 

( ) ( ) ( )

( )

2 2 2

0 1 2 0 1 2 0 1 2

2

0 1 2

... ... ...

...

h h h

h

d
S pS p S p R pR p R p S pS p S

dt

p S pS p S

 



+ + + + + + + + − + + +

− + + +

              

                        

(27) 

Then again, grouping the coefficient powers of p in (27) 

0 : 0
ds

p
dt

=                                     (28) 

1 1
0 0 0: 0h h h h

ds
p R S S

dt
  + + − − =                   (29) 

2 2
1 1 1: 0h h h

ds
p R S S

dt
 + − − =                   (30) 

Also, by substituting second equation (13) into (17) 

( ) ( )1 0h h h h h

dE
p p S E

dt
 − + − + =                 (31) 

( ) 0h h h h h

dE dE dE
p p p S p E

dt dt dt
 − + + − + =              (32) 

( ) 0h h h h h

dE
p S p E

dt
 + − + =                (33) 

Again, substituting (18) and (19) into (33) 

( ) ( )

( ) ( )

2 2

0 1 2 0 1 2

2

0 1 2

... ...

... 0

h

h h

d
E pE p E p S pS p S

dt

p E pE p E 

+ + + + + + +

− + + + + =

            (34) 

Then again, grouping the coefficient powers of p in (34) 

0 0: 0
dE

p
dt

=                   (35) 
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( )1 1
0 0: h h h

dE
p S E

dt
 + − +                  (36) 

( )2 2
1 1: h h h

dE
p S E

dt
 + − +                 (37) 

Also, by substituting third equation (13) into (17) 

( ) 0h
h h h h h h

dI
E I

dt
   = − + + =                 (38) 

( ) ( )( )1 0h h h h h h

dI
p p E I

dt
   − + − + + =                (39) 

( ) ( ) 0h h h h h h

dI dI dI
p p P E p I

dt dt dt
   − + + − + + =                (40) 

( ) ( ) 0h h h h h h

dI
P E p I

dt
   + − + + =               (41) 

Again, substituting (19) and (20) into (41) 

( ) ( ) ( )( )2 2 2

0 1 2 0 1 2 0 1 2... ... ...h h h h

d
I pI p I p E pE p E p I pI p I

dt
   + + + + + + + − + + + + +  

                  

                   (42) 

Then again, grouping the coefficient powers of pin (42) 

0 0: 0
dI

p
dt

=                     (43) 

 ( )1 1
0 0: h h h h

dI
p E I

dt
   + − + +                  (44) 

( )2 2
1 1: h h h h

dI
p E I

dt
   + − + +                  (45) 

Also, by substituting the fourth equation (13) into (17) 

( ) ( )1 0h h h h h

dR
p p I R

dt
  − + − + =                  (46) 

( )h h h h h

dR dR dR
p p p I p R

dt dt dt
  − + + − +               (47) 

( )h h h h h

dR
p I p R

dt
  + − +                   (48) 

Again, substituting (20) and (21) into (48) 
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( ) ( ) ( )( )2 2 2

0 1 2 0 1 2 0 1 2... ... ...h h h

d
R pR p R p I pI p I p R pR p R

dt
  + + + + + + + − + + + +   

                      (49) 

Then again, grouping the coefficient powers of p in equation (49) 

0 0: 0
dR

p
dt

=                       (50) 

( )1 1
0 0: 0h h h

dR
p I R

dt
  + − + =                  (51) 

( )2 2
1 1: 0h h h

dR
p I R

dt
  + − + =                    (52) 

Also, by substituting fifth equation (13) into (17) 

( )1 0r r r r r

dS dS
p p S S

dt dt
 

 
− + + − − = 

 
              (53)

  

0r r r r r

dS dS dS
p p p p S p S

dt dt dt
 − + + − − =               (54)

  

0r r r r r

dS
p p S p S

dt
 + − − =                (55)

  

Again, substituting (22) into (55) 

( ) ( )

( )

2 2

0 1 2 0 1 2

2

0 1 2

... ...

