
   33 
 

Scientia Africana, Vol. 24 (No. 1), February, 2025. Pp 33-49   

© Faculty of Science, University of Port Harcourt, Printed in Nigeria                                           ISSN 1118 – 1931 

 

MODELING HEAT TRANSFER TO MAGNETOHYDRODYNAMIC DUSTY FLUID 

FLOW PAST BETWEEN TWO RIGA PLATES IN A POROUS MEDIUM 

 

Jimoh, O. R., Jatto, A. O. and Yusuf, S. I. 
Department of Mathematics, Federal University of Technology, Minna, Nigeria 

E-mail: razaq.jimoh@futminna.edu.ng , abdulsamad.jatto@st.futminna.edu.ng , si.yusuf@futminna.edu.ng  

Phone: 08077808699, 08130678403, 07069297464 

 

Received: 15-11-2024 

Accepted: 30-01-2025 

 

 
 

ABSTRACT 

In this paper, modeling of an unsteady laminar heat transmittable dusty fluid flow past between two 

parallel stationary Riga plates is presented. The coupled non-linear partial differential equations 

governing dusty fluid flow past between two parallel Riga platesin a porous medium were 

nondimensionalized with the aid of some dimensionless variables and solved analytically using 

harmonic solution technique. The effects of the various physical parameters on the velocity and 

temperature of both the fluid and dusty flow were shown graphically and discussed. It is observed 

that Modified Hartman number increases the velocity of fluid and dusty particles, whereas Grashof 

number and dimensionless stress coefficient per unit volume decreases the velocity of fluid.  

Keywords: MHD fluid, Dusty particle, Riga plate, Porous medium, Magnetic field, Harmonic 

solution. 

 

INTRODUCTION 

The concept of MHD was first introduced by Hannes Alfvén in the 1940s, and since then, it has 

been extensively studied in various contexts, including astrophysics, geophysics, and engineering. 

The pioneering work of Pai (1962) and Ferraro (1966) laid the foundation for understanding MHD 

flows. Later, researchers like. Chiam (1995) and Seddeek (2005) explored MHD flows with dust 

particles.  

The fields of environmental pollution, fluidization, combustion, petroleum, polymer and 

geophysical procedures, refrigeration, contaminated soil, air, and water, dust or fumes in the gas 

cooling system, agriculture, crude oil purification, polymer technology and dye systems can all 

benefit greatly from studies related to the flow and heat transfer of dusty fluids along parallel 

plates. The Riga plate is made up of permanent magnets and electrodes that associate together to 

provide a level surface in place of polarity and magnetization. The electromagnetic hydrodynamic 

fluid behavior is produced by this arrangement, which also reduces pressure and friction (Islam and 

Nasrin 2020). 

Many flow features in contemporary engineering are incomprehensible when using the Newtonian 

fluid model. Non-Newtonian fluid theory has therefore provided more understandings. Shear stress 

and shear strain rate have non-linear correlations when the fluid is non-Newtonian. It is widely used 
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in industry and engineering, particularly for the extraction of crude oil from petroleum products. 

Among these fluids is Casson fluid. The most widely used non-Newtonian fluid is called Casson 

fluid, and it is used in metallurgy, bioengineering, drilling and food processing among other 

fields(Kataria and Patel 2016). 

The research community has been particularly interested in the analysis of flows caused by 

stretched surfaces in recent years because of their numerous uses in industrial, technical, and 

biological processes. For instance, the processes involved in crystal growth, polymer extrusion, 

rubber and plastic sheet manufacture, food processing, glass blowing, and polymer processing, 

among others. Anjum et al. (2018) described the viscous fluid that was thermally stratified and had 

a stagnation point flow that was dominated by a non-linear, variable-thickness Riga plate. Ahmad 

(2019) investigated how the Riga plate was affected by the Powell-Eyring and Reiner-Phillipoff 

fluid flows. What's at stake here are the properties of the nanofluid boundary layer flow within the 

Riga plate which were also studied by Hayat et al. (2016). Iqbal et al. (2017) examined a viscous 

nanofluid with an electrically conductive Riga-plate that could achieve the melting point, thermal 

radiation and viscous dissipation, andpostulated that the stagnation point flow across the Riga plate 

has an irregular thickness. 

Iqbal et al. (2018) also examined the unique outcomes of internal heat generation and thermal 

deposition on viscous dissipative transport of viscoplastic fluid over a riga-plate. It wasrevealedthat 

Eckert number, radiation and fluid parameters enhance temperature whereas they contribute in 

reducingthe rate of heat transfer. 

Jimoh and Abdullahi (2023) studied the effect of heat and mass transfer on magneto-hydrodynamic 

flow with chemical reaction and viscous energy dissipation past an inclined porous plate. Findings 

from their results revealed that increase in Peclet number; Heat source parameter and Grashof 

number enhance the velocity profiles.  

The unstable free convection Couette flow under the influence of the transverse magnetic field and 

thermal radiation was examined by Yabo et