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Corona virus disease (COVID-19) is a lethal disease that poses public health challenge in both developed and 
developing countries of the world. Owing to the recent ongoing clinical use of COVID-19 vaccines and non-

compliance to COVID-19 health protocols, this study presents a deterministic model with an optimal control 
problem for assessing the community-level impact of media campaign and double-dose vaccination on the 
transmission and control of COVID-19. Detailed analysis of the model shows that, using the Lyapunov function 
theory and the theory of centre manifold, the dynamics of the model is determined essentially by the control 
reproduction number (𝑅𝑚𝑣). Consequently, the model undergoes the phenomenon of forward bifurcation in the 
absence of the double dose vaccination effects, where the global disease-free equilibrium is obtained whenever 
𝑅𝑚𝑣 ≤ 1. Numerical simulations of the model using data relevant to the transmission dynamics of the disease in 
Nigeria, show that, certain values of the basic reproduction number ((𝑅0 ≥ 7)) may not prevent the spread of 
the pandemic even if 100% media compliance is achieved. Nevertheless, with assumed 75% (at 𝑅0 = 4)) media 
efficacy of double dose vaccination, the community herd immunity to the disease can be attained. Furthermore, 
Pontryagin’s maximum principle was used for the analysis of the optimized model by which necessary conditions 
for optimal controls were obtained. In addition, the optimal simulation results reveal that, for situations where 
the cost of implementing the controls (media campaign and double dose vaccination) considered in this study 
is low, allocating resources to media campaign-only strategy is more effective than allocating them to a first-

dose vaccination strategy. More so, as expected, the combined media campaign-double dose vaccination strategy 
yields a higher population-level impact than the media campaign-only strategy, double-dose vaccination strategy 
or media campaign-first dose vaccination strategy.

1. Introduction

The emergence of COVID-19 in December 2019 (in China) has brought remarkable disruption with wider socio-economic implications globally. 
The spread of the virus has cut across many countries of the world with morbidity and mortality estimated to be over 581.8 million and 6.4 million 
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cases respectively as at 7th August, 2022 according to the World Health Organization (WHO) [1]. On February 27, 2020, the first case of COVID-19 
was confirmed in Nigeria when an Italian national was tested positive of the virus in Lagos as reported by the Federal Ministry of Health (FMOH) [2]. 
After the index case, most states in Nigeria became vulnerable to the virus and as at 12th August, 2022, over 262,402 cases and 3,147 deaths have 
been confirmed as reported by the Nigeria Centre for Disease Control (NCDC) [3].

Worldwide, health campaigns via social media and other awareness platforms have proven to be an effective non-pharmaceutical intervention 
in controlling infectious diseases. At the beginning of an epidemic when medical healthcare facilities and vaccination are inadequate to curb the 
disease burden, one can reliably adopt media as the partial treatment strategy with no cost consequences. Till date, media is the main source of 
information with noticeable impact on individual’s behaviour towards the outbreak of a disease. It is the vehicle through which people become 
aware, get educated about the disease and take precautionary measures such as vaccination, social distancing, quarantine and wearing protective 
masks to reduce the probability of being infected [4,5]. Therefore, as recommended by Khajanchi et al. [5], implementing media campaign with 
double dose vaccination in curtailing COVID-19 could be a welcome development.

In all the preventive measures mentioned above, double dose vaccination as a standard prevention strategy for COVID-19 has not been given 
full compliance in Nigeria. Since COVID-19 vaccination began in Nigeria on March 5, 2021, only 8 million out of 18 million vaccinated people 
(an approximate) have received the second dose of COVID-19 vaccine as documented by the National Primary Health Care Development Agency 
(NPCDA) [6]. Due to the non-compliance of COVID-19 health protocols in recent times and the fact that first dose of COVID-19 vaccine alone has 
no capacity to fully confer immunity to the population [7], it became imperative to examine the impacts of media campaign and the administration 
of first and second doses of COVID-19 vaccine on the transmission dynamics of the disease.

Mathematical modelling has been a veritable tool in providing insights into the transmission dynamics, prevention and control of infectious 
diseases [8,9]. So far many works have been done on COVID-19, but for lack of space we will restrict our review to the most recent and relevant 
papers. In 2020, Zeb et al. [10] carried out a mathematical research on the control of COVID-19 using isolation strategy on the infected population. 
Findings from their study revealed that the method can reduce the probability for the future spread of the pandemic. Maji et al. [11] developed a 
delay model for COVID-19 with a view to assessing the impact of awareness-based control measures on the transmission dynamics of the disease. 
Samui et al. [12] developed a mathematical model to study the reported and unreported cases of COVID-19 in India. One among the findings of the 
study predicted a higher peak of the disease after 60 days and the disease continue to persist for a long time. However, the presence of vaccination 
will remarkably change the outcome. In another study, Sitthiwirattham et al. [13] constructed a discrete mathematical model for COVID-19 in order 
to explore in real life the transmission structures of the disease with special reference to COVID-19 outbreaks in India and Algeria. The study by 
Alqudah et al. [14] examined the effect of weather conditions on the spread of COVID-19 using Eigenspace Decomposition Approach. The technique 
has shown that wind speed has the major effect on rapid spread of the disease. Furthermore, several authors have studied the spread and control of 
corona virus using stochastic modelling approach [15–17].

In another development, [18–22] formulated fractional order mathematical models for COVID-19 without double dose vaccination. However, 
Zhang et al. [18] introduced isolation class into their model, Zeb et al. [21,22] accounts for the role of quarantine and vaccination (with no 
special reference to the levels of vaccination) while Bushnaq et al. [19] conducted mathematical assessment of media education and quarantine on 
the spread of corona virus. The work of Tiwari et al. [23] examined the effects of community awareness and global information campaigns on the 
dynamics of coronavirus; and their study suggested that social media and mouth-mouth awareness if effectively implemented can mitigate the spread 
of the disease. Despite the robust nature of the findings, the study lacks an in-depth threshold analysis of the basic reproduction number, and the 
authors further recommended the extension of their model by incorporating vaccination alongside awareness of COVID-19. This is an open problem 
the present study intend to explore. Rai et al. [24] explored the impact of social media advertisements with quarantine on the spread of COVID-19 
pandemic in the presence of asymptomatic, symptomatic and aware individuals. The research findings projected continuous awareness (via social 
media and internet platforms) and quarantine of asymptomatic individuals to be good candidate strategies for reducing COVID-19 burdens in India. 
Mondal and Khajanchi [25] formulated an SAIQJR model with optimal control intervention strategies to control the transmission of COVID-19. 
Sensitivity and numerical results of the study have shown that transmission parameters with the implementation of the three optimal controls are 
key in reducing the prevalence of the disease. Another study of Khajanchi et al. [5] analyzed a compartmental epidemiological model of SARS-CoV-2 
virus with the prediction that the intensity of the epidemic peak will decrease as the control interventions are optimally implemented. Khajanchi 
et al. [26] carried out a study on the transmission of COVID-19 in India with the effect of hospitalization. The result of their work predicted an 
oscillatory behaviour of COVID-19 cases in India and further concluded that COVID-19 might become a seasonal disease.

The works of [27–30] formulated COVID-19 models of the first dose vaccination with optimality control. Other modellers of COVID-19 have 
developed mathematical models that incorporate quarantine and isolation [31], social distancing and treatment [32], use of face masks and hand 
sanitizers [33] and awareness campaign [34]. The effect of denial on the early spread of COVID-19 was researched by Gweryina et al. [35]. More 
so, [36,37] conducted studies on model forecasting of COVID-19 cases in India.

Recent studies [38–42] have constructed models of COVID-19 transmission dynamics with double-dose vaccination using bilinear incidence 
function (or mass action). Though Paul and Kuddus [38] implemented this control strategy in Bangladesh, where the population is assumed constant 
(birth and death rates are the same), Akuka et al. [39] and Ayoola et al. [40] conducted their studies for varying populations. Peter et al. [41]

developed mathematical model of COVID-19 pandemic with the aim of examining the usefulness of double dose vaccination without taking into 
account the effects of infection outbreak among vaccinated population. On the other hand, Sepulveda et al. [42] carried out analysis of a COVID-19 
model involving two vaccination doses with delay effects but the impact of media campaign was not considered.

Motivated by the works of [23,24,38–42], we formulate (in line with our goal) a mathematical model for assessing the impacts of media campaign 
and double dose vaccination in line with the recommendation in the work of Tiwari et al. [23]. Furthermore, the basic model is extended to an 
optimal control problem in order to minimize the cost of double vaccination and media campaign. The present study intends to address the following 
research objectives:

∗ to study the transmission dynamics of COVID-19 using compartmental modelling;

∗ to analyze the model using global stability and bifurcation approaches;

∗ to obtain the minimum threshold value for media campaign coverage on double dose vaccination needed to attain herd immunity for the 
disease;

∗ to determine the parameters responsible for the rapid spread of corona virus using normalized forward sensitivity index; and
168

∗ to obtain optimal control strategies necessary for the reduction in COVID-19 cases.
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The foregoing notwithstanding, the original contributions of this paper to the modelling of COVID-19 are as follows:

(i) incorporating media campaign and double dose vaccination into an optimal control model as recommended by Tiwari et al. [23],

(ii) allowing the outbreak of infection (with standard incidence) among the first-dose vaccinated individuals as supported by Centers for Disease 
Control and Prevention (CDC) [43].

The justification for using the standard incidence, rather than mass action, stems from the fact that, (i) the number of effective contacts between 
infective and susceptible individuals may reduce as a result of the preventive measures taken by, and behavioural changes of, susceptible individuals 
in response to the increasing cases of the disease [44,45], (ii) bilinear incidence function is most useful for the initial epidemic outbreaks, and may 
not be applicable for large data sets [46] considering the present cases of COVID-19 pandemic globally.

The organization of the paper is as follows: The model is formulated in Section 2. Basic properties of the model are presented in Section 3. 
The existence and stability of disease-free equilibrium is analyzed in Section 4. In Section 5, the existence and stability of the endemic equilibrium 
is established. The model formulated in Section 2 is extended to an optimal control problem and analyzed in Section 6. The simulation results of 
the model were discussed in Section 7. The conclusion containing the main findings of the study is given in Section 8, and model limitations are 
presented in Section 9.

2. Model formulation

The model for the transmission dynamics of COVID-19, in the presence of media campaign and double dose vaccination, within a population, 
is formulated by partitioning the total human population, 𝑁(𝑡) at time 𝑡 into nine sub-populations of the susceptibles 𝑆(𝑡), vaccinated individuals 
at stage 1 (first dose) 𝑉1(𝑡), vaccinated individuals at stage 2 (second dose) 𝑉2(𝑡), latently infected 𝐿(𝑡), quarantined 𝑄(𝑡), asymptomatic infectious 
𝐼𝑎(𝑡), symptomatic infectious 𝐼𝑠(𝑡), hospitalized (isolated) 𝑃 (𝑡) and recovered 𝑅(𝑡) individuals. Note that stages 𝑉1 and 𝑉2 represent the boosting of 
the vaccine derived efficacy, with those in 𝑉2 class having stronger vaccine protection compared to those in the 𝑉1 class. Susceptible individuals are 
recruited at a constant rate Λ. 𝜏1𝜆 is the rate of infection due to the interactions between the susceptible with the asymptomatic and symptomatic 
individuals while 𝜏2𝜆 is the outbreak of infection among the vaccinated group after the first dose of COVID-19 vaccine is received at a rate 𝜌1. First 
dose vaccinated individuals on receiving the second dose of vaccination progresses to the second vaccinated class at a rate 𝜌2. First dose vaccinated 
individuals regain susceptibility after the vaccine wanes at a rate 𝜔. Second dose vaccinated individuals are removed at a rate 𝜌3. Individuals in latent 
class are either quarantined at a rate 𝜃 or progresses to symptomatic and asymptomatic classes at rate 𝜎𝜓 and 𝜎(1 −𝜓) respectively, where 𝜓 is the 
proportion of latent individuals that become symptomatic. The individuals in quarantine, asymptomatic and symptomatic classes are hospitalized at 
the rates 𝜙1, 𝜙2 and 𝜙3 respectively. Asymptomatic individuals show symptoms of the disease at a rate 𝜉 while the latent, and quarantined individuals 
recover without treatment at the rates 𝛾1 and 𝛾2 respectively. The hospitalized patients are successfully treated and recovered at a rate 𝛾3. However, 
symptomatic and hospitalized individuals may have an associated disease-induced death rates 𝛿1 and 𝛿2. Natural death rate 𝜇 is associated to all the 
epidemiological compartments. Those in symptomatic infectious class have reduced infectiousness compared to asymptomatic infectious class at the 
rate 𝜂. The formulation of our model is guided by the flow-diagram in Fig. 1 and the following assumptions:

i. Individuals who received the first dose of the vaccine can revert back to the susceptible class as a result of the waning of the COVID-19 vaccine. 
This is supported by the report of WHO [7].

ii. Adhering to COVID-19 protocols on infection control and prevention can be enhanced via media campaign. This is in agreement with the reports 
in [47,48].

iii. There is permanent immunity after recovery. This is supported by the reports in [49].

iv. All infected classes are infectious but under ideal situations, both Quarantined and Hospitalized (Isolated) individuals have insignificant contact 
rate and hence assumed not to be part of the transmission dynamics. This is supported by the report of CDC [50].

v. The second dose of the vaccine further reduces the chances of infection. This is in line with the reports of [7,51].

vi. There is outbreak of infection among the first-dose vaccinated individuals. This is supported by the fact that first dose of COVID-19 vaccines 
only offers partial immunity [7,52].

The above description leads to the flow diagram in Fig. 1. Tables 1 and 2 show the values of the variables and parameters to be used in the model 
(1).