...

r r

h

d
K pK p K p p K pK p K

dt

p K pK p K





+ + + + − + + +

− + + +

           (56)

  

Then again, grouping the coefficient powers of p in equation (3.292)  

0 : 0
dK

p
dt

=                   (57)

      

1 1
0: ( ) 0r r r

dK
p K

dt
 + − − =                (58)
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2 2
1: ( ) 0r r r

dK
p K

dt
 + − − =                (59) 

Also, by substituting sixth equation (13) into (17) 

( )  1 0r r r r

dI
p p S I

dt
− + − =               (60)

  

0r r r r

dI dI dI
p p p S p I

dt dt dt
− + + − =              (61)

  

0r r r r

dI
p S p I

dt
+ − =                (62) 

Again, substituting (22) and (23) into (62) 

( ) ( )

( )

2 2

0 1 2 0 1 2

2

0 1 2

... ...

... 0

r

r

d
F pF p F p K pK p K

dt

p K pK p K

+ + + + + + +

− + + + =

      

                 (63) 

Then again, grouping the coefficient powers of p in equation (63)  

0 0: 0
dF

p
dt

=                  (64)

  

1 1
0 0: r r

dF
p K F

dt
+ −                  (65) 

2 2
1 1: r r

dF
p K F

dt
+ −                  (66)

  

 

Firstly, the equations obtained by combining the coefficient powers of p  are integrated with respect 

to time t . The equation related with powers 
op  " are integrated first and from the initial conditions 

of homotopy perturbation; 

Thus, integrating equation (28) that is 0
dS

dt
=                

(67) 

0( )hoS t s=                   (68) 
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Integrating equation (35) that is 0
dE

dt
=               (69) 

0( )hoE t e=                   (70) 

Integrating equation (43) that is 0
dI

dt
=                

(71) 

0( )hoI t l=                   (72) 

Integrating equation (50) that is 0
dR

dt
=            (73) 

0( )hoR t r=                   (74) 

Integrating equation (57) that is 0
ds

dt
=               

(75) 

0( )roS t k=                   (76) 

Integrating equation (64) that is 0
dI

dt
=               (77) 

0( )roI t f=                   (78) 

The procedure is continued by integrating the equations associated with powers 
1s with respect to 

time t ; Thus, integrating (29) that is 

1
0 0 0h h h h

ds
R S S

dt
  = + − −                   (79) 

 1 0 0 0h h h hds R S S dt  = + − −                 (80) 

Substituting (68) and (74) into (80) 

 1 0 0 0h h h hds r s s dt  = + − −                (81) 

 1 0 0 0h h h hs r s s dt  = + − −                   (82) 

 1 0 0 0( ) h h h hs t r s s t c  = + − − +                 (83) 

At ( ) 0;S(0) 0;t = =  c 0=  

( )1 0 0 0( ) h h h hs t r s s t  = + − −                 (84) 
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Integrating (36) 

( )1
0 0h h h

dE
S E

dt
 = − +                   (85) 

( )( )1 0 0h h hdE S E dt = − +                (86) 

Substituting (68) and (70) into (86) 

( )( )1 0 0h h hE s e dt = − +                 (87)  

( )( )1 0 0( ) h h hE t s e t c = − + +                          (88) 

At 10; (0) 0; 0t E c= = =  

( )( )1 0 0( ) h h hE t s e t = − +                          (89) 

Integrating (43) 

( )1
0 0h h h h

dI
E I

dt
   = − + +                (90) 

( )( )1 0 0h h h hdI E I dt   = − + +                    (91) 

Substituting (70) and (72) into (91) 

( )( )1 0 0h h h hI e l dt   = − + +                (92) 

( )( )1 0 0( ) h h h hI t e l t c   = − + + +                     (93) 

10;I (0) 0; 0t c= = =  

( )( )1 0 0( ) h h h hI t e l t   = − + +                   (94) 

Integrating (51) 

( )1
0 0h h h

dR
I R

dt
  = − +                 (95) 

( )( )1 0 0h h hdR I R dt  = − +                 (96) 

Substituting (72) and (74) into (96) 

( )( )1 0 0h h hR l r dt  = − +                  (97) 

( )( )1 0 0( ) h h hR t l r t c  = − + +                 (98) 

