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Abstract 

Measles is an acute viral infectious disease caused by the Measles morbillivirus, a member of the 

paramyxovirus family. The virus is primarily transmitted through direct contact and airborne 

droplets. In this study, a mathematical model was developed to examine the transmission dynamics 

of measles and explore effective control measures. The stability of measles-free equilibrium was 

analyzed, and the results indicate that the equilibrium is locally asymptotically stable when the 

basic reproduction number R0 is less than or equal to unity. Numerical simulations were conducted 

to validate the analytical findings, demonstrating that measles can be eradicated if a sufficiently 

high level of treatment is applied to the infected population. 

Keywords: Basic reproduction number, Measles Equilibria State, Measles, Stability, Transmission 

dynamics 

 

Introduction 

Measles is a highly contagious viral disease that exclusively affects humans and is transmitted 

primarily through direct contact and airborne droplets expelled during coughing, sneezing, or even 

normal breathing. Historically, measles has been regarded as a more formidable threat than 

smallpox (Gastanaduy et al., 2021). The virus predominantly infects the respiratory tract, 

facilitating its rapid spread, especially in settings characterized by high population density and 

inadequate healthcare infrastructure, such as many African and developing countries. In these 

regions, the absence of effective birth control measures often leads to overpopulation, exacerbating 

the risk of widespread outbreaks that can have devastating public health consequences. 

The clinical presentation of measles is distinct and severe. It typically begins with a high fever, 

often reaching or exceeding 40°C, which manifests approximately 10 to 12 days after exposure to 

the virus. This initial phase is followed by symptoms such as a runny nose, persistent cough, 

conjunctivitis, and the appearance of small white spots (Koplik spots) on the mucous membranes 

of the mouth. Subsequently, a characteristic rash emerges, initially appearing on the face and 

subsequently spreading to the hands, feet, and trunk, usually persisting for 5 to 6 days. The 

incubation period for measles ranges from 7 to 18 days, underscoring the challenges in early 

detection and containment of the disease. 

Measles, also known by names such as morbilli, rubeola, red measles, and English measles, has 

been recognized for centuries. The first documented descriptions date back to the 7th century, with 

a more detailed differentiation from smallpox achieved in the 10th century by the Persian physician 

Rhazes, who noted its particularly alarming nature (Peter et al., 2022). Despite the introduction of 
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the measles vaccine, the disease continues to pose a significant public health threat. Historically, 

prior to widespread immunization, measles epidemics were common, particularly among young 

children aged 2 to 3 years, leading to millions of cases and an estimated 2.6 million deaths annually. 

In recent decades, numerous researchers (Adewale et al., 2014; Bauch & Earn, 2014; Fred et al., 

2014; Momoh et al., 2013; Peter et al., 2018; Smith et al., 2016) have developed sophisticated 

mathematical models to study the transmission dynamics of measles. These models have provided 

valuable insights into the impact of various parameters on disease spread and have been 

instrumental in guiding public health interventions. 

The present study builds on this body of work by developing a comprehensive mathematical model 

aimed at elucidating the transmission dynamics of measles within a population. By integrating key 

epidemiological parameters and simulating different intervention scenarios, this model is intended 

to generate actionable information for government bodies and public health professionals. 

Ultimately, the insights gained from this study are expected to inform the development of more 

effective strategies for controlling and preventing measles outbreaks, thereby mitigating the public 

health risks associated with this highly contagious disease. 

Research has demonstrated that measles can be completely prevented through the administration 

of two doses of a safe and effective vaccine. The World Health Organization (WHO) recommends 

that children receive their first dose at their first birthday, aiming for a global vaccination coverage 

of 95% for this initial dose. In 2021, approximately 81% of children received the first dose, while 

only 67% had received the second dose, indicating room for improvement in vaccination efforts. 

To mitigate the risk of measles outbreaks, particularly in developing and underdeveloped countries 

where large populations remain vulnerable, the WHO, in collaboration with national governments, 

the Measles & Rubella Partnership, and other international organizations, has implemented a series 

of preventive measures. These accelerated immunization activities have been highly effective, 

preventing an estimated 56 million deaths between 2000 and 2021, and reducing global measles 

mortality from 761,000 deaths in 2000 to 128,000 deaths in 2021 (WHO, 2023). 