𝑑𝑆(𝑡)
𝑑𝑡

= Λ+𝜔𝑉1 − 𝜏1𝜆𝑆 − (𝜌1 + 𝜇)𝑆,

𝑑𝑉1(𝑡)
𝑑𝑡

= 𝜌1𝑆 − 𝜏2𝜆𝑉1 − (𝜔+ 𝜌2 + 𝜇)𝑉1,

𝑑𝑉2(𝑡)
𝑑𝑡

= 𝜌2𝑉1 − (𝜌3 + 𝜇)𝑉2,

𝑑𝐿(𝑡)
𝑑𝑡

= 𝜆(𝜏1𝑆 + 𝜏2𝑉1) − (𝜎 + 𝜃 + 𝛾1 + 𝜇)𝐿,

𝑑𝑄(𝑡)
𝑑𝑡

= 𝜃𝐿− (𝜙1 + 𝛾2 + 𝜇)𝑄.

𝑑𝐼𝑎(𝑡)
𝑑𝑡

= 𝜎(1 −𝜓)𝐿− (𝜙2 + 𝜉 + 𝜇)𝐼𝑎,

𝑑𝐼𝑠(𝑡)
𝑑𝑡

= 𝜎𝜓𝐿+ 𝜉𝐼𝑎 − (𝜙3 + 𝛿1 + 𝜇)𝐼𝑎,

𝑑𝑃 (𝑡)
𝑑𝑡

= 𝜙1𝑄+ 𝜙2𝐼𝑎 +𝜙3𝐼𝑠 − (𝛾3 + 𝛿2 + 𝜇)𝑃 ,

𝑑𝑅(𝑡)

(1)
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𝑑𝑡
= 𝜌3𝑉2 + 𝛾1𝐿+ 𝛾2𝑄+ 𝛾3𝑃 − 𝜇𝑅.
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Fig. 1. Flow diagram of COVID-19 transmission dynamics with media campaign and double dose vaccination.

Table 1

Variables information.

Variable Description Value Source

𝑆 Susceptible individuals 176725630 estimated

𝑉1 First dose vaccinated individuals 17914944 [6]

𝑉2 Second dose vaccinated individuals 8197832 [6]

𝐿 Latent individuals 4465192 estimated

𝑄 Quarantined individuals 4726096 Implied from NCDC [3]

𝐼𝑎 Asymptomatic infectious individuals 4210002 estimated

𝐼𝑠 Symptomatic infectious individuals 255190 Implied from NCDC [3]

𝑃 Hospitalized (isolated) individuals 2572 Implied from NCDC [3]

𝑅 Recovered individuals 249476 Implied from NCDC [3]

𝑁 Total population 216746934 [53]

The model (1) satisfies the initial conditions: 𝑆(0) = 𝑆0, 𝑉1(0) = 𝑉10, 𝑉2(0) = 𝑉20, 𝐿(0) = 𝐿0, 𝑄(0) = 𝑄0, 𝐼𝑎(0) = 𝐼𝑎0, 𝐼𝑠(0) = 𝐼𝑠0, 𝑃 (0) = 𝑃0, 𝑃 (0) = 𝑃0, 
and the force of infection 𝜆, is given by

𝜆 =
𝑐(1 − 𝜖𝜑)(𝐼𝑎 + 𝜂𝐼𝑠)

𝑁
, (2)

where 𝜖 is the efficacy of media campaign and 𝜑 is the compliance of the campaign. 𝑐 denotes the average number of contacts made and 𝑁(𝑡) =
𝑆(𝑡) + 𝑉1(𝑡) + 𝑉2(𝑡) +𝐿(𝑡) +𝑄(𝑡) + 𝐼𝑎(𝑡) + 𝐼𝑠(𝑡) + 𝑃 (𝑡) +𝑅(𝑡), is the total population size at time 𝑡.

Remark 1. The detail of the estimations of the initial values (in Table 1) and parameters (in Table 2) can be found in Appendix C.

3. Basic properties

Since the system (1) addresses human populations, it is assumed that the state variables and parameters are non-negative. It follows that the 
non-negative cone 𝑅9

+, is invariant, as is the disease-free plane (𝐿 = 𝐼𝑎 = 𝐼𝑠 = 𝑃 = 0). For convenience, we define 𝑁0 = Λ
𝜇
, 𝑆0 = Λ(𝜔+𝜌2+𝜇)

𝜇(𝜔+𝜌2+𝜇)+𝜌1𝜌2
, 𝑉 0

1 =
Λ𝜌1

𝜇(𝜔+𝜌2+𝜇)+𝜌1𝜌2
, 𝑉 0

2 = Λ𝜌1𝜌2

(𝜌3+𝜇)
(
𝜇(𝜔+𝜌2+𝜇)+𝜌1𝜌2

) and 𝑅0 = Λ𝜌1𝜌2

𝜇(𝜌3+𝜇)
(
𝜇(𝜔+𝜌2+𝜇)+𝜌1𝜌2

) . The rate of change of the total population, 𝑁 is given by

𝑑𝑁

𝑑𝑡
= Λ− 𝜇𝑁 − 𝛿1𝐼𝑠 − 𝛿2𝑃 . (3)

Since the right hand side of the above equality is bounded by Λ − 𝜇𝑁 , a standard comparison theorem can be used to show that

𝑁(𝑡) ≤ Λ
𝜇
+
(
𝑁(0) − Λ

𝜇

)
𝑒−𝜇𝑡.
170

It follows that
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Table 2

Parameters information.

Parameter Description Value Source

Λ Recruitment rate 3901445 estimated

𝜌1 First dose vaccination rate 0.083 estimated

𝜌2 Second dose vaccination rate 0.038 estimated

𝜌3 Progression rate from 𝑉2 to R 0.74 estimated

𝜔 Waning rate of first dose 0.67 estimated

𝜇 Natural death rate 0.0180 estimated

𝛿1 The disease-induced death rate of 𝐼𝑎 0.0123 estimated

𝛿2 The disease-induced death rate of 𝑃 0.002 estimated

(𝜏1 , 𝜏2) COVID-19 transmission rates (0.7,0.33) (estimated, [54])

𝑐 Average contact rate 0.2 estimated

𝜖 Efficacy rate of media campaign 0.9 Assumed

𝜑 Rate of compliance to media campaign 0.5 Assumed

𝜙1 Rate of hospitalization of Q 5.4 × 10−4 estimated

𝜙2 Rate of hospitalization of 𝐼𝑎 6.1 × 10−4 estimated

𝜙3 Rate of hospitalization of 𝐼𝑠 0.01 estimated

𝜃 Rate of quarantine of L to Q 0.022 estimated

𝜂 Modification parameter 0.01 Assumed

𝜎 Disease progression rate 0.057 estimated

𝜓 Proportion of L that goes to 𝐼𝑠 0.94 estimated

𝜉 Progression rate from 𝐼𝑎 to 𝐼𝑠 0.061 estimated

𝛾1 Self-immune recovery rate of L individuals 0.903 estimated

𝛾2 Self-immune recovery rate of Q individuals 0.95 estimated

𝛾3 Recovery rate of P individuals due to treatment 0.98 estimated

0 < limsup
𝑡⟼∞

𝑁(𝑡) ≤𝑁0,

with limsup𝑡⟼∞𝑁(𝑡) =𝑁0 if and only if limsup𝑡⟼∞ 𝐼𝑠(𝑡) = limsup𝑡⟼∞ 𝑃 (𝑡) = 0. From the first and second equations of model (1), we have that

0 < limsup
𝑡⟼∞

𝑆(𝑡) ≤ 𝑆0, (4)

and

0 < limsup
𝑡⟼∞

𝑉1(𝑡) ≤ 𝑉 0
1 . (5)

Using equation (5) and the third equation of model (1), after little manipulation, we arrive at

0 < limsup
𝑡⟼∞

𝑉2(𝑡) ≤ 𝑉 0
2 , (6)

and the last equation in (1) gives

0 < limsup
𝑡⟼∞

𝑅(𝑡) ≤𝑅0. (7)

It follows from equation (3) that if 𝑁 >𝑁0, then 𝑑𝑁
𝑑𝑡

< 0. This proves the following lemma.

Lemma 3.1. The closed set

Ω=
{
(𝑆,𝑉1, 𝑉2,𝐿,𝑄, 𝐼𝑎, 𝐼𝑠, 𝑃 ,𝑅) ∈𝑅9

+ ∶𝑁 ≤𝑁0, 𝑉1 ≤ 𝑉 0
1 , 𝑉2 ≤ 𝑉 0

2 ,𝑅 ≤𝑅0
}

is a positively invariant and attracting region of system (1) with initial conditions in 𝑅9
+.

Thus, in the absence of COVID-19 (𝐿 = 𝐼𝑎 = 𝐼𝑠 = 𝑃 = 0), the total population, N, approaches the carrying capacity, 𝑁0, asymptotically; and in the 
presence of the pandemic, the total population is less than or equal to 𝑁0. That means, any phase trajectory initiated anywhere in the non-negative 
region 𝑅9

+ ≥ 0 of the phase space eventually enters the domain Ω and remains in it. If 𝑁(0) ≤ Λ
𝜇

, then 𝑁(𝑡) ≤ Λ
𝜇

. Therefore, Ω is a positively invariant 
set under the flow described in model (1). Hence, no solution path leaves through any boundary of Ω. The right hand side of model (1) is smooth, 
hence the initial value problem has a unique solution that exists on maximal intervals [55]. Since paths cannot leave the set Ω, solutions remain 
non-negative for non-negative initial conditions, the solutions exist at all positive time. Thus, the system (1) is mathematically and epidemiologically 
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well posed [55].
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4. The disease-free equilibrium

4.1. Existence and local stability of disease-free equilibrium (DFE)

The model (1) has a DFE, obtained by setting the right hand side of the equations to zero, given by

𝐸0 = (𝑆0, 𝑉 0
1 , 𝑉 0

2 ,𝐿0,𝑄0, 𝐼0
𝑎
, 𝐼0

𝑠
, 𝑃 0,𝑅0)

=
( Λ(𝜔+ 𝜌2 + 𝜇)
𝜇(𝜔+ 𝜌2 + 𝜇) + 𝜌1𝜌2

,
Λ𝜌1

𝜇(𝜔+ 𝜌2 + 𝜇) + 𝜌1𝜌2
,

Λ𝜌1𝜌2

(𝜌3 + 𝜇)
(
𝜇(𝜔+ 𝜌2 + 𝜇) + 𝜌1𝜌2

) ,0,0,0,0,0,
Λ𝜌1𝜌2

𝜇(𝜌3 + 𝜇)
(
𝜇(𝜔+ 𝜌2 + 𝜇) + 𝜌1𝜌2

))
.

The stability of 𝐸0 can be established using the next generation matrix on the system (1). Using the symbols in van den Dressiche and Watmough 
[56], the matrices 𝐹 and 𝑉 , for the new infections and the remaining transfer terms respectively, are given by

𝐹 =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0
𝑐(1−𝜖𝜑)(𝜏1𝑆0+𝜏2𝑉

0
1 )

𝑁0
𝑐(1−𝜖𝜑)𝜂(𝜏1𝑆0+𝜏2𝑉

0
1 )

𝑁0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
and

𝑉 =

⎛⎜⎜⎜⎜⎜⎝

𝜎 + 𝜃 + 𝛾1 + 𝜇 0 0 0 0
−𝜃 𝜙1 + 𝛾2 + 𝜇 0 0 0

−𝜎(1 −𝜓) 0 𝜙2 + 𝜉 + 𝜇 0 0
−𝜎𝜓 0 −𝜉 𝜙3 + 𝛿1 + 𝜇 0
0 −𝜙1 −𝜙2 −𝜙3 𝛾3 + 𝛿2 + 𝜇

⎞⎟⎟⎟⎟⎟⎠
.

Thus,

𝑅𝑚𝑣 = (1 − 𝜖𝜑)𝑅𝑣, (8)

where

𝑅𝑣 =
𝑐𝜎𝜇

(
(𝜙3 + 𝛿1 + 𝜇)(1 −𝜓) + 𝜂(𝜉(1 −𝜓) + (𝜙2 + 𝜉 + 𝜇)𝜓)

)
(𝜏1(𝜔+ 𝜌2 + 𝜇) + 𝜏2𝜌1)

(𝜎 + 𝜃 + 𝛾1 + 𝜇)(𝜙2 + 𝜉 + 𝜇)(𝜙3 + 𝛿1 + 𝜇)(𝜇(𝜔+ 𝜌2 + 𝜌1 + 𝜇) + 𝜌1𝜌2)
, (9)

is the vaccination-induced reproduction number, determined by setting (𝜖, 𝜑) = 0 and media-induced reproduction number, 𝑅𝑚, can be obtained by 
setting vaccination related parameters to zero as given (11)

𝑅𝑚 = (1 − 𝜖𝜑)𝑅0, (10)

with

𝑅0 =
𝑐𝜎𝜏1

[
(𝛿1 + 𝜇)(1 −𝜓) + 𝜂

(
𝜉(1 −𝜓) + (𝜉 + 𝜇)𝜓

)]
(𝜎 + 𝛾1 + 𝜇)(𝜉 + 𝜇)(𝛿1 + 𝜇)

, (11)

as the basic reproduction number considered when there are no controls. The basic reproduction number, traditionally denoted by 𝑅0, is the average 
number of secondary infections produced by a single infected individual during its entire infectious period when introduced in a population where 
everyone is susceptible [57,58]. Note that 𝑅𝑚𝑣 is obtained from 𝜌

(
𝐹𝑉 −1

)
with 𝜌 being the spectral radius of the next generation matrix 𝐹𝑉 −1 [56]. 

In order to determine the dynamics of COVID-19 over time, there is need to compute 𝑅𝑚𝑣 . The value of the threshold quantity 𝑅𝑚𝑣 shows the risk in 
transmission of the disease in the midst of media campaigns and double-dose vaccination strategies. By the definitions and the expressions above, 
it is obvious that 𝑅𝑚𝑣 < 𝑅𝑜 always hold. That means, maintaining 𝑅𝑚𝑣 always below 𝑅0 will bring COVID-19 cases under control and subsequently 
stop possible spread. The following result follows from Theorem 2 of van den Dressiche and Watmough [56].