10;R (0) 0; 0t c= = =  
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( )( )1 0 0( ) h h hR t l r t  = − +                 (99)  

Integrating (58) that is 

1
0 0r r r

dk
K K

dt
 = − −                             (100) 

 1 0 0r r rdk K K dt = − −               (101) 

Substituting (76) into (101) 

 1 0 0r r rk k k dt = − −               (102) 

 1 0 0( ) r r rk t k k t c = − − +               (103) 

At 1( ) 0;K (0) 0;t = =  c 0=  

( )1 0 0( ) r r rk t k k t = − −               (104) 

Integrating (78) 

1
0 0r r

df
K f

dt
= −                (105) 

( )1 0 0r rdf K F dt= −               (106) 

Substituting (76) and (78) into (106) 

( )1 0 0r rF k f dt= −                (107) 

( )1 0 0( ) r rF t k f t c= − +               (108) 

At 10;F (0) 0; 0t c= = =  

( )1 0 0( ) r rF t k f t= −                (109) 

Lastly, the coefficients with power 
2p  are also integrated with respect to t .  

Integrating (30) 

2
1 1 1 1 0h h

ds
R S S

dt
 + − − =               (110) 

2
1 1 1 1h h

ds
R S S

dt
 = − + +               (111) 

Substituting 1 1( );S (t)R t  into (111) 
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( )( ) ( ) ( )2 0 0 0 0 0 0 0 0 h h h h h h h h h h h h h hds l r t r s s t r s s t          = − − + + + − − + + − −  

                 (112) 

( )( ) ( ) ( )( )2 0 0 0 0 0 0 0 0 h h h h h h h h h h h h h hds l r r s s r s s tdt          = − − + + + − − + + − −  

                 (113) 

( )( ) ( ) ( )( )2

2 0 0 0 0 0 0 0 0 
1

2
h h h h h h h h h h h h h hds t l r r s s r s s c          = − − + + + − − + + − − +             

                 (114) 

At; ( )2  0,  0   0;    0t S c= = =  

( )( ) ( ) ( )( )2

2 0 0 0 0 0 0 0 0

1

2
 h h h h h h h h h h h h h hds t l r r s s r s s          = − − + + + − − + + − −    

                 (115) 

From (37); 

( )2
1 1h h h

dE
S E

dt
 = − + +               (116) 

Substituting 1( )E t and 1( )S t  into (116) 

( ) ( ) ( )( )2
0 0 0 0 0h h h h h h h h h h

dE
r s s t s e t

dt
      = − + − − − + − +         (117) 

( ) ( ) ( )( )2
0 0 0 0 0h h h h h h h h h h

dE
r s s t s e tdt

dt
       = − + − − − + − +          (118) 

( ) ( ) ( )( )22
0 0 0 0 0

1

2
h h h h h h h h h h

dE
t r s s t s e c

dt
       = − − + − − − + − + +         (119) 

At; 20; (0) 0;C 0t E= = =  

( ) ( ) ( )( )22
0 0 0 0 0

1

2
h h h h h h h h h h

dE
t r s s t s e

dt
       = − − + − − − + − +                   (120) 

From (45)  

( )2
1 1h h h h

dI
E I

dt
   = − + + +                 (121) 

Substituting 1( )I t and 1( )E t  into (121) 

( )( ) ( ) ( )( )2
0 0 0 0h h h h h h h h h h h

dI
s s t e l t

dt
         = − − + + + + − + +         (122) 

( )( ) ( ) ( )( )2 0 0 0 0h h h h h h h h h h hdI s s e l t tdt          = − − + + + + − + +                      (123) 
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( )( ) ( ) ( )( )2

2 0 0 0 0

1
( )

2
h h h h h h h h h h hI t t s s e l C          = − − + + + + − + + +         (124) 

At; 20;I (0) 0; 0t C= = =  

( )( ) ( ) ( )( )2

2 0 0 0 0

1
( )

2
h h h h h h h h h h hI t t s s e l          = − − + + + + − + +         (125) 

From equation (52); 

( )2
1 1h h h

dR
I R

dt
  = − + +                (126) 

Substituting 1( )I t and 1( )R t  into (126) 