Mathematical modeling has emerged as a powerful tool in the fight against infectious diseases, 

including measles. These models allow researchers to propose, test, and refine theories as well as 

to plan, implement, compare, and evaluate various intervention strategies for detection, prevention, 

treatment, and control. Historical studies on measles epidemiology date back to 1846, when Danish 

physician Peter Panum conducted seminal research during a measles epidemic in the Faroe Islands 

(Berche, 2022). Since then, numerous models have been developed to understand the transmission 

dynamics of measles. 

For example, (Roberts & Tobias, 2000) employed a compartmental SIR (Susceptible-Infectious-

Recovered) model to predict and prevent measles epidemics, considering factors such as population 

size and age structure. These models collectively underscore the importance of vaccination in 

conferring group immunity and protecting susceptible individuals. 

(Momoh et al., 2013) introduced an SEIR (Susceptible-Exposed-Infectious-Recovered) model to 

assess the role of individuals in the latent period and to explore control strategies. Similarly, 

(Sowole et al., 2020) enhanced the SEIR framework by incorporating control measures within the 

susceptible and exposed classes, specifically targeting measles prevalence and control. Recently 

(Alemneh & Belay, 2023) explored how measles spreads by developing an improved 
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compartmental model called SVIRP. This model expands on the traditional SEVIR framework by 

adding a separate category for the pathogen population, allowing them to account for indirect 

transmission routes, such as environmental contamination. Also (Ahmed et al., 2024), (Bag et al., 

2024) and (Peter et al., 2024) studies the transmission dynamics of measles with different 

compartment and their control strategies.  

Historical investigations, such as Peter Panum's work in 1864, revealed that individuals who 

recover from measles typically develop lifelong immunity. However, outbreaks continue to occur 

predominantly in communities with low vaccination coverage. This body of research not only 

highlights the critical role of vaccination in controlling measles but also emphasizes the need for 

continued and enhanced immunization efforts to achieve and maintain the levels of coverage 

necessary to prevent outbreaks. 

Model Formulation 

In this model a population of human in a community is considered. We divide the population into 

five compartments; Susceptible class, 𝑆(𝑡), Vaccinated class,  𝑉(𝑡), Exposed class 𝐸(𝑡), Infected 

class,  𝐼(𝑡), and Recovered class, 𝑅(𝑡). The susceptible human population increase by recruitment 

rate 𝛼. Individuals in the susceptible class receive a vaccination at a rate τ and loss immunity at a 

vaccine wane rate 𝜌, and returns to the susceptible class. The susceptible humans get in contact 

with the release of the infected person at rate 𝛽 to get expose to measles virus. If the individual has 

not received the doses of vaccination, the exposed will be infected by the virus at rate 𝜃 which 

make them move to the infected group. And those that were attended to immediately after being i 

individuals gain immunity to the disease and do not ever get effected again. Natural mortality 

occurs in all the classes at a rate 𝜇 and death due to the disease at rate 𝛿.   

The equations of the model are formulated form of a system of ordinary differential equations of 

the above diagram.  
𝑑𝑆

𝑑𝑡
=  𝛼 − 𝛽𝐼𝑆 − (𝜇 + 𝜏)𝑆 + 𝜌𝑉               (1) 

𝑑𝑉

𝑑𝑡
= τ𝑆 − (𝜌 + 𝜇 + 𝜔)𝑉                           (2) 

𝑑𝐸

𝑑𝑡
= 𝛽𝑆I − (θ + 𝜇)𝐸                 (3) 

𝑑𝐼

𝑑𝑡
= 𝜃𝐸 − (𝜎 + 𝜇 + 𝛿)𝐼                (4) 

𝑑𝑅

𝑑𝑡
= 𝜎𝐼 + 𝜔𝑉 − 𝜇𝑅                 (5) 
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Figure 1: The model flow diagram  

 