Lemma 4.1. The DFE of the model (1), 𝐸0, is locally asymptotically stable if 𝑅𝑚𝑣 < 1 and unstable if 𝑅𝑚𝑣 > 1.

The threshold quantity 𝑅𝑚𝑣 is the control reproduction number for the COVID-19 transmission dynamics. In biological sense, Lemma 4.1 implies 
that COVID-19 can be eliminated from the population (when 𝑅𝑚𝑣 < 1) if the initial sizes of the populations of the model are in the basin of attraction 
of 𝐸0.

The parameter 𝑓𝑒 = 𝜖𝜑, where 𝜖 and 𝜑 denote the media campaign efficacy and compliance, respectively. Let 𝑓𝑒 = 𝜖𝜑 be the media-induced 
preventability of COVID-19 transmission. Thus, the reproduction number of the model with media only as control measure can be expressed as in 
equation (10). It explains the impact of media campaign in preventing COVID-19 transmission. We noticed that 𝑅𝑚(0, 𝜑) = 𝑅𝑚(𝜖, 0) = 𝑅𝑚(0, 0) = 𝑅0
and that 𝑅𝑚(𝜖, 𝜑) ≤𝑅0 ∀𝜖, 𝜑 ≥ 0. Therefore, the basic reproduction number (in the absence of media campaign and vaccination) 𝑅0 is greater than 
the media-induced reproduction number (𝑅0 > 𝑅𝑚). Thus, the use of media campaign as a preventive measure can limit the spread of COVID-19 in 
a population. As in Malunguza et al. [59] the proof of Lemma 4.2 follows.
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Lemma 4.2. COVID-19 can be eliminated from the population if the preventability 𝑓𝑒 = 𝜖𝜑 exceeds the threshold value 𝑓 ∗
𝑒

.
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Fig. 2. Simulation results showing patterns of 𝑅𝑚 against compliance, 𝜑 on the left and on the right, the contours of 𝑅𝑚 = (1 − 𝜖𝜑)𝑅0 = 1 with respect to efficacy, 𝜖
and compliance. The corresponding values of 𝑅𝑚 are obtained by varying values of 𝑅0 from 1 to 10 in step 1 and 𝜖, 𝜑 from 0.1 to 1 in the step of 0.1 using parameter 
values in Table 1 and 𝑐 = 2.

Proof. It follows from equation (10) that

𝑅𝑚 = (1 − 𝜖𝜑)𝑅0 ≤ 1, 𝜖 ≥ 1
𝜑

(
1 − 1

𝑅0

)
= 𝜖∗, (12)

then 𝑅𝑚(𝜖∗) = 1 assuming 𝜑 > 0. If

𝜑∗ = 1
𝜖

(
1 − 1

𝑅0

)
, (13)

then 𝑅𝑚(𝜑∗) = 1 assuming 𝜖 > 0. Note that 𝜖∗(𝜑∗) is critical value that shows the minimum rate of media coverage (compliance) in a community 
where COVID-19 vaccines and other interventions are not available. Since 𝑅𝑚 is a decreasing function of both 𝜖 and 𝜑, it follows that 𝑅𝑚 < 1
whenever 𝜖 > 𝜖∗ or 𝜑 > 𝜑∗. It is also important to note that 𝑅𝑚 is as well a decreasing function of 𝑓𝑒. This means that COVID-19 pandemic can be 
eliminated in the population if 𝑓𝑒 > 𝑓 ∗

𝑒
= 𝜖∗𝜑∗. □

4.2. Impact of media campaign on 𝑅0

The media-induced reproduction number 𝑅𝑚 is given in terms of 𝑅0 as in equation (10). Therefore, we write 𝑅𝑚 =𝑅𝑚(𝑅0) to show the dependence 
of 𝑅𝑚 on 𝑅0. The obtained results in Fig. 2 show that there are certain values of 𝑅0 for which the presence of media campaign may not necessarily 
reduce 𝑅𝑚 to values less than unity, even if 100% compliance to public health policies is achieved. Furthermore, we noticed that when 𝑅0 = 7, we 
have 𝑅𝑚 = 1.015 at 𝜑 = 0.95. This implies that with high compliance value (𝜑 > 0.9) in a community, the control of COVID-19 may not be possible 
with the use of media campaign alone as a preventive strategy.

Since 𝑅𝑚𝑣 ≤ 1 is a necessary and sufficient condition for the disease elimination (Lemma 4.1 and Theorem 4.4), it follows that the above 
conditions on 𝜖 (in equation (12) is also necessary and sufficient condition for control. Therefore, the inequality (8) can be rewritten as

𝜖𝜑 ≥ 1 − 1
𝑅0

.

It follows that with 𝑅0 = 4, the pandemic control requires the product of 𝜖𝜑 greater than 34 as shown in the upper region of the right plot of Fig. 2. 
In order to exceed this target, both 𝜖 and 𝜑 must be greater than 34 . In summary, this study reveals that if 𝑅0 = 4, at least 75% media coverage and 
compliance on COVID-19 control and prevention guidelines is needed in the community to attain herd immunity. This is contrary to the report by 
Ram and Schaposnik [60] that says COVID-19 herd immunity can be attained at 82% for 𝑅0 = 5.7.

4.3. Impact of media campaign and double dose vaccination on 𝑅𝑚𝑣

In analogous fashion to Lemma 4.2, we state and prove the following result.

Lemma 4.3. COVID-19 can be eliminated from the community if the preventability 𝑓𝛼 = 𝜖𝛼𝜑𝛼 , where 𝜖 = 𝜖𝛼 and 𝜑 = 𝜑𝛼 in (8) is greater than the threshold 
value 𝑓 ∗

𝛼
= 𝜖∗

𝛼
𝜑∗
𝛼
.

Proof. As in Lemma 4.2, if

𝑅𝑚𝑣 = (1 − 𝜖𝛼𝜑𝛼)𝑅𝑣 ≤ 1, 𝜖𝛼 ≥ 1
𝜑𝛼

(
1 − 1

𝑅𝑣

)
= 𝜖∗

𝛼
, (14)

then 𝑅𝑚𝑣(𝜖∗𝛼 ) = 1 supposing that 𝜑𝛼 > 0. Again, if

𝜑∗
𝛼
= 1

𝜖𝛼

(
1 − 1

𝑅𝑣

)
, (15)
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then 𝑅𝑚𝑣(𝜑∗
𝛼
) = 1 supposing that 𝜖𝛼 > 0. Hence, the conclusion of the result follows from Lemma 4.2. □
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Fig. 3. Simulation results showing (a) patterns of 𝑅𝑚𝑣 against compliance, 𝜑 and (b) the contours of 𝑅𝑚𝑣 in (8) with respect to media efficacy, 𝜖 and compliance. 
The corresponding values of 𝑅𝑚𝑣 are obtained by varying values of 𝑅𝑚 and (𝜖, 𝜑) from 0.1 to 1 in the step 0.1 using parameter values in Table 2 and 𝑐 = 2.

Fig. 4. Simulation results showing the patterns of the reproduction numbers 𝑅𝑚𝑣, 𝑅𝑚, 𝑅𝑣, 𝑅0 for varying number of contacts from 1 to 10. Parameters used are 
𝜂 = 0.3, 𝜓 = 0.094 and others are as in Table 2.

As in subsection 4.3, we write 𝑅𝑚𝑣 = 𝑅𝑚𝑣

[
(1 − 𝜖𝜑)𝑅𝑣

]
as a function that illustrates the dependence of 𝑅𝑚𝑣 on (1 − 𝜖𝜑)𝑅𝑣. The simulated results 

are depicted in Fig. 3. It is observed in Fig. 3(a) that the controlled reproduction number, 𝑅𝑚𝑣, does not increase above unity in the presence of 
varying compliance and vaccination-induced reproduction number, 𝑅𝑣 within 0 to 1. This means that the combination of media compliance with 
vaccination has a greater potential of eradicating COVID-19 from the community faster than implementing either media campaign or double dose 
vaccination alone as a control measure. The contours of 𝑅𝑚𝑣 with respect to media efficacy and compliance as 𝑅𝑣 varies, clearly shows that 𝑅𝑚𝑣 < 1
when media campaign and its compliance are intensified in the community. Therefore, to achieve COVID-19-free society, compliance with public 
health policies such as wearing of face masks, maintaining social distancing, regular washing of hands and receiving of first and second doses of 
COVID-19 vaccine should be encouraged among the populace. Note also from Fig. 3b that, a corresponding increase in efficacy and compliance to 
media campaign reduces 𝑅𝑚𝑣 to a value below unity. However, a high efficacy with low compliance and vice-versa may not eliminate COVID-19 in 
the community sufficiently.

For clarity of doubt, we illustrate the relationship and behaviour among the reproduction numbers 𝑅𝑚𝑣, 𝑅𝑚, 𝑅𝑣 and 𝑅0 with respect to increasing 
the number of contacts (𝑐). We observed in Fig. 4 that the four reproduction numbers satisfy the inequality 𝑅𝑚𝑣 < 𝑅𝑚 < 𝑅𝑣 < 𝑅0. The results further 
affirm that the use of media campaign and vaccination is far better than implementing single controls (𝑅𝑚, 𝑅𝑣). However, for single controls, 𝑅𝑚 <𝑅𝑣

implies that media is more beneficial in controlling the spread of COVID-19 than vaccination. Of course, the inequality shows a worse scenario in 
the outbreak of the pandemic where none of the controls are applied.

4.4. Global stability of DFE

Theorem 4.4. The DFE of the model (1), 𝐸0, is globally asymptotically stable if 𝑅𝑚𝑣 ≤ 1.

Proof. Using the method of Hntsa and Kahsay [61], consider a Lyapunov function Θ𝑓 = 𝐿. From the equations in model (1), setting 𝑑𝑄

𝑑𝑡
= 𝑑𝐿𝑎

𝑑𝑡
=

𝑑𝐼𝑠
𝑑𝑡

= 𝑃

𝑑𝑡
= 0, we have the following:

𝑄 = 𝜃𝐿

𝑘5
,

𝜎(1 −𝜓)𝐿
174

𝐼𝑎 = 𝑘6
,
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𝐼𝑠 =
𝜎(𝜓𝑘6 + 𝜉(1 −𝜓))𝐿

𝑘6𝑘7
, (16)

𝑃 =

[
𝜙1𝜃𝑘6𝑘7 +𝜙2𝑘5𝜎(1 −𝜓)𝑘7 +𝜙3𝑘5𝜎(𝜓𝑘6 + 𝜉(1 −𝜓))

]
𝐿

𝑘5𝑘6𝑘7𝑘8
.

Taking the derivative of Θ𝑓 gives

𝑑Θ𝑓

𝑑𝑡
= 𝑑𝐿

𝑑𝑡
= 𝜆(𝜏1𝑆 + 𝜏2𝑉1) − 𝑘4𝐿,

= (𝐵1𝐼𝑎 +𝐵2𝐼𝑠)
𝑆

𝑁
+ (𝐵3𝐼𝑎 +𝐵4𝐼𝑠)

𝑉1
𝑁

− 𝑘4𝐿,

(17)

where 𝐵1 = 𝜏1𝑐(1 − 𝜖𝜑), 𝐵2 = 𝜏1𝑐𝜂(1 − 𝜖𝜑), 𝐵3 = 𝜏2𝑐(1 − 𝜖𝜑) and 𝐵4 = 𝜏2𝑐𝜂(1 − 𝜖𝜑). Substituting (16) into (17) gives

𝑑Θ𝑓

𝑑𝑡
=
[(𝐵1𝜎(1 −𝜓)

𝑘6
+

𝐵2𝜎(𝜓𝑘6 + 𝜉(1 −𝜓))𝐿
𝑘6𝑘7

)
𝑆

𝑁
+
(𝐵3𝜎(1 −𝜓)

𝑘6
+

𝐵4𝜎(𝜓𝑘6 + 𝜉(1 −𝜓))
𝑘6𝑘7

)𝑉1
𝑁

− 𝑘4

]
𝐿. (18)

Recall that at DFE,

𝑆

𝑁
≤ 𝑆0

𝑁0 =
𝜇𝑘2

𝜇(𝜔+ 𝜌1 + 𝜇) + 𝜌2𝑘1
=𝐵5 and

𝑉1
𝑁

≤ 𝑉 0
1

𝑁0 =
𝜇𝜌1

𝜇(𝜔+ 𝜌1 + 𝜇) + 𝜌2𝑘1
=𝐵6.

Thus, letting 𝐵7 =𝐵1𝐵5 +𝐵3𝐵6 and 𝐵8 =𝐵2𝐵5 +𝐵4𝐵6, we have

𝑑Θ𝑓

𝑑𝑡
≤ [𝜎(1 −𝜓)

𝑘6
(𝐵1𝐵5 +𝐵3𝐵6) +

𝜎(𝜓𝑘6 + 𝜉(1 −𝜓))
𝑘6𝑘7

(𝐵2𝐵5 +𝐵4𝐵6) − 𝑘4

]
𝐿

≤ [(𝜎(1 −𝜓)𝑘7𝐵7 +𝐵8𝜎(𝜓𝑘6 + 𝜉(1 −𝜓))𝐿
𝑘6𝑘7

)
− 𝑘4

]
𝐿

≤ 𝑘4

(𝜎(1 −𝜓)𝑘7𝐵7 +𝐵8𝜎(𝜓𝑘6 + 𝜉(1 −𝜓))𝐿
𝑘4𝑘6𝑘7

− 1
)
𝐿

≤ 𝑘4

(
𝑅𝑚𝑣 − 1

)
𝐿.