( )( ) ( ) ( )( )2
0 0 0 0h h h h h h h h h h

dR
e l t l r t

dt
         = − − + + + + − +         (127) 

( )( )( ) ( ) ( )( )2 0 0 0 0h h h h h h h h h hdR e l l r tdt          = − − + + + + − +
          (128) 

( )( )( ) ( ) ( )( )2 0 0 0 0

1

2
h h h h h h h h h hR e l l r C         = − − + + + + − + +         (129) 

At; 20;R (0) 0; 0t C= = =  

( )( )( ) ( ) ( )( )2 0 0 0 0

1

2
h h h h h h h h h hR e l l r         = − − + + + + − +         (130) 

From equation (59); 

2
1 1 0r r r

dk
K K

dt
 + − − =               (131) 

Substituting  1( )K t  into equation (131) 

( ) ( )2 0 0 0 0r r r r r h r r rdk k k t k k t     = − + − − + − −           (132) 

( ) ( )2 0 0 0 0r r r r r h r r rdk k k k k tdt     = − + − − + − −             (133) 

( ) ( )2

2 0 0 0 0

1

2
r r r r r h r r rdk t k k k k c     = − + − − + − − +            (134) 

At; ( )2  0,  k 0   0;    0t c= = =  

( ) ( )2

2 0 0 0 0

1

2
r r r r r h r r rdk t k k k k     = − + − − + − −            (135) 

From equation (66); 
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2
1 1r

dF
K F

dt
+ −                (136) 

Substituting 1( )F t and 1( )K t  into equation (136) 

( ) ( )2
0 0 0 0r r r r r r r

dF
k k t k f t

dt
   = − − − + −            (137) 

( ) ( )( )2 0 0 0 0r r r r r r rdF k k k f tdt   = − − − + −            (138) 

( ) ( )( )2

2 0 0 0 0

1

2
r r r r r r rdF t k k k f c   = − − − + − +           (139) 

At; 20;F (0) 0;C 0t = = =  

( ) ( )( )2

2 0 0 0 0

1

2
r r r r r r rdF t k k k f   = − − − + −            (140) 

From (18) to (23), the approximate solution at 1P = is written as; 

( ) 0 1 2( ) ( ) ...hS t S S t S t= + + +               (141) 

( ) 0 1 2( ) ( ) ( ) ...hE t E t E t E t= + + +              (142) 

( ) 0 1 2( ) ( ) ( ) ...hI t I t I t I t= + + +                (143) 

( ) 0 1 2( ) ( ) ( ) ...hR t R t R t R t= + + +                (144) 

( ) 0 1 2( ) ( ) (t) ...rS t K t K t K= + + +              (145) 

( ) ( ) ( ) ( )0 1 2 ...rI t F t F t F t= + + +              (146) 

Hence, the final approximate solutions of (141) to (146) are obtained as follows; 

( ) ( ) ( )( ) ( ) ( )( ) 2

0 0 0 0 0 0 0 0 0 0 0 0 
1

2
h h h h h h h h h h h h h h h h h h hS t s r s s t l r r s s r s s t             = + + − − − − + + + − − + + − −  

                 (147) 

( ) ( )( ) ( ) ( ) ( )( ) 2

0 0 0 0 0 0 0 0

1

2
h h h h h h h h h h h h h hE t e s s t r s s t s e t         = + − + − + − − − + − +   

                 (148) 

( ) ( )( ) ( )( ) ( ) ( )( ) 2

0 0 0 0 0 0 0

1

2
h h h h h h h h h h h h h h h hI t l e l t s s e l t              = + − + + − − + + + + − + + 

                  

(149) 
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( ) ( )( ) ( )( )( ) ( ) ( )( ) 2

0 0 0 0 0 0 0

1

2
h h h h h h h h h h h h h hR t r l r t e l l r t            = + − + − − + + + + − +  

                 (150) 

( ) ( ) ( ) ( ) 2

0 0 0 0 0 0 0

1

2
r r r r r r r r r h r r rS t k k k t k k k k t       = + − − − + − − + − −         (151) 

( ) ( ) ( ) ( )( ) 2

0 0 0 0 0 0 0

1

2
r r r r r r r r r rI t f k f t k k k f t    = + − − − − + −         (152) 

 

Therefore, equations (147) through (152) represent the analytical solution for the different 

compartments. These equations are structured as a series of solutions, each representing specific 

compartments considered analyzed in the study. By simulating various parameters values based on 

these equations, one can ascertain their impact on the population being studied. 