Table 1: Table of variables and parameters of the model  

Notation Description of variables and parameters 

S(t) Number of susceptible humans at time t 

V(t) Number of vaccinated humans at time t 

E(t) Number of exposed humans at time t 

I(t)  Number of infectious humans at time t 

R(t) Number of recovered humans at time t 

𝛼 Recruitment rate of human population 

𝛿 Disease induced death 

𝜇 Natural death rate of human population 

𝜃 The rate at which the exposed get infected by the virus 

𝛽 The rate at which susceptible humans get in contact with the release of the infected 

person 

𝜎 The rate at which the infected get treated and moves to the recovered class 

𝜏 Individuals in the susceptible class receives vaccination 

𝜔 The rate of progression of vaccinated individuals to the recovery class 

𝜌 The rate at which individuals’ losses immunity and returns to the susceptible class 

 

𝑁 = 𝑆 + 𝑉 + 𝐸 + 𝐼 + 𝑅                (6) 

By adding equations (1) to (5), we have.  
𝑑𝑁

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝑉

𝑑𝑡
+

𝑑𝐸

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
= α − 𝜇𝑁              (7) 

The basic dynamic features of the model equations (1) to (5) will be explored.  
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Theorem 1  

𝐷 = {(𝑆, 𝑉, 𝐸, 𝐼, 𝑅)𝜖ℜ+
5 : 𝑆 + 𝑉 + 𝐸 + 𝐼 + 𝑅 ≤ 𝑁}             (8) 

Is positively invariant and attracting with respect to the basic model equations (1) to (5) 

Proof: 

From equations (6) and (7) 

 
𝑑𝑁

𝑑𝑡
≤ α − 𝜇𝑁                   (9) 

It follows that   
𝑑𝑁

𝑑𝑡
≤ 0  if 𝑁 >

𝛼

𝜇
,              (10) 

then a standard comparison theorem can be used to show that   

𝑁(𝑡) ≤ 𝑁(0)𝑒𝜇(𝑡) +
α

𝜇
(1 − 𝑒−𝜇(𝑡))  therefore 𝑁(𝑡) ≤

α

𝜇
 if  𝑁(0) ≤

α

𝜇
. Thus 𝐷is positively 

invariant. Hence if if  𝑁(0) >
α

𝜇
, then either the solution enters 𝐷in finite time or 

𝑁(𝑡) 𝑎𝑝𝑝𝑟𝑜𝑐ℎ𝑒𝑠 
α

𝜇
, and the infected variables 𝐸𝑎𝑛𝑑 𝐼 approaches 0. Hence 𝐷 is attracting, which 

means all the solutions in ℜ+
7  is enters 𝐷. Thus in 𝐷, the equations (1) to (5) is well posed 

epidemiologically and mathematically according to (Hethcote, 1978). Hence it is sufficient to study 

the dynamics of this model.  

The model is based on human population; therefore, it is necessary to show that all stated variables 

are positive at all time (t), making the model well-posed and biologically meaningful.  

Theorem 5.1: 

 Let the initial data be { 𝑆(0) > 0, 𝑉(0) ≥  0, 𝐸(0) ≥  0, 𝐼(0) ≥  0, 𝑅(0) ≥ 0} ∈ Ω       (11) 

Then, the solution set 𝑆(𝑡), 𝑉(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡)           (12) 

of the system (1) to (5) is positive if all t > 0.  

Proof: 

 From equation (1) 
𝑑𝑆

𝑑𝑡
=  𝛼 − 𝛽𝐼𝑆 − (𝜏 + 𝜇)𝑆 + 𝜌𝑉 ≥ 𝛼 − (𝜏 + 𝜇)𝑆                      (13) 

𝑑𝑆

𝑑𝑡
≥ 𝛼 − (𝜏 + 𝜇)𝑆                          (14) 

𝑑𝑆

𝑑𝑡
+ (𝜏 + 𝜇)𝑆 ≥ 𝛼                (15) 

using integrating factor, we have 
𝑑

𝑑𝑡
(𝑆𝑒(𝜏+𝜇)𝑡) ≥ 𝛼𝑒(𝜏+𝜇)𝑡              (16) 

𝑆(𝑡)𝑒(𝜏+𝜇)𝑡 ≥
𝛼

(𝜏+𝜇)
𝑒(𝜏+𝜇)𝑡 + 𝐶             (17) 