(19)

The values of 𝑘𝑖, 𝑖 = 1, 2, ..., 8 are given by equation (20)

𝑘1 = (𝜌1 + 𝜇), 𝑘2 = (𝜔+ 𝜌2 + 𝜇), 𝑘3 = (𝜌3 + 𝜇),

𝑘4 = (𝜎 + 𝜃 + 𝛾1 + 𝜇), 𝑘5 = (𝜙1 + 𝛾2 + 𝜇), 𝑘6 = (𝜙2 + 𝜉 + 𝜇),

𝑘7 = (𝜙3 + 𝛿1 + 𝜇), 𝑘8 = (𝛾3 + 𝛿2 + 𝜇).

(20)

It is clear from (19) that 𝑑Θ𝑓

𝑑𝑡
≤ 0 (negative semi-definite) when 𝑅𝑚𝑣 ≤ 1 and equality holding when 𝑅𝑚𝑣 = 1. Therefore, the largest compact set Ω

such that 𝑑Θ𝑓

𝑑𝑡
= 0 when 𝑅𝑚𝑣 ≤ 1 is the singleton 𝐸0. Hence, by La Salle invariance principle [62], the DFE is globally asymptotically stable in Ω. □

5. Uniform persistence and existence of endemic equilibrium

5.1. Uniform persistence

The uniform persistence of the disease will now be established in the context of the model (1). That is, the objective is to determine whether or 
not the number of infectious cases in the population will persist above a certain positive number for a long time period considering the case when 
𝑅𝑚𝑣 > 1.

Definition 5.1. Model (1) is said to be uniformly persistent [57,63] if there exists a constant 0 < 𝜛 < 1, independent of the initial data in Ω̄, such 
that, any solution 𝑥(𝑡) =

(
𝑆(𝑡), 𝑉1(𝑡), 𝑉2(𝑡), 𝐿(𝑡), 𝑄(𝑡), 𝐼𝑎(𝑡), 𝐼𝑠(𝑡), 𝑃 (𝑡), 𝑅(𝑡)

)
of model (1) satisfies

𝑙𝑖𝑚𝑡↦∞𝑖𝑛𝑓𝑆(𝑡) ≥𝜛, 𝑙𝑖𝑚𝑡↦∞𝑖𝑛𝑓𝑉1(𝑡) ≥𝜛, 𝑙𝑖𝑚𝑡↦∞𝑖𝑛𝑓𝑉2(𝑡) ≥𝜛,

𝑙𝑖𝑚𝑡↦∞𝑖𝑛𝑓𝐿(𝑡) ≥𝜛, 𝑙𝑖𝑚𝑡↦∞𝑖𝑛𝑓𝑄(𝑡) ≥𝜛, 𝑙𝑖𝑚𝑡↦∞𝑖𝑛𝑓𝐼𝑎(𝑡) ≥𝜛,

𝑙𝑖𝑚𝑡↦∞𝑖𝑛𝑓𝐼𝑠(𝑡) ≥𝜛, 𝑙𝑖𝑚𝑡↦∞𝑖𝑛𝑓𝑃 (𝑡) ≥𝜛, 𝑙𝑖𝑚𝑡↦∞𝑖𝑛𝑓𝑅(𝑡) ≥𝜛,

provided 𝑥(0) ∈ Ω̄.

To study the uniform persistence of our model, we need the following result:

Lemma 5.2. If 𝑅𝑚𝑣 > 1, then the model system (1) is uniformly persistent and there exists atb least one endemic equilibrium in Ω̄.

Proof. When 𝑅𝑚𝑣 > 1, then by utilizing the Lyapunov function in Theorem 4.4 one can easily see that 𝐸0 is unstable. Actually, if 𝑅𝑚𝑣 > 1, then the 
derivative of the Lyapunov function 𝑑Θ𝑓

𝑑𝑡
> 0 for 𝑆, 𝑉1, 𝑉2 and 𝑅 sufficiently close to 𝑆0, 𝑉 0

1 , 𝑉 0
2 and 𝑅0, respectively, except when 𝐿 = 0. Therefore, 

𝑅𝑚𝑣 > 1 all the solution trajectories beginning from 𝐸0 must leave the neighbourhood of 𝐸0, except those on the positively invariant Ω− axis. Thus, 
𝐸0 have no 𝜔− limit point of any orbit beginning in the boundary of Ω. By using Theorem 4.3 in [64], and similar arguments in (Lemma 1 [57], 
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Theorem 3.5 [65], Theorem 5.2 [63]), we can assert that, when 𝑅𝑚𝑣 > 1, the instability of 𝐸0 implies the uniform persistence of model (1). The 
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uniform persistence and the positive invariance of the compact set Ω imply the existence of an endemic equilibrium in Ω̄ (see Theorem 2.2 in 
[66]). □

5.2. Existence of endemic equilibrium, 𝐸∗

Let 𝐸∗ = (𝑆∗, 𝑉 ∗
1 , 𝑉 ∗

2 , 𝐿∗, 𝑄∗, 𝐼∗
𝑎
, 𝐼∗

𝑠
, 𝑃 ∗, 𝑅∗) be the endemic equilibrium of the model (1). Then after setting the system to zero and evaluating in 

terms of force of infection 𝜆, we have

𝑆∗ =
Λ(𝑘2 + 𝜏2𝜆)

𝜐1 + 𝜐2𝜆+ 𝜏1𝜏2𝜆
2 , 𝑉

∗
1 =

Λ𝜌1
𝜐1 + 𝜐2𝜆+ 𝜏1𝜏2𝜆

2 , 𝑉
∗
2 =

Λ𝜌1𝜌2
𝜐1 + 𝜐2𝜆+ 𝜏1𝜏2𝜆

2 ,

𝐿∗ =
𝜆(𝑚0 + 𝜏1𝜏2𝜆)Λ

𝑘4(𝜐1 + 𝜐2𝜆+ 𝜏1𝜏2𝜆
2)

,𝑄∗ =
𝜆(𝑚0 + 𝜏1𝜏2𝜆)Λ𝜃

𝑘4𝑘5(𝜐1 + 𝜐2𝜆+ 𝜏1𝜏2𝜆
2)

, 𝐼∗
𝑎
=

𝜆(𝑚0 + 𝜏1𝜏2𝜆)Λ𝜎𝑚

𝑘4𝑘6(𝜐1 + 𝜐2𝜆+ 𝜏1𝜏2𝜆
2)

,

𝐼∗
𝑠
=

𝜆(𝑚0 + 𝜏1𝜏2𝜆)Λ𝜙𝜎

𝑘4𝑘6𝑘7(𝜐1 + 𝜐2𝜆+ 𝜏1𝜏2𝜆
2)

, 𝑃 ∗ =
𝜆(𝑚0 + 𝜏1𝜏2𝜆)Λ𝐹𝜃

𝑘4𝑘5𝑘6𝑘7𝑘8(𝜐1 + 𝜐2𝜆+ 𝜏1𝜏2𝜆
2)

,

𝑅∗ =
(𝑎1 + 𝑏1𝜆+ 𝑐1𝜆

2)Λ
𝜇𝑘3𝑘4𝑘5𝑘6𝑘7𝑘8(𝜐1 + 𝜐2𝜆+ 𝜏1𝜏2𝜆

2)
,

(21)

and the total population at endemic gives

𝑁∗ =
(𝑓0 + 𝑓1𝜆+ 𝑓2𝜆

2)Λ

𝜇
∏8

𝑖=3 𝑘𝑖(𝜐1 + 𝜐2𝜆+ 𝜏1𝜏2𝜆
2)

, (22)

where the 𝑘𝑖 parameters are as defined by equation (20), and others as in (23)

𝜐1 = 𝜇(𝑘2 + 𝜌1) + 𝜌1𝜌2, 𝜐2 = 𝑘1𝜏2 + 𝑘2𝜏1,𝑚0 = 𝑘2𝜏1 + 𝜌1𝜏2, 𝜎𝑚 = 𝜎(1 −𝜓),

𝜎𝑛 = 𝜎𝜓,𝜙𝜎 = 𝜉𝜎𝑚 + 𝑘6𝜎𝑛,𝐹𝜃 = 𝜃𝑘6𝑘7𝜙1 + 𝑘5𝑘7𝜙2𝜎𝑚 + 𝑘5𝜙3𝜙𝜎, 𝑎1 = 𝜌1𝜌2𝜌3

8∏
𝑖=4

𝑘𝑖,

𝑏1 = 𝑘3𝑘6𝑘7𝑘8(𝛾1𝑘5 + 𝜃𝛾2)𝑚0 + 𝛾3𝑘3𝑘5𝜙3𝑚0𝜙𝜎 + 𝛾3𝑘3𝑘7(𝜃𝑘6𝜙1 + 𝑘5𝜙2𝜎𝑚)𝑚0,

𝑐1 = 𝜏1𝜏2𝛾3𝑘3𝑘5𝜙3𝜙𝜎 + 𝜏1𝜏2𝑘3𝑘6𝑘7𝑘8(𝜃𝛾2 + 𝛾1𝑘3) + 𝜏1𝜏2𝛾3𝑘3𝑘7(𝑘5𝜙2𝜎𝑚 + 𝜃𝑘6𝜙1),

𝑓2 = 𝜇𝜏1𝜏2𝑘3𝑘6𝑘7𝑘8(𝜃 + 𝑘5) + 𝜇𝜏1𝜏2𝑘3𝑘5𝑘8(𝑘7𝜎𝑚 +𝜙𝜎) + 𝜇𝜏1𝜏2𝑘3𝐹𝜃 + 𝑐1,

𝑓1 = 𝜇𝜏2

8∏
𝑖=3

𝑘𝑖 + 𝜇𝑘3𝑘6𝑘7𝑘8𝑚0(𝜃 + 𝑘5) + 𝜇𝑘3𝑘5𝑘8𝑚0(𝑘7𝜎𝑚 + 𝜙𝜎) + 𝜇𝑘3𝑚0𝐹𝜃 + 𝑏1,

𝑓0 = 𝜐1

8∏
𝑖=3

𝑘𝑖.

(23)

Substituting the expressions in equations (21) and (22) into (2), and simplifying yields the following quadratic in terms of 𝜆:

𝐺(𝜆) =𝐺2𝜆
2 +𝐺1𝜆+𝐺0, (24)

where

𝐺2 = 𝑓2𝑘4𝑘6𝑘7,

𝐺1 = 𝑓1𝑘4𝑘6𝑘7

[
1 − 𝑔(𝜏)𝑅𝑚𝑣

]
, 𝑔(𝜏) = (

𝜐1
𝑚0

)(
𝜏1𝜏2
𝑓1

),

𝐺0 = 𝑓0𝑘4𝑘6𝑘7

[
1 −𝑅𝑚𝑣

]
.

(25)

The endemic equilibria of the model are given by equation (21) with 𝜆∗ a positive root of equation (24). Noting that negative endemic equilibria 
are biologically meaningless, the conditions for 𝐺(𝜆) to have positive real roots are determined below.

It is clear that 𝐺2 > 0 and so the quadratic 𝐺(𝜆) is concave up. We now carry out case analysis to determine the number of positive real zeros of 
𝐺(𝜆).

Case a. Assume that 𝑅𝑚𝑣 > 1. Then 𝐺0 < 0 and hence the vertical intercept of 𝐺(𝜆) is negative. In addition to the fact that 𝐺(𝜆) is a quadratic which 
concave upwards, it follows that 𝐺(𝜆) has two real roots with opposite signs. Therefore, a unique positive equilibrium of the model exists 
whenever 𝑅𝑚𝑣 > 1.

Case b. Assume that 𝑅𝑚𝑣 = 1. Then 𝐺0 = 0 and so the quadratic 𝐺(𝜆) reduces to 𝐺(𝜆) = 𝜆(𝐺2𝜆 + 𝐺1), with roots 𝜆∗ = 0 (for the situation arising at 
DFE) and 𝜆∗ = −𝐺1

𝐺2
. However, it is obvious from equation (25), that supposing 𝑔(𝜏) < 1, then 𝐺1 ≥ 0 for 𝑅𝑚𝑣 = 1. Hence, no positive endemic 

equilibrium occurs for 𝑅𝑚𝑣 = 1.

Case c. Assume that 𝑅𝑚𝑣 < 1. Then 𝐺2, 𝐺1, 𝐺0 > 0 when the effect of vaccination and outbreak of infection among individuals in class 𝑉1 is ignored. 
Therefore, it is obvious that no positive real root occurs for 𝑅𝑚𝑣 < 1. This has ruled out the possibility of backward bifurcation.

Note case c also follows from Theorem 4.4, since global stability of DFE implies that there are no other equilibria. Hence, we have the following 
result.

Proposition 5.3. For the case where vaccination impacts are ignored, then model (1) has a unique endemic equilibrium whenever 𝑅𝑚𝑣 > 1 and no positive 
176

endemic equilibrium when 𝑅𝑚𝑣 ≤ 1.



Alexandria Engineering Journal 80 (2023) 167–190N.I. Akinwande, S.A. Somma, R.O. Olayiwola et al.

Fig. 5. The figure depicts the bifurcation diagram showing on the right the case of impact of vaccination and break-through of infection (𝜏2 = 0.3, 𝜌1 = 𝜌2 = 𝜌3 ≠ 0.00); 
and without impact of vaccination and breakthrough of infection (𝜌1 = 𝜌2 = 𝜌3 = 𝜏2 = 0.00) on the left.

5.3. Bifurcation analysis

As in [67], we will use the centre manifold theory to determine the direction of bifurcation for the COVID-19 model (1) in Theorem 5.4.

Theorem 5.4. If 𝑤𝑖 <
𝑥∗
𝑖
𝐵∗

2𝑁∗ , for 𝑖 = 1, 2, then 𝑎 < 0 and the model system (1) will undergo a forward bifurcation in the absence of vaccination effects 
(𝜌1 = 𝜌2 = 𝜌3 = 𝜏2 = 0). Otherwise a backward bifurcation may occur.