4. Results and Discussion 

This section shows, the parameter values, graphs generated from the general solution (147) to (152) 

and discussion of the results.   

 Table 1. Parameter values for the series solutions Variables/ Parameters 

Parameters       Value                      Reference   

h   1.20   (Peter et al., 2020a) 

h   Assumed     

h   0.00385   (Peter et al., 2020a)  

h   Assumed    

h   0.003465  (Lakshmikantham et al., 1989 

h   0.00019231  (White et al., 1996)    

h   0.025   (Abdulraheem, 2002)   

r    0.0182   (Peter et al., 2020a)      

r   0.00001    (Abdulraheem, 2002)      

r   0.0038   (Lakshmikantham et al., 1989) 

(0)hS   100   (Peter et al., 2020b) 

(0)hE   20   (Peter et al., 2020b) 

(0)hI   10   (Peter et al., 2020b) 

(0)hR   5   (Peter et al., 2020b) 

(0)rS   1000   (Peter et al., 2020b) 

(0)rI   20   (Peter et al., 2020b) 
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4.1 Results 

This section shows graphs generated from the general solution of our equation (147) to (152) using 

MAPLE. 

 

 

 

 

 

 

 

 

 

Fig. 1: Simulations of result show the relationship between the Exposed Human Compartment and 

time (t) for various values of 0.025h = , 0.045h =  and 0.065h = . 
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Fig. 2: Presents a graphical representation of the Exposed Human Compartment over time (t) for 

various values of 0.00385h = , 0.00585h =  and 0.00785h = . 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Represents the graph of the Infected Human Compartment over time (t) for various values of 

0.00385h = , 0.00585h =  and 0.00785h = . 
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Fig. 4 Displays the graph of the Infected Human Compartment over time (t) for various values of 

0.05h = , 0.07h = and 0.09h = . 

 

 

 

 

 

 

 

 

Fig. 5: Present the graph illustrating the Infected Human Compartment against time (t) for varying 

values of 0.05h = , 0.07h = and 0.09h = . 
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Fig. 6: Illustrates the graph of the Infected Rodent Compartment over time (t) for various values of 

0.0182r = , 0.0382r = and 0.0582r = . 

4.2 Discussion of the Results 

Figure 1. The graph distinctly demonstrates that an increase in h leads to a higher population in the 

exposed human compartment, subsequently reducing the susceptible human class. This reduction is 

attributed to contact, which may occur through direct exposure to contaminated food via urine or 

excretes of an infectious rodent, as well as through laboratory transmissions involving the sharing of 

medical equipment with infected individuals without proper sterilization.  

 Figure 2. The graph conspicuously indicates that with an increase in h , the population of the 

exposed human compartment decreases, subsequently resulting in an increase in the infected human 

compartment due to the progression of the disease within the population. 

Figure 3: The graph clearly indicates a decrease in the infected human compartment with time (t), but 

experiences an increment when increases h . This is a consequence of the disease progressing from 

the human exposed class 

Figure 4. The graph illustrates a reduction in the infected human compartment over time, and it 

further diminishes as the recovery rate increases. This highlights the effectiveness and efficiency of 

the recovery rate. 

Figure 5. The graph illustrates that the number of individuals in the recovered human compartment 

decreases over time. However, it increases as the recovery rate rises, showcasing the effectiveness 

and efficiency of the recovery rate. 

Figure 6.The graph distinctly shows that as r increases, the infected rodent compartment becomes 

populated, leading to a reduction in the susceptible rodent class. This occurs due to the effective 

transmission probability from human to rodent and the effective transmission probability from rodent 

to rodent. 

5. Conclusion  

In this paper, the equations representing the different compartments are transformed into first-order 

non-linear differential equations. The system of non-linear equations is then solved using the 

homotopy perturbation method, the final approximate solutions are derived and the simulation results 

are compared, revealing a satisfactory agreement, 
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