𝑆(𝑡) ≥
𝛼

(𝜏+𝜇)
+ 𝐶𝑒(𝜏+𝜇)𝑡              (18) 

From (16) substituting 𝑡 = 0 we have 

𝑆(0) ≥
𝛼

(𝜏+𝜇)
+ 𝐶 => 𝐶 ≤ 𝑆(0) −

𝛼

(𝜏+𝜇)
            (19) 

Hence  

𝑆(𝑡) ≥
𝛼

(𝜏+𝜇)
+ (𝑆(0) −

𝛼

(𝜏+𝜇)
)𝑒(𝜏+𝜇)𝑡 > 0            (20) 

Therefore 

𝑆(𝑡) > 0                 (21) 

From equation (2) 
𝑑𝑉

𝑑𝑡
= τ𝑆 − (𝜌 + 𝜇 + 𝜔)𝑉 ≥ −(𝜌 + 𝜇 + 𝜔)              (22)  

∫
𝑑𝑉

𝑑𝑡
≥ ∫(𝜌 + 𝜇 + 𝜔)𝑉              (23)  
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∫
𝑑

𝑑𝑉
(𝑣) ≥ ∫(𝜌 + 𝜇 + 𝜔)𝑑𝑡              (24) 

𝑉(𝑡) ≥ 𝑉(0)𝑒−(𝜌+𝜇+𝜔)𝑡 ≥ 0              (25) 

From equation (3) 
𝑑𝐸

𝑑𝑡
= 𝛽𝑆I − (θ + 𝜇)𝐸 ≥ −(𝜃 + 𝜇)             (26)  

∫
𝑑𝐸

𝑑𝑡
≥ ∫(𝜃 + 𝜇)𝐸               (27)  

∫
𝑑

𝑑𝐸
(𝐸) ≥ ∫(𝜃 + 𝜇)𝑑𝑡              (28) 

𝐸(𝑡) ≥ 𝐸(0)𝑒−(𝜃+𝜇)𝑡 ≥ 0              (29) 

From equation (4) 
𝑑𝐼

𝑑𝑡
= 𝜃𝐸 − (𝜎 + 𝜇 + 𝛿)𝐼 ≥ −(𝜎 + 𝜇 + 𝛿)𝐼            (30)  

∫
𝑑𝐼

𝑑𝑡
≥ ∫(𝜎 + 𝜇 + 𝛿) 𝐼               (31)  

∫
𝑑

𝑑𝐼
(𝐼) ≥ ∫(𝜎 + 𝜇 + 𝛿) 𝑑𝑡              (32) 

𝐼(𝑡) ≥ 𝐼(0)𝑒−(𝜎+𝜇+𝛿)𝑡 ≥ 0              (33) 

From equation (5) 
𝑑𝑅

𝑑𝑡
= 𝜎𝐼 + 𝜔𝑉 − 𝜇𝑅 ≥ −𝜇𝑅             (34) 

∫
𝑑𝑅

𝑑𝑡
≥ ∫𝜇𝑅               (35) 

∫
𝑑(𝑅)

𝑑𝑅
≥ ∫𝜇𝑑𝑡               (36) 

𝑅(𝑡) ≥ 𝑅(0)𝑒−𝜇𝑡 ≥ 0             (37) 

Therefore, all the solutions of the system of equations (1) to (5) are positive for all 𝑡 > 0. 
Equilibria State of the model 

At equilibrium the time derivatives are equal to zero, i.e. 
𝑑𝑁

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
=

𝑑𝑉

𝑑𝑡
=

𝑑𝐸

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0             (38) 

Measles Free Equilibrium (MFE) State 

Let 𝐸0 = (𝑆, 𝑉, 𝐸, 𝐼, 𝑅) = (𝑆0, 𝑉0, 𝐸0, 𝐼0, 𝑅0)           (39) 

Be the DFE point 

Substituting equation (8) into (2) to (6) equates to zero and solve gives 

𝐸0 = (𝑆0, 𝑉0, 𝐸0, 𝐼0, 𝑅0) = [
𝛼(𝜌+𝜇+𝜔)

(𝜇+𝜏)(𝜌+𝜇+𝜔)−𝜌𝜏
,

𝜌𝑆0

(𝜌+𝜇+𝜔)
, 0,0,

𝜔𝜏𝑆0

𝜇(𝜌+𝜇+𝜔)
]        (40) 

Equation (13) is Measles-Free Equilibrium MFE point of the model. 