Proof. The proof of Theorem 5.4 follows from centre manifold theory as proved in Appendix A. □

Since 𝑎 < 0 (from Theorem 5.4) and 𝑏 > 0, the COVID-19 model (1) does not undergo backward bifurcation at 𝑅𝑚𝑣 = 1. That is, the DFE does not 
co-exist with stable endemic equilibrium. Hence, following similar conclusion of Goudiby et al. [68], we obtain the following result.

Theorem 5.5. In the absence of vaccination, the unique endemic equilibrium of model (1) for model (1) is globally asymptotically stable if 𝑅𝑚𝑣 > 1.

The above result when 𝑅𝑚𝑣 > 1 is shown graphically in Fig. 5. The red line in Fig. 5 represents the instability area of the disease-free equilibrium, 
𝐸0, and the blue line is the stability area of DFE and the endemic before and after the threshold stability switch line and 𝑅𝑚𝑣 =𝑅𝑐

0 < 1 and 𝑅𝑚𝑣 = 1
respectively. When 𝑅𝑚𝑣 > 1, the blue line moves upwards, hence, the endemic equilibrium 𝐸∗ is globally asymptotically stable.

6. Optimal control system

An optimal control is a branch of mathematics that comes into play seeking for optimal ways of controlling infectious diseases in the midst of 
limited resources. In this section, an analysis to determine an optimal control strategy depends on three controls, compliance to media campaign, 
first dose vaccination and second-dose vaccination will be carried out. It is assumed that the media compliance rate 𝜑, first-dose vaccination rate 
𝜌1 and second-dose vaccination rate 𝜌2 are now time dependent, and will therefore act as control variables. Using these controls, the model in (1)

becomes

𝑑𝑆(𝑡)
𝑑𝑡

= Λ+𝜔𝑉1 −
𝜏1𝑐(1 − 𝜖𝜑(𝑡))(𝐼𝑎 + 𝜂𝐼𝑠)

𝑁
𝑆 − (𝜌1(𝑡) + 𝜇)𝑆,

𝑑𝑉1(𝑡)
𝑑𝑡

= 𝜌1(𝑡)𝑆 −
𝜏2𝑐(1 − 𝜖𝜑(𝑡))(𝐼𝑎 + 𝜂𝐼𝑠)

𝑁
𝑉1 − (𝜔+ 𝜌2(𝑡) + 𝜇)𝑉1,

𝑑𝑉2(𝑡)
𝑑𝑡

= 𝜌2(𝑡)𝑉1 − (𝜌3 + 𝜇)𝑉2,

𝑑𝐿(𝑡)
𝑑𝑡

=
𝜏1𝑐(1 − 𝜖𝜑(𝑡))(𝐼𝑎 + 𝜂𝐼𝑠)

𝑁
𝑆 +

𝜏2𝑐(1 − 𝜖𝜑(𝑡))(𝐼𝑎 + 𝜂𝐼𝑠)
𝑁

𝑉1 − (𝜎 + 𝜃 + 𝛾1 + 𝜇)𝐿,

𝑑𝑄(𝑡)
𝑑𝑡

= 𝜃𝐿− (𝜙1 + 𝛾2 + 𝜇)𝑄.

𝑑𝐼𝑎(𝑡)
𝑑𝑡

= 𝜎(1 −𝜓)𝐿− (𝜙2 + 𝜉 + 𝜇)𝐼𝑎,

𝑑𝐼𝑠(𝑡)
𝑑𝑡

= 𝜎𝜓𝐿+ 𝜉𝐼𝑎 − (𝜙3 + 𝛿1 + 𝜇)𝐼𝑎,

𝑑𝑃 (𝑡)
𝑑𝑡

= 𝜙1𝑄+ 𝜙2𝐼𝑎 +𝜙3𝐼𝑠 − (𝛾3 + 𝛿2 + 𝜇)𝑃 ,

𝑑𝑅(𝑡)
𝑑𝑡

= 𝜌3𝑉2 + 𝛾1𝐿+ 𝛾2𝑄+ 𝛾3𝑃 − 𝜇𝑅.

(26)

For this, we consider the objective functional

𝐽
[
𝜑,𝜌1, 𝜌2

]
=

𝑡𝑓 [
𝑚1𝐼𝑎 +𝑚2𝐼𝑠 +

1(
𝑚3𝜑

2(𝑡) +𝑚4𝜌
2(𝑡) +𝑚5𝜌

2(𝑡)
)]

𝑑𝑡, (27)
177

∫
0

2 1 2
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where the parameters 𝑚1, 𝑚2, 𝑚3, 𝑚4 and 𝑚5 are the weight factors to help balance each term in the integrand in (27), so that none of the terms 
dominates. The terms in the integrand in (27) are explained as follows:

i. The term 𝑚1𝐼𝑎 +𝑚2𝐼𝑠 represents the cost associated with monitoring infected individuals in all stages (asymptomatic and symptomatic).

ii. The term 𝑚3𝜑
2(𝑡) represents the cost associated with media campaign to educate the public on COVID-19 safety protocols.

iii. The terms 𝑚4𝜌
2
1(𝑡) and 𝑚5𝜌

2
2(𝑡) represents the cost associated with the first and second doses of vaccination, respectively.

Our aim is to minimize the total number of infected individuals while ensuring that the cost associated with the controls is minimized. The goal is 
to find an optimal control triplet (𝜑∗(𝑡), 𝜌∗1(𝑡), 𝜌

∗
2(𝑡)), such that;

𝐽
[
𝜑∗, 𝜌∗1 , 𝜌

∗
2

]
= 𝑚𝑖𝑛

⏟⏟⏟

(𝜑,𝜌1 ,𝜌2)∈Ω0
𝑝

𝐽
[
𝜑,𝜌1, 𝜌2

]
, (28)

where

Ω0
𝑝
=
{
(𝜑(𝑡), 𝜌1(𝑡), 𝜌2(𝑡)) ∈𝐿1(0, 𝑡𝑓 ) ∣ 𝑎1 ≤ 𝜑(𝑡) ≤ 𝑏1, 𝑎2 ≤ 𝜌1(𝑡) ≤ 𝑏2, 𝑎3 ≤ 𝜌2(𝑡) ≤ 𝑏3

}

6.1. Analysis of the optimal control system

6.1.1. Existence of optimal control

In this subsection, we verify the existence of the optimal solution of the optimal solution of the model (26) with respect to the objective functional 
(27). The existence of the control triplet (𝜑∗(𝑡) = 𝑢∗1 , 𝜌

∗
1(𝑡) = 𝑢∗2 , 𝜌

∗
2(𝑡) = 𝑢∗3) is guaranteed in the set

Γ =
{
𝑢𝑖 is measurable, 0 ≤ 𝑢𝑖 ≤ 1 for 𝑡 ∈ [0, 𝑡𝑓 ], 𝑖 = 1,2,3

}
,

which minimizes the cost functional 𝐽 .

Theorem 6.1. There exist optimal controls 𝑢∗1 , 𝑢
∗
2 and 𝑢∗3 in Γ associated with the optimal control problem (26) and (27) within the fixed interval 

[
0, 𝑡𝑓

]
.

Proof. We follow the procedure and utilize the results in the works of [5,69] to prove the theorem. To ascertain the existence of optimal controls, 
the under listed conditions must be satisfied:

(a) the boundedness of the solution of the optimal control (26) confirms the existence of the solution of system (26);

(b) the optimal control set and the associated state variables are non-empty;

(c) the solution of the system (26) is bounded above by a linear function in the control as well as state variables;

(d) the integrand in the cost functional 𝐽 , 𝐿(𝐼𝑎, 𝐼𝑠, 𝑢𝑖) =𝑚1𝐼𝑎 +𝑚2𝐼𝑠 +
𝑚3
2 𝑢21(𝑡) +

𝑚4
2 𝑢22 +

𝑚5
2 𝑢23 is convex on the control set Γ;

(e) there exist constants 𝑏1, 𝑏2 and 𝑞 > 0 such that

𝑚1𝐼𝑎 +𝑚2𝐼𝑠 +
𝑚3
2

𝑢21(𝑡) +
𝑚4
2

𝑢22 +
𝑚5
2

𝑢23 ≤ 𝑏1 + 𝑏2

( 3∑
𝑖=1

|𝑢𝑖|2)
𝑞∗
2
,

where 𝑏1 depends upon upper bounds of 𝐼𝑎 and 𝐼𝑠, and 𝑏2 =
𝑚𝑎𝑥

2 {𝑚3, 𝑚4, 𝑚5} and 𝑞∗ = 2. □

6.1.2. Characterization of optimal control

We apply the Pontryagin’s Maximum Principle as in Gweryina et al. [35] to find the necessary conditions for the optimal controls. This Principle 
converts equations (26) and (27) into a problem of minimizing point-wise Hamiltonian, with respect to the controls 𝜑(𝑡), 𝜌1(𝑡) and 𝜌2(𝑡). The 
Hamiltonian is given by;

𝐻 =𝑚1𝐼𝑎 +𝑚2𝐼𝑠 +
1
2

(
𝑚3𝜑

2(𝑡) +𝑚4𝜌
2
1(𝑡) +𝑚5𝜌

2
2(𝑡) + 𝜆∗!

[
Λ+𝜔𝑉1 −

𝜏1𝑐(1 − 𝜖𝜑(𝑡))(𝐼𝑎 + 𝜂𝐼𝑠)
𝑁

𝑆 − (𝜌1(𝑡) + 𝜇)𝑆
]

+ 𝜆∗2

[
𝜌1(𝑡)𝑆 −

𝜏2𝑐(1 − 𝜖𝜑(𝑡))(𝐼𝑎 + 𝜂𝐼𝑠)
𝑁

𝑉1 − (𝜔+ 𝜌2(𝑡) + 𝜇)𝑉1
]
+ 𝜆∗3

[
𝜌2(𝑡)𝑉1 − (𝜔+ 𝜌3 + 𝜇)𝑉2

]

+ 𝜆∗4

[ 𝜏1𝑐(1 − 𝜖𝜑(𝑡))(𝐼𝑎 + 𝜂𝐼𝑠)
𝑁

𝑆 +
𝜏2𝑐(1 − 𝜖𝜑(𝑡))(𝐼𝑎 + 𝜂𝐼𝑠)

𝑁
𝑉1 − (𝜎 + 𝜃 + 𝛾1 + 𝜇)𝐿

]
+ 𝜆∗5

[
𝜃𝐿− (𝜙1 + 𝛾2 + 𝜇)𝑄

]

+ 𝜆∗6

[
𝜎(1 −𝜓)𝐿− (𝜙2 + 𝜉 + 𝜇)𝐼𝑎

]
+ 𝜆∗7

[
𝜎𝜓𝐿+ 𝜉𝐼𝑎 − (𝜙3 + 𝛿1 + 𝜇)𝐼𝑎

]
+ 𝜆∗8

[
𝜙1𝑄+ 𝜙2𝐼𝑎 + 𝜙3𝐼𝑠 − (𝛾3 + 𝛿2 + 𝜇)𝑃

]

+ 𝜆∗9

[
𝜌3𝑉2 + 𝛾1𝐿+ 𝛾2𝑄+ 𝛾3𝑃 − 𝜇𝑅

]
,

(29)

where 𝜆∗1 , 𝜆
∗
2 , 𝜆

∗
3 , 𝜆

∗
4 , 𝜆

∗
5 , 𝜆

∗
6 , 𝜆

∗
7 , 𝜆

∗
8 and 𝜆∗9 are the adjoint variable by applying Pontryagin’s Maximum Principle [35], we obtain the following theorem.

Theorem 6.2. There exists an optimal control triplet 𝜑∗(𝑡), 𝜌∗1(𝑡) and 𝜌∗2(𝑡) and the corresponding solution, (𝑆∗, 𝑉 ∗
1 , 𝑉 ∗

2 , 𝐼∗
𝑎
, 𝐼∗

𝑠
, 𝑃 ∗, 𝑅∗) that minimizes [ ]
178

𝐽 𝜀, 𝜌1, 𝜌2 over Ω0
𝑝
. Furthermore, there exist adjoint functions 𝜆∗1 , 𝜆

∗
2 , 𝜆

∗
3 , 𝜆

∗
4 , 𝜆

∗
5 , 𝜆

∗
6 , 𝜆

∗
7 , 𝜆

∗
8 and 𝜆∗9 such that
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𝑑𝜆∗1
𝑑𝑡

=
𝜏1𝑐(1 − 𝜖𝜑(𝑡))(𝐼∗

𝑎
+ 𝜂𝐼∗

𝑠
)

𝑁∗ (𝜆∗1 − 𝜆∗4) +
𝜏1𝑐(1 − 𝜖𝜑(𝑡))(𝐼∗

𝑎
+ 𝜂𝐼∗

𝑠
)𝑆∗

𝑁∗2 (𝜆∗4 − 𝜆∗1) +
𝜏1𝑐(1 − 𝜖𝜑(𝑡))(𝐼∗

𝑎
+ 𝜂𝐼∗

𝑠
)𝑉 ∗

1
𝑁∗2 (𝜆∗4 − 𝜆∗2) + 𝜌1(𝑡)(𝜆∗1 − 𝜆∗2) + 𝜆∗1𝜇,

𝑑𝜆∗2
𝑑𝑡

=
𝜏1𝑐(1 − 𝜖𝜑(𝑡))(𝐼∗𝑎 + 𝜂𝐼∗𝑠 )𝑆

∗

𝑁∗2 (𝜆∗4 − 𝜆∗1) +
𝜏2𝑐(1 − 𝜖𝜑(𝑡))(𝐼∗𝑎 + 𝜂𝐼∗𝑠 )

𝑁∗ (𝜆∗2 − 𝜆∗4) +
𝜏2𝑐(1 − 𝜖𝜑(𝑡))(𝐼∗

𝑎
+ 𝜂𝐼∗

𝑠
)𝑉 ∗

1
𝑁∗2 (𝜆∗4 − 𝜆∗2)

+𝜔(𝜆∗2 − 𝜆∗1) + 𝜌2(𝑡)(𝜆∗2 − 𝜆∗3) + 𝜆∗2𝜇,

𝑑𝜆∗3
𝑑𝑡

=
𝜏1𝑐(1 − 𝜖𝜑(𝑡))(𝐼∗

𝑎
+ 𝜂𝐼∗

𝑠
)𝑆∗

𝑁∗2 (𝜆∗4 − 𝜆∗1) +
𝜏2𝑐(1 − 𝜖𝜑(𝑡))(𝐼∗

𝑎
+ 𝜂𝐼∗

𝑠
)𝑉 ∗

1
𝑁∗2 (𝜆∗4 − 𝜆∗2) + 𝜌3(𝜆∗3 − 𝜆∗9) + 𝜆∗3𝜇,

𝑑𝜆∗4
𝑑𝑡

=
𝜏1𝑐(1 − 𝜖𝜑(𝑡))(𝐼∗

𝑎
+ 𝜂𝐼∗

𝑠
)𝑆∗

𝑁∗2 (𝜆∗4 − 𝜆∗1) +
𝜏2𝑐(1 − 𝜖𝜑(𝑡))(𝐼∗

𝑎
+ 𝜂𝐼∗

𝑠
)𝑉 ∗

1
𝑁∗2 (𝜆∗4 − 𝜆∗2),+𝛾1(𝜆∗4 − 𝜆∗9) + 𝜃(𝜆∗4 − 𝜆∗5) + 𝜎(𝜆∗4 − 𝜆∗6(1 −𝜓) − 𝜆∗7𝜓) + 𝜆∗4𝜇,

𝑑𝜆∗5
𝑑𝑡

=
𝜏1𝑐(1 − 𝜖𝜑(𝑡))(𝐼∗

𝑎
+ 𝜂𝐼∗

𝑠
)𝑆∗

𝑁∗2 (𝜆∗4 − 𝜆∗1) +
𝜏2𝑐(1 − 𝜖𝜑(𝑡))(𝐼∗𝑎 + 𝜂𝐼∗𝑠 )𝑉

∗
1

𝑁∗2 (𝜆∗4 − 𝜆∗2),+𝛾2(𝜆∗5 − 𝜆∗9) + 𝜙1(𝜆∗5 − 𝜆∗8) + 𝜆∗5𝜇,

𝑑𝜆∗6
𝑑𝑡

= −𝑚1 +
𝜏1𝑐(1 − 𝜖𝜑(𝑡))𝑆∗

𝑁∗ (𝜆∗1 − 𝜆∗4) +
𝜏1𝑐(1 − 𝜖𝜑(𝑡))(𝐼∗

𝑎
+ 𝜂𝐼∗

𝑠
)𝑆∗

𝑁∗2 (𝜆∗4 − 𝜆∗1),+
𝜏2𝑐(1 − 𝜖𝜑(𝑡))𝑉 ∗

1
𝑁∗ (𝜆∗2 − 𝜆∗4)

+
𝜏2𝑐(1 − 𝜖𝜑(𝑡))(𝐼∗

𝑎
+ 𝜂𝐼∗

𝑠
)𝑉 ∗

1
𝑁∗2 (𝜆∗4 − 𝜆∗2) + 𝜉(𝜆∗6 − 𝜆∗7) +𝜙2(𝜆∗6 − 𝜆∗8) + 𝜆∗6𝜇,

𝑑𝜆∗7
𝑑𝑡

= −𝑚2 +
𝜏1𝑐(1 − 𝜖𝜑(𝑡))𝜂𝑆∗

𝑁∗ (𝜆∗1 − 𝜆∗4) +
𝜏1𝑐(1 − 𝜖𝜑(𝑡))(𝐼∗

𝑎
+ 𝜂𝐼∗

𝑠
)𝑆∗

𝑁∗2 (𝜆∗4 − 𝜆∗1) +
𝜏2𝑐(1 − 𝜖𝜑(𝑡))𝜂𝑉 ∗

1
𝑁∗ (𝜆∗2 − 𝜆∗4)

+
𝜏2𝑐(1 − 𝜖𝜑(𝑡))(𝐼∗

𝑎
+ 𝜂𝐼∗

𝑠
)𝑉 ∗

1
𝑁∗2 (𝜆∗4 − 𝜆∗2) + 𝜙3(𝜆∗7 − 𝜆∗8) + 𝜆∗7(𝛿1 + 𝜇),

𝑑𝜆∗8
𝑑𝑡

=
𝜏1𝑐(1 − 𝜖𝜑(𝑡))(𝐼∗

𝑎
+ 𝜂𝐼∗

𝑠
)𝑆∗

𝑁∗2 (𝜆∗4 − 𝜆∗1) +
𝜏2𝑐(1 − 𝜖𝜑(𝑡))(𝐼∗

𝑎
+ 𝜂𝐼∗

𝑠
)𝑉 ∗

1
𝑁∗2 (𝜆∗4 − 𝜆∗2) + 𝛾3(𝜆∗8 − 𝜆∗9) + 𝜆∗8(𝛿2 + 𝜇),

𝑑𝜆∗9
𝑑𝑡

=
𝜏1𝑐(1 − 𝜖𝜑(𝑡))(𝐼∗

𝑎
+ 𝜂𝐼∗

𝑠
)𝑆∗

𝑁∗2 (𝜆∗4 − 𝜆∗1) +
𝜏2𝑐(1 − 𝜖𝜑(𝑡))(𝐼∗

𝑎
+ 𝜂𝐼∗

𝑠
)𝑉 ∗

1
𝑁∗2 (𝜆∗4 − 𝜆∗2) + 𝜆∗9𝜇,

(30)

with transversality conditions; 𝜆𝑖(𝑡𝑓 ) = 0, 𝑖 = 1, 2, ..., 9 and 𝑁∗ = 𝑆∗ + 𝑉 ∗
1 + 𝑉 ∗

2 +𝐿∗ + 𝐼∗
𝑎
+ 𝐼∗

𝑠
+ 𝑃 ∗ +𝑅∗. The following characterization holds;

𝜑∗(𝑡) =𝑚𝑖𝑛
[
𝑚𝑎𝑥

(
𝑎1,

1
𝑚3

( 𝜏1𝑐𝜖(𝐼∗𝑎 + 𝜂𝐼∗
𝑠
)𝑆∗

𝑁∗ (𝜆∗4 − 𝜆∗1) +
𝜏2𝑐𝜖(𝐼∗𝑎 + 𝜂𝐼∗

𝑠
)𝑉 ∗

1
𝑁∗ (𝜆∗4 − 𝜆∗2)

)
, 𝑏1

)]
,

𝜌∗1(𝑡) =𝑚𝑖𝑛
[
𝑚𝑎𝑥

(
𝑎2,

(𝜆∗1 − 𝜆∗2)𝑆
∗

𝑚4

)
, 𝑏2

]
,

𝜌∗2(𝑡) =𝑚𝑖𝑛
[
𝑚𝑎𝑥

(
𝑎3,

(𝜆∗2 − 𝜆∗3)𝑉
∗
1

𝑚5

)
, 𝑏3

]
.

(31)

Proof. The proof of Theorem 6.2 is given in Appendix B. □

7. Simulations

In this section, we present the sensitivity analysis of 𝑅𝑚𝑣, and the numerical simulations of the model (1) and the optimal control model.

7.1. Sensitivity analysis

In determining the factors responsible for the morbidity and mortality rates due to COVID-19 pandemic, it is important to carry out sensitivity 
analysis in order to identify the key parameters of the model necessitating the transmission and prevalence. A sensitivity of a variable with respect 
to model parameters is usually measured by sensitivity index. To account for this, we applied normalized forward sensitivity index as in Deressa et 
al. [70] on the control reproduction number as given by the equation below.

𝑆
𝑅𝑚𝑣
𝑝 =

𝜕𝑅𝑚𝑣

𝜕𝑝

𝑝

𝑅𝑚𝑣

, (32)

where 𝑝 represents any parameter in the model as contained in 𝑅𝑒𝑣. For instance, the sensitivity index (S.I) of Λ is

§𝑅𝑚𝑣

Λ =
𝜕𝑅𝑚𝑣

𝜕Λ
Λ

𝑅𝑚𝑣

= 1,

and similarly for other parameters. Hence, we obtain the sensitivity indices of 𝑅𝑚𝑣 as given in Table 3 based on the parameter values in Table 2.

Note that 𝑆𝑅𝑚𝑣
𝑝 has a maximum value of 1. 𝑆𝑅𝑚𝑣

𝑝 = 1 implies an increase (decrease) of 𝑝 by 𝑥% increases (decreases) 𝑅𝑚𝑣 by 𝑥%. On the contrary, 
𝑆

𝑅𝑚𝑣
𝑝 = −1 indicates that an increase (decrease) of 𝑝 by 𝑥% decreases (increases) 𝑅𝑚𝑣 by 𝑥%. The sensitivity results in Table 3 reveal that, the 

disease transmission and contact rates have impacts in controlling the spread of the disease as obtained in the works of [5,25]. Meanwhile, first dose 
vaccination rate in Table 3 has a negative correlation with the reproduction number, implying that, it can supply to the body the initial immunity 
needed to fight against the epidemic, as observed by [38].

7.2. Numerical simulation of model (1)

Here, we carried out different numerical experiments using the initial data relevant to COVID-19 cases in Nigeria as in Tables 1 and 2 and 
presented the results with discussion in the figures below. In Fig. 6, the plots show that an increase in the compliance to COVID-19 guidelines on 
179

prevention and control reduces significantly the latent and infected population, hence reducing the spread of COVID-19 as stated by [23].
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Table 3

Sensitivity indices (S.I) of the parameter values.

Parameter S.I Parameter S.I

Λ 1 𝜌1 −0.2849713377

𝜌2 −0.2449485467 𝜌3 −2.152676479 × 10−10

Ω 0.2654803270 𝛿1 −0.09697582619

𝜏1 0.9484008795 𝜏2 0.05159912062

𝑐 0.9999999999 𝜖 −0.8181818183

𝜑 −0.8181818183 𝜙2 −0.006279000746

𝜙3 −0.07884213514 𝜃 −0.02199582079

𝜂 0.2640423100 𝜎 0.9430108280

𝛾1 −0.9098271327 𝜉 −0.6144950526

Fig. 6. Simulation of model (1) showing plots of latent and total infected (Asymptomatic and Symptomatic) individuals with media compliance (𝜑) increasing from 
0.1 to 1 in step of 0.1 when vaccines are not in use. Apart from 𝑐 = 2, all parameters used are from Table 2 with initial conditions in Table 1. The arrow in the figures 
illustrates the direction of increase in compliance.

Fig. 7. Simulation of model (1) showing plots of latent and total infected (Asymptomatic and Symptomatic) individuals with vaccination doses (𝜌1 , 𝜌2) increasing 
from 0.1 to 1 in step of 0.1 when media is suspended. Apart from 𝑐 = 2, all parameters used are from Table 2 with initial conditions in Table 1. The arrow in the 
figures illustrates the direction of increase in first and second doses of COVID-19 vaccine.

Fig. 7 showed that a corresponding increase in first and second doses is accompany by a corresponding decrease in the number of both the 
latent and infected COVID-19 cases. This is consistent with the results of the works by [38,39,41]. We observed from Figs. 6 and 7 that media has 
more impact on COVID-19 outbreak than vaccination since it reduces the total number of infected individuals to about 4.02 × 108 less than 4.1 × 108
180

achieved by double dose vaccination intervention.
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Fig. 8. Simulation of model (1) showing plots of latent and total infected (Asymptomatic and Symptomatic) individuals with media compliance and double dose 
vaccination (𝜑, 𝜌1, 𝜌2) increasing from 0.1 to 1 in step of 0.1 Apart from 𝑐 = 2, all parameters used are from Table 2 with initial conditions in Table 1. The arrow in 
the figures illustrates the direction of increase in compliance, first and second doses of COVID-19 vaccine.

Fig. 9. Simulation of model (1) showing plots of latent and asymptomatic individuals with various interventions. Apart from 𝑐 = 2, all parameters used are from 
Table 2 with initial conditions in Table 1.

Fig. 8 shows that, an increase in media compliance, first and second doses of vaccine eliminates the latently infected individuals within a week 
and dragged the total number of asymptomatic and symptomatic individuals to a minimal level of about 3.9 × 108 which is fewer compared to the 
numbers achieved by the interventions illustrated in Figs. 6 and 7. Thus, giving a better option for mitigating the spread of the pandemic. The plots 
in Fig. 9 show that over a long period of implementation, double dose vaccination strategy is most useful in preventing susceptible individuals from 
contracting COVID-19 among the latent and asymptomatic infectives since compliance to COVID-19 control guidelines seems to fade out with time. 
This result agrees with the report by [71] (which says, the efficiency of media campaign in disease control is constrained by time, resources and 
environmental factors); and the present reality in Nigeria, where most individuals are no longer adhering to COVID-19 protocols such as wearing 
of face masks in public places, regular washing of hands and use of alcohol-based sanitizer. Thus, continuous media campaigns with double dose 
vaccination should be prioritized if eradication of the pandemic is still the top agenda of the stake holders.

The next numerical results illustrates that the disease-free equilibrium is globally stable for some parameter values. In particular, Fig. 10 shows 
that the solution trajectories converge towards the susceptible domain of the disease-free equilibrium, 𝐸0 = (4.6827, 0.5404, 0.02734, 0, 0, 0, 0, 0, 1.8079) ×
108 as time approaches infinity for 𝑅𝑚𝑣 = 0.09079 < 1. On the other hand, the endemic equilibrium 𝐸∗ = (4.6755, 0.5396, 0.02730, 0.000277,0.00000569,
0.00020428,0.00000205,1.8154) × 108 is globally stable when 𝑅𝑚𝑣 = 1.0063 > 1. The solution trajectories diverge away from the susceptible domain in 
Fig. 11.