Measles Endemic Equilibrium (MEE) State 

Let 𝐸∗ = (𝑆, 𝑉, 𝐸, 𝐼, 𝑅) = (𝑆∗, 𝑉∗, 𝐸∗, 𝐼∗, 𝑅∗) 

[
 
 
 
 
𝑆∗

𝑉∗

𝐸∗

𝐼∗

𝑅∗]
 
 
 
 

=

[
 
 
 
 
 
 
 
 

𝐴1𝐴1

𝛽𝜃

𝜏𝐴3𝐴4

𝛽𝜃𝐴2

  
𝜌𝜏𝐴3𝐴4−𝐴1𝐴2𝐴3𝐴4+𝐴2𝛼𝛽𝜃

𝐴2𝐴3𝛽𝜃

𝜌𝜏𝐴1𝐴1−𝐴1𝐴2𝐴3𝐴4+𝐴2𝛽𝜃

𝐴2𝐴3𝐴4𝛽
 

 
𝜔𝜏𝐴3

2 𝐴4
2+𝜃𝜎𝜌𝐴3𝐴4−𝜃𝜎𝐴1𝐴2𝐴3𝐴4+𝜃2𝜎𝛼𝐴2𝛽

𝐴3𝐴4𝛽𝜃𝐴2𝜇
 ]
 
 
 
 
 
 
 
 

           (41) 

 

The Basic Reproduction Number (𝑹𝟎) 
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In this model, the next generation matrix method as described by (Driessche, 2002) is used to get 

the basic reproduction number of 𝑅0. The basic reproductive number of an infected person is a 

threshold that indicates the total number of potential diseases that have been developed into a 

completely susceptible population during its transmission period. Given by 𝑅0 = 𝜌(𝐹𝑉−1).  𝐹  and 

𝑉 are the matrices created for the new infection and transmission respectively. 

The new infection components are  𝐸(𝑡) 𝑎𝑛𝑑 𝐼(𝑡) in equation (3) and (4) above is given by 

     𝐹 = (
𝛽𝑆𝐼
0

),                (42)  

      𝑉 = (
(𝜃 + 𝜇)𝐸

(𝜎 + 𝜇 + 𝛿)𝐼 − 𝜃𝐸
)             (43)  

𝐹 and 𝑉 are the Jacobian matrices which shall be computed at the DFE for (42) and (43) 

𝐹 = (
0 𝛽𝑆
0 0

)                (44)  

 𝑉 = (
(𝜃 + 𝜇) 0

−𝜃 (𝜎 + 𝜇 + 𝛿)
)             (45) 

𝐹 = (
0 𝛽𝑆
0 0

),                (46) 

The inverse of 𝑉 is computed using guass Jordan method 

 𝑉−1 = (

1

(𝜃+𝜇)
0

𝜃

(𝜃+𝜇)(𝜎+𝜇+𝛿)

1

(𝜎+𝜇+𝛿)

)             (47) 

Using the next generation matrix, we obtain: 

𝐹𝑉−1 = (
𝜃𝛽𝑆

(𝜃+𝜇)(𝜎+𝜇+𝛿)

𝛽𝑆

(𝜎+𝜇+𝛿)

0 0
)              (48) 

The basic reproduction number 𝑅0 is obtained as the 𝜌(𝐹𝑉−1) 

𝑅0 =
𝜃𝛽𝑆

(𝜃+𝜇)(𝜎+𝜇+𝛿)
               (49) 

Substituting 𝑆 =  
𝛼(𝜌+𝜇+𝜔)

(𝜇+𝜏)(𝜌+𝜇+𝜔)−𝜌𝜏
  gives  

𝑅0 =
𝜃𝛽𝛼(𝜌+𝜔+𝜇)

(𝜃+𝜇)(𝜎+𝜇+𝛿)[(𝜏+𝜇)(𝜌+𝜔+𝜇)−𝜌𝜏]
             (50) 

Which can also be written as:  

𝑅0 =
𝜃𝛽𝛼𝐴2

𝐴3𝐴4[𝐴1𝐴2−𝜌𝜏]
               (51) 
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Where 𝐴1 = (𝜏 + 𝜇), 𝐴2 = (𝜌 + 𝜔 + 𝜇), 𝐴3 = (𝜃 + 𝜇), 𝐴4 = (𝜎 + 𝜇 + 𝛿)   

 Local Stability of Measles-Free Equilibrium Point 

Theorem 1: Measles-free equilibrium point (𝜀0) is locally asymptotically stable if 𝑅0 < 1 

otherwise it is unstable.  