7.3. Numerical simulation of the optimal control model

In this subsection, we discuss numerical results of model (30) to illustrate the impact of various control strategies on the spread of COVID-19 
using forward-backward Runge Kutta method. We adopted initial data relevant to COVID-19 transmission dynamics in Nigeria as shown in Table 1
181

and the parameters in Table 2 with 𝜓 = 0.64, 𝜏2 = 0.030 and 𝑐 = 2 such that 𝑅𝑚𝑣 = 1.00063 > 1 to generate Figs. 12-17.
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Fig. 10. Disease-free solution trajectories, (𝑆0 , 𝑉 0
1 , 𝑉 0

2 , 𝐿0, 𝑄0, 𝐼0
𝑎
, 𝐼0

𝑠
, 𝑃 0, 𝑅0) = (176725630, 17914944, 8197832, 4465192, 4726096, 𝐼𝑎(0), 255190, 2572, 249476). Parameter 

values are as in Table 2 and 𝐼𝑎(0) = 100000 ∶ 1000000 ∶ 8000000.

Fig. 11. Endemic solution trajectories, (𝑆0, 𝑉 0
1 , 𝑉 0

2 , 𝐿0, 𝑄0, 𝐼0
𝑎
, 𝐼0

𝑠
, 𝑃 0, 𝑅0) = (176725630, 17914944, 8197832, 4465192, 4726096, 𝐼𝑎(0), 255190, 2572, 249476). Parameter val-

ues are as in Table 2 with 𝑐 = 3, 𝜑 = 0.64, 𝜏2 = 0.030 and 𝐼𝑎(0) = 100000 ∶ 1000000 ∶ 8000000.

7.3.1. Strategy one: implementing media campaign (𝑢1 = 𝜑) only

There is a significant difference in the number of latent and total infectious (asymptomatic+symptomatic) with and without control (Fig. 12). 
In particular, the number of latent group with and without control at the end of the period is 2.5 × 106 and 6.4 × 106, respectively, in Fig. 12a. On 
the other hand, the total number of infectious group is 5.3 × 106 with control and 6.4 × 106 without control in Fig. 12b. To achieve this, the control 
profile is implemented at maximum rate for the whole period. The control 𝑢1 is used at its maximum level for 10 days and decreases towards zero in 
Fig. 12c. That means, the use of media campaign strategy for controlling COVID-19 needs maximum attention within the first days of the epidemic 
outbreak, as supported by the outcome in the work of [23].

7.3.2. Strategy two: administrating of first dose (𝑢2 = 𝜌1) only

The number of latent individuals at the end of the period is 2.75 × 106 and 4.4 × 106 for the cases of control and no control respectively (Fig. 13). 
Meanwhile, the total number of asymptomatic and symptomatic with (out) control is 5.6 × 106 (6.4 × 106) in Fig. 13b. The control profile for control 
𝑢2 is depicted in Fig. 13(c). It requires a maximum implementation through out 10 day period before declining. This indicates that, first dose 
vaccination is important for reducing the disease susceptibility, however, it does not support complete immunity for COVID-19 [7].

7.3.3. Strategy three: implementing media campaign and first dose of vaccination (𝑢1 , 𝑢2) only

Here, a pronounced difference is noticed in the total number of latent and infectious with (out) controls 𝑢1, 𝑢2. More precisely, the total number 
of latent (infectious) with controls is 1.5 × 106 (4.8 × 106) and without controls is 4.3 × 106 (6.4 × 106) (Fig. 14). It is clear that implementing 𝑢1, 𝑢2
optimally reduces the disease prevalence far better than 𝑢1 or 𝑢2 only. The control profile for the controls 𝑢1, 𝑢2 is shown in Fig. 14c, where both are 
implemented in the period of 10 days.

7.3.4. Strategy four: administrating double dose vaccination (𝑢2, 𝑢3 = 𝜌2) only

We observed a wide difference in latent (infectious) population with and without controls. With controls 𝑢2, 𝑢3, the latent decreases to 1.1 × 106
and the total number of infectious individuals decline to its carrying capacity of 5.2 × 106. However, when controls are not in use, latent individuals 
remain 4.3 × 106 and infectious 6.4 × 106 in Fig. 15. The control profiles for 𝑢2, 𝑢3 are given by Fig. 15c. To achieve the above, it requires maximum 
of 9.9 days for 𝑢2 and 10 days for 𝑢3 before declining. In comparing strategies 2 and 4, it is clear from Figs. 13 and 15 that, the second dose after 
182

the first dose is necessary for eradicating the disease since strategy 4 has fewer cases of the epidemic in line with the results of [40,41].
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Fig. 12. Number of (a) new cases for latent individuals, (b) asymptomatic+symptomatic individuals, and (c) control profile as a function of time in the presence and 
absence of optimal control 𝑢1 . All parameters used are as given in Table 2.

Fig. 13. Number of (a) new cases for latent individuals, (b) asymptomatic+symptomatic individuals, and (c) control profile as a function of time in the presence and 
absence of optimal control 𝑢2 . All parameters used are as given in Table 2.

7.3.5. Strategy five: implementing media campaign with double dose vaccination (𝑢1, 𝑢2, 𝑢3)
The application of all controls demonstrated a significant reduction in the number of latent and asymptomatic+symptomatic individuals com-

pared to other strategies. The total number of latent (infectious) with all the controls is 0.6 ×106 (4.6 ×106) and without controls is 4.3 ×106 (6.4 ×106) 
at the end of the period. The control profile in Fig. 16 shows that 𝑢1, 𝑢2 and 𝑢3 are to be maximized respectively in 10 days and 9.9 days before 
approaching to zero.

Fig. 17 shows the comparison of all the above strategies. We noticed that strategy five is the best for reducing COVID-19 burden due to latent, 
asymptomatic and symptomatic individuals. This is in support of the outcome of [25] which says that combined strategies are better than single 
controls on COVID-19 cases reduction. Inasmuch as strategy four is better than strategy three in protecting susceptible people from latent infectives, 
it is important to emphasis that strategy three ranks second in averting the total number of infectives. It is clear from Fig. 17 that taking first dose 
of COVID-19 vaccine without the second dose can not cause a break in the spreading trend of the pandemic as pointed out in the WHO’s reports of 
2020 [7].

8. Conclusions

In this paper, a basic mathematical model for assessing the impacts of media campaign and double dose vaccination on the dynamics of COVID-
183

19 is formulated. The qualitative features of the model were investigated. The model has two equilibria, the disease-free equilibrium (DFE) and the 
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Fig. 14. Number of (a) new cases for latent individuals, (b) asymptomatic+symptomatic individuals, and (c) control profile as a function of time in the presence and 
absence of optimal control 𝑢1 , 𝑢2 . All parameters used are as given in Table 2.

Fig. 15. Number of (a) new cases for latent individuals, (b) asymptomatic+symptomatic individuals, and (c) control profile as a function of time in the presence and 
absence of optimal control 𝑢2 , 𝑢3 . All parameters used are as given in Table 2.

endemic equilibrium. Theoretical results show that, the model conditionally rules out the phenomenon of backward bifurcation where a stable DFE 
coexists with a stable endemic equilibrium, considering the scenario by which double vaccination is suspended. Consequently, the disease-free and 
endemic equilibria for the model are stable (both locally and globally) when 𝑅𝑚𝑣 < 1 and 𝑅𝑚𝑣 > 1, respectively. This suggests that COVID-19 can 
be eradicated from the community if media campaign and double dose vaccination acquired sufficient infection blocking capacity to subject (and 
maintain) 𝑅𝑚𝑣 always to a value below unity. Results from sensitivity analysis showed that, a positive correlation of transmission parameters and 
negative one in terms of media information, first and second doses vaccine was observed with respect to the reproduction number. This implies 
that the rate of disease transmission needs to be controlled, probably by intense broadcasting of health information via media campaigns which 
promotes the benefit of additional doses of COVID-19 vaccine) otherwise a large proportion of population will be affected within a short possible 
time. Further, the basic model is extended to an optimal control problem with objective functional minimizer by incorporating media campaign and 
double dose vaccination as time dependent variables. The Pontryagin’s maximum principle was employed to obtain the necessary conditions for the 
existence of the optimal controls that determines the eradication of the disease at a minimum cost.

Numerical simulations were obtained using some demographic data estimated from Nigeria and the remaining parameter values are assumed for 
the purpose of illustration. The results reported in this paper reveal that the strength of the interventions should be increased over time to eliminate 
the disease effectively. Mores so, to attain community herd immunity to the disease, the efficacy and compliance level of media campaign on the 
need to have double dose vaccination and adherence to other COVID-19 protocols, should target at least 75% coverage whenever 𝑅0 = 4. Whereas 
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when 𝑅0 ≥ 7, the disease can not be mitigated regardless of the level of media compliance achieved. Overall, this study shows that the prospects of 
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Fig. 16. Number of (a) new cases for latent individuals, (b) asymptomatic+symptomatic individuals, and (c) control profile as a function of time in the presence and 
absence of optimal control 𝑢1 , 𝑢2, 𝑢3 . All parameters used are as given in Table 2.

Fig. 17. Number of (a) new cases for latent individuals, and (b) asymptomatic+symptomatic individuals as a function of time showing the comparison of the above 
optimal control strategies. All parameters used are as given in Table 2.

effectively controlling the spread of COVID-19 in Nigeria and any other country is bright if only the optimal media campaign and double vaccination 
strategy can be sustained, and the time of implementation is adequately improved upon.

9. Model limitations

The following are the limitations of our model:

(i) The model caters for the long-term disease dynamics. Short-term dynamics are not considered.

(ii) The model is deterministic in nature and neither considered biological age of individuals nor the age of infection with respect to time for 
COVID-19 transmission. As a result, our model needs to be extended to age-structured models to cover such scenarios.

(iii) Our model did not put into consideration the impacts of media campaign and double vaccination with time delay on the transmission dynamics 
of the disease.

(iv) The present study is based on COVID-19 data for Nigeria only. The application of large data sets from other countries of the world can be 
applied to this model in subsequent studies.

(v) The epidemic peak time is fundamental for its control and eradication, therefore future works may be centred around COVID-19 peak time 
with respect to our model.

(vi) The fractional order form of our model (1) can be considered in subsequent studies.

(vii) Based on the analysis of the quadratic equation in (24), the possibility of backward bifurcation has been conditionally ruled out. However, for 
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the model (1), future research works can investigate the possibility of backward bifurcation.
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Appendix A. Proof of Theorem 5.4

Let 𝑆 = 𝑥1, 𝑉1 = 𝑥2, 𝑉2 = 𝑥3, 𝐿 = 𝑥4, 𝑄 = 𝑥5, 𝐼𝑎 = 𝑥6, 𝐼𝑠 = 𝑥7, 𝑃 = 𝑥8 and 𝑅 = 𝑥9 so that 𝑁 = 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8 + 𝑥9, hence the model 
(1) can be rewritten as:

𝑥̇1 = 𝑓1 = Λ+𝜔𝑥2 −
𝜏1𝑐(1 − 𝜖𝜙)(𝑥6 + 𝜂𝑥7)𝑥1

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8 + 𝑥9
− (𝜌1 + 𝜇)𝑥1,

𝑥̇2 = 𝑓2 = 𝜌1𝑥1 −
𝜏2𝑐(1 − 𝜖𝜙)(𝑥6 + 𝜂𝑥7)𝑥2

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8 + 𝑥9
− (𝜔+ 𝜌2 + 𝜇)𝑥2,

𝑥̇3 = 𝑓3 = 𝜌2𝑥2 − (𝜌3 + 𝜇)𝑥3,

𝑥̇4 = 𝑓4 =
𝜏1𝑐(1 − 𝜖𝜙)(𝑥6 + 𝜂𝑥7)𝑥1

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8 + 𝑥9
+

𝜏2𝑐(1 − 𝜖𝜙)(𝑥6 + 𝜂𝑥7)𝑥2
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8 + 𝑥9

− (𝜎 + 𝜃 + 𝛾1 + 𝜇)𝑥4,

𝑥̇5 = 𝑓5 = 𝜃𝑥4 − (𝜙1 + 𝛾2 + 𝜇)𝑥5.

𝑥̇6 = 𝑓6 = 𝜎(1 −𝜓)𝑥4 − (𝜙2 + 𝜉 + 𝜇)𝑥6,

𝑥̇7 = 𝑓7 = 𝜎𝜓𝑥4 + 𝜉𝑥6 − (𝜙3 + 𝛿1 + 𝜇)𝑥7,

𝑥̇8 = 𝑓8 = 𝜙1𝑥5 + 𝜙2𝑥6 + 𝜙3𝑥7 − (𝛾3 + 𝛿2 + 𝜇)𝑥8,

𝑥̇9 = 𝑓9 = 𝜌3𝑥3 + 𝛾1𝑥4 + 𝛾2𝑥5 + 𝛾3𝑥8 − 𝜇𝑥9,

(A.1)

where 𝑓 = (𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6, 𝑓7, 𝑓8, 𝑓9)𝑇 . The Jacobian of the model (A.1) at the DFE is given by

𝐽 (𝐸0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝑘1 𝜔 0 0 0 𝜏1𝑐(1 − 𝜖𝜑)𝐵𝑥 𝜏1𝜂𝑐(1 − 𝜖𝜑) 0 0
𝜌1 −𝑘2 0 0 0 𝜏2𝑐(1 − 𝜖𝜑)𝐵𝑦 𝜏2𝜂𝑐(1 − 𝜖𝜑)𝐵𝑦 0 0
0 𝜌2 −𝑘3 0 0 0 0 0 0
0 0 0 −𝑘4 𝑐(1 − 𝜖𝜑)𝐹𝑥 𝜂𝑐(1 − 𝜖𝜑)𝐹𝑥 0 0 0
0 0 0 𝜃 −𝑘5 0 0 0 0
0 0 0 𝜎(1 −𝜓) 0 −𝑘6 0 0 0
0 0 0 𝜎𝜓 0 𝜉 −𝑘7 0 0
0 0 0 0 𝜙1 𝜙2 𝜙3 −𝑘8 0
0 0 𝜌2 𝛾1 𝛾2 0 0 𝛾3 −𝜇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.2)

where 𝐵𝑥 =
𝜇𝑘2

𝜇(𝑘2 + 𝜌1) + 𝜌1𝜌2
,𝐵𝑦 =

𝜇𝜌1
𝜇(𝑘2 + 𝜌1) + 𝜌1𝜌2

, 𝐹 𝑥 = (𝜏1𝐵𝑥 + 𝜏2𝐵𝑦).