Proof: 

𝐽(𝑆, 𝑉, 𝐸, 𝐼, 𝑅) =

[
 
 
 
 
−𝛽𝐼 − μ − τ 𝜌 0

𝜌 −𝜔 0
𝛽𝐼 0 −𝜃 − 𝜇

−𝛽𝑆     0
0 0
𝛽𝑆  0

0           0     𝜃
0            𝜔      0

−𝜎 − 𝜇 − 𝛿 0
𝜎 −𝜇]

 
 
 
 

       (52)   

Reducing equation (24) to upper triangular matrix and the characteristic equation gives, 

|𝐽((𝐸0)) − λI| = 0 

|
|

−𝐴1 − λ 𝜌 0
0   −𝜔 −  λ    0
0    0 −𝐴2 − λ

−𝛽𝑆0     0
0 0

𝛽𝑆0  0

  
0                0               𝜃
0                 0               0

−𝐴3 − λ 0
0 −𝜇 − λ

|
|
= 0         (53)  

[(−𝐴1 − λ)(−𝜔 −  λ)(−𝐴2 − λ)(−𝐴3 − λ)(−𝜇 − λ)] = 0          (54) 

Therefore  

𝜆1 = −𝐴1,   or 𝜆2 = −𝜔, or 𝜆3 = −𝐴2 or 𝜆4 = −𝐴3, or 𝜆5 = −𝜇         (55) 

Where 𝐴1 = (𝛽𝐼 + μ + τ), 𝐴2 = (𝜃 + 𝜇) and 𝐴3 = (𝜎 + 𝜇 + 𝛿) 

From equation (54) we have  

𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5 < 0               (56) 

Hence, we have measles-free equilibrium point to be locally asymptotically stable if (55) holds 

when 𝑅0 < 1 and unstable when 𝑅0 > 1. 

Results and Discussion 

The figure 2 to 5 is the graphical simulation of the basic reproduction number and some selected 

parameters.  
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From figure 2 it shows that as the contact rate increases the reproduction number increases. This 

implies that the more people contact measles the more the reproduction number. 

It is observed from figure 3 that as the vaccination rate increases the reproduction number 

decreases. This implies that the more people are vaccinated the more measles dies down and the 

less the reproduction number.  
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we observed from figure 4 that the higher the loss of vaccination, immunity decreases, and the 

reproduction number also increases. This implies that the more people loss their immunity the more 

measles persists in the population. 

Figure 5 shows that as the recovery rate increases the reproduction number decreases. This implies 

that the more people recover from measles the less the reproduction number.  

 

 

Recommendation 

Based on our findings, we strongly recommend that governments and health organizations—

including international partners like WHO, UNICEF, and those involved in Accelerated 

Immunization Activities, should collaborate to boost awareness and vaccination efforts. By 

leveraging local media and social platforms, they can reach a wider audience and ensure that 

everyone understands the importance of immunization. This unified strategy is essential for 

eradicating the measles virus soon. 

Conclusion 

In this study, we developed and analyzed a mathematical model (SVEIR) to understand measles 

transmission and the role of vaccination. By applying the next-generation matrix method, we 

derived an expression for the basic reproduction number, 𝑅0. Our findings indicate that if 𝑅0 is less 

than one, measles will eventually die out, creating a stable, measles-free situation. However, if 

𝑅0exceeds one, measles can persist in the population. Numerical simulations were conducted, and 

it validate the analytical findings. Overall, our analysis strongly supports vaccination as the most 

effective strategy to control measles outbreaks, paving the way for the measles’s eventual 

eradication. 

. 
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