Consider the scenario when 𝑅𝑚𝑣 = 1. Assume that 𝑐 = 𝑐∗ is a bifurcation parameter. Solving for 𝑐 from 𝑅𝑚𝑣 = 1 gives 𝑐 = 𝑐∗ = 𝐴

𝐵
, where 𝐴 =

𝑘4𝑘6𝑘7(𝜇(𝑘2 + 𝜌1) + 𝜌1𝜌2) and 𝐵 = (1 − 𝜖𝜑)𝜎𝜇
(
𝑘7(1 −𝜓) + 𝜂(𝜉(1 −𝜓) + 𝑘6𝜓)

)
(𝜏1𝑘2 + 𝜏2𝜌1). Using Theorem 4.1 in [67], we can verify whether or not 

the model (1) has a forward bifurcation at 𝑅𝑚𝑣 = 1. For the scenario 𝑅𝑚𝑣 = 1, it can be examined that the Jacobian of matrix (13) at 𝑐 = 𝑐∗ denoted 
by 𝐽𝑐∗ has right eigenvectors given by 𝑤 = (𝑤1, 𝑤2, ..., 𝑤9)𝑇 , where

𝑤1 =
𝜔𝑤2 +𝐵1𝐵5𝑤6 +𝐵2𝐵5𝑤7

𝑘1
,𝑤3 =

𝜌2𝑤2
𝑘2

,𝑤5 =
𝜃𝑤4
𝑘5

,𝑤6 =
𝜎(1 −𝜓)𝑤4

𝑘6
,

𝑤2 =
(𝜌1𝐵1𝐵5 + 𝑘1𝐵3𝐵6)𝑤6 + (𝜌1𝐵2𝐵5 + 𝑘1𝐵4𝐵6)𝑤7

𝑘1𝑘2 − 𝜌1𝜔
,𝑤7 =

𝜎𝜓𝑤4 + 𝜉𝑤6
𝑘7

,

𝑤8 =
𝜙1𝑤5 +𝜙2𝑤6 + 𝜙3𝑤7

𝑘8
,𝑤9 =

𝜌2𝑤3 +𝜓1𝑤4 + 𝛾2𝑤5 + 𝛾3𝑤8
𝜇

and 𝑤4 > 0 is a free variable.

Further, 𝐽𝑐∗ has a left eigenvector 𝑣 = (𝑣1, 𝑣2, ..., 𝑣9)𝑇 , where

𝑣1 = 𝑣3 = 𝑣5 = 𝑣8 = 𝑣9 = 0,

𝑣6 =
𝐵7𝑣4 + 𝜉𝑣7

, 𝑣7 =
𝑘4𝑣4

, and 𝑣4 > 0 is a free variable.
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It follows from Theorem 4.1 in ref. [67], if we compute the non-zero partial derivatives of 𝑥̇ = 𝑓 (𝑥) evaluated at the DFE, that the associated 
bifurcation coefficients 𝑎 and 𝑏, defined by

𝑎 =
𝑛∑

𝑘,𝑖,𝑗=1
𝑣𝑘𝑤𝑖𝑤𝑗

𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝑥𝑗

(0,0)

and

𝑏 =
𝑛∑

𝑘,𝑖=1
𝑣𝑘𝑤𝑖

𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝑐
∗ (0,0),

are computed to be

𝑎 = 𝑣4
𝑐∗(1 − 𝜖𝜙)(𝑤6 + 𝜂𝑤7)

𝑁∗

[
𝜏1(2𝑤1 −

𝑥∗1𝐵
∗

𝑁∗ ) + 𝜏2(2𝑤2 −
𝑥∗2𝐵

∗

𝑁∗ )
]
, (A.3)

where 𝐵∗ = 2(𝑤1 +𝑤2 +𝑤4 +𝑤5 +𝑤6 +𝑤8 +𝑤9) +𝑤3(𝜂 + 1) +𝑤7 > 0 and

𝑏 = 𝑣4
(1 − 𝜖𝜙)(𝑤6 + 𝜂𝑤7)

𝑁∗

[
𝜏1𝑥

∗
1 + 𝜏2𝑥

∗
2

]
> 0, (A.4)

with 𝑤𝑝 > 0, 𝑝 = 1, 2, ..., 9 and 𝑣4 > 0. Thus, following Theorem 4.1 in [67], Theorem 5.4 is established.

Appendix B. Proof of Theorem 6.2

We apply the Pontryagin’s maximum principle to have

𝑑𝜆∗1
𝑑𝑡

= − 𝜕𝐻

𝜕𝑆
,𝜆∗1(𝑡𝑓 ) = 0;

𝑑𝜆∗2
𝑑𝑡

= − 𝜕𝐻

𝜕𝑉1
, 𝜆∗2(𝑡𝑓 ) = 0;

𝑑𝜆∗3
𝑑𝑡

= − 𝜕𝐻

𝜕𝑉2
, 𝜆∗3(𝑡𝑓 ) = 0;

𝑑𝜆∗4
𝑑𝑡

= − 𝜕𝐻

𝜕𝐿
,𝜆∗4(𝑡𝑓 ) = 0;

𝑑𝜆∗5
𝑑𝑡

= − 𝜕𝐻

𝜕𝑄
,𝜆∗5(𝑡𝑓 ) = 0;

𝑑𝜆∗6
𝑑𝑡

= − 𝜕𝐻

𝜕𝐼𝑎
, 𝜆∗6(𝑡𝑓 ) = 0;

𝑑𝜆∗7
𝑑𝑡

= − 𝜕𝐻

𝜕𝐼𝑠
, 𝜆∗7(𝑡𝑓 ) = 0,

𝑑𝜆∗8
𝑑𝑡

= − 𝜕𝐻

𝜕𝑃
,𝜆∗8(𝑡𝑓 ) = 0;

𝑑𝜆∗9
𝑑𝑡

= − 𝜕𝐻

𝜕𝑅
,𝜆∗9(𝑡𝑓 ) = 0.

(B.1)

Considering the optimality conditions;

𝜕𝐻

𝜑
= 0, 𝜕𝐻

𝜌1
= 0 and

𝜕𝐻

𝜌2
= 0.

The optimal control triplet (𝜑∗, 𝜌∗1 , 𝜌
∗
2) can be solved for, subject to the state variables. This yields, for the optimal control 𝜑∗(𝑡),

𝜕𝐻

𝜑
=𝑚3𝜑+

𝜏1𝑐𝜖(𝐼𝑎 + 𝜂𝐼𝑠)𝑆
𝑁

𝜆∗1 +
𝜏2𝑐𝜖(𝐼𝑎 + 𝜂𝐼𝑠)𝑉1

𝑁
𝜆∗2 −

𝜏1𝑐𝜖(𝐼𝑎 + 𝜂𝐼𝑠)𝑆
𝑁

𝜆∗4 −
𝜏2𝑐𝜖(𝐼𝑎 + 𝜂𝐼𝑠)𝑉1

𝑁
𝜆∗4 = 0,

which implies that,

𝜑∗ = 1
𝑚3

( 𝜏1𝑐𝜖(𝐼𝑎 + 𝜂𝐼𝑠)𝑆
𝑁

(𝜆∗4 − 𝜆∗1) +
𝜏2𝑐𝜖(𝐼𝑎 + 𝜂𝐼𝑠)𝑉1

𝑁
(𝜆∗4 − 𝜆∗2)

)

For the optimal controls 𝜌∗1(𝑡) and 𝜌∗2(𝑡), we have

𝜕𝐻

𝜌1
=𝑚4𝜌1 −𝑆(𝜆∗1 − 𝜆∗2) = 0,

𝜕𝐻

𝜌2
=𝑚5𝜌2 − 𝑉1(𝜆∗2 − 𝜆∗3) = 0,

which respectively gives

𝜌∗1 =
𝑆(𝜆∗1 − 𝜆∗2)

𝑚4
and 𝜌∗2 =

(𝜆∗2 − 𝜆∗3)𝑉1
𝑚5

.

Appendix C. Estimation of variables and parameter values

The COVID-19 data used in this work is obtained on 22nd March, 2022 from Nigeria Centre for Disease Control [3]. Total population of Nigeria, 
N (𝑁 = 212, 375, 017) is obtained from Worldometers [53] was used for the estimation.

E1: Natural death rate 𝜇 = 1
life expectancy

, where Life expectancy in Nigeria according to Marco Trends [72] is 55.44. Thus, 𝜇 = 1
55.44 ≈ 0.0180.

E2: Recruitment rate Λ = 𝜇 ×𝑁

Λ = 0.0180 × 212, 375, 017 ≈ 3, 901, 445.

E3: Number of first dose and second dose vaccinated individuals (𝑉1, 𝑉2) according to [6] are, respectively given as (17914944, 8197832).
E4: Number of symptomatic cases 𝐼𝑠. We assumed that number of infected individuals with symbols to be the same as the total confirmed cases 

[3]. Thus, 𝐼𝑠 = 255, 190.

E5: Number of recovered individuals 𝑅. We assumed that number of recovered individuals to be the same as the Total discharged [3]. Thus, 
𝑅 = 249, 476.

E6: Number of quarantined individuals 𝑄. We assumed that number of quarantined individuals to be the same as the Total Samples tested [3]. 
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Thus, 𝑄 = 4, 726, 096.
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E7: Number of hospitalized/isolated individuals 𝑃 . We assumed that number of isolated individuals to be the same as the number of Active cases 
[3]. Thus, 𝑃 = 2, 572.

E8: Number of Dead 𝐷. We assumed that the number of dead to be the same as the number of Total death cases [3]. Thus, 𝐷 = 3, 142.

E9: Number of Latent 𝐿
𝐿 = Total sample tested− (confirmed cases+Active cases+dead). = 4, 726, 096 − (255, 190 + 2, 2, 572 + 3, 142) = 4, 465, 192

E10: Number of asymptomatic individuals 𝐼𝑎
𝐼𝑎 = Latent− (symptomatic individuals) = 4, 456, 196 − 255, 190 = 4, 210, 002.

E11: Number of susceptibles 𝑆
𝑆 =𝑁−(𝑉1 +𝑉2 +𝐿 +𝐼𝑎+𝐼𝑠+𝑄 +𝑃 +𝑅) = 216, 746, 934 −(17, 914, 944 +8, 197, 832 +4, 210, 002 +4, 465, 192 +255, 190 +4, 726, 096 +2, 572 +249, 476)
= 216, 746, 934 − 40, 021, 304 = 176, 725, 630.

E12: Disease-induced death rate 𝛿1
𝛿1 =

Total death cases

Total confirmed cases
= 3,142

255,190 ≈ 0.0123.

E13: Recovery rate due to treatment 𝛾3
𝛾3 =

Total discharged

Total confirmed cases
= 249,476

255,190 ≈ 0.98.

E14: Disease-induced death rate 𝛿2
𝛿2 = 1 − (𝜇 + 𝛾3) = 1 − 0.998 = 0.002.

E15: Quarantine rate 𝜃
𝜃 = Total sample tested

Total Nigeria population
= 4726096

216746934 ≈ 0.022.

E16: Hospitalization rate 𝜙1
𝜙1 =

Number of Active cases

Total samples tested
= 2,572

4,726,096 ≈ 0.00054.

E17: Hospitalization rate 𝜙2
𝜙2 =

Number of Active cases

Number of Asymptomatic individuals
= 2,572

4,210,002 ≈ 0.00061.

E18: Hospitalization rate 𝜙3
𝜙3 =

Number of Active cases

Number of Symptomatic individuals
= 2,572

255,190 ≈ 0.01.

E19: Progression rate 𝜎
𝜎 = Number of symptomatic casrs

Number of latent individuals
= 255,190

4,465,192 ≈ 0.057.

E20: Progression rate 𝜉
𝜉 = Number of symptomatic casrs

Number of asymptomatic individuals
= 255,190

4,210,002 ≈ 0.061.

E21: First dose vaccination rate 𝜌1
𝜌1 =

Number of first dose vaccinated individuals

Total population of Nigeria
= 17,914,944

216,746,934 ≈ 0.083.

E22: Second dose vaccination rate 𝜌2
𝜌1 =

Number of second dose vaccinated individuals

Total population of Nigeria
= 8,197,832

216,746,934 ≈ 0.038.

E23: Self immune recovery rate 𝛾1
𝛾1 = 1 − (𝜇 + 𝜎 + 𝜃) = 1 − (0.0180 + 0.057 + 0.022) = 0.903.

E24: Self immune recovery rate 𝛾2
𝛾2 =

Total samples tested−Total confirmed cases

Total samples tested
= 4,726,096−255,190

4,726,096 ≈ 0.95.

E25: Average contact rate 𝑐
𝑐 = Number of contacts

Total confirmed cases
= 51,038 [54]

255,190 ≈ 0.2.

E26: Transmission probability rate 𝜏1
𝜏1 =

Number of unknown exposure

Total confirmed cases
= 178,033

255,190 ≈ 0.7.

E27: Proportion of latent 𝜓
𝜓 = Number of asymptomatic individuals, 𝐼𝑎

Number of Latent, L
= 4,210,002

4,465,192 ≈ 0.94.

E28: waning rate 𝜔
𝜔 = 1 − effectiveness of first dose = 1 − 0.33 [54] = 0.67.

E29: Progression rate 𝜌3
𝜌3 =

effectiveness of second dose (60%+ 88%)

2 = 148 [7]

2 = 74% = 0.74.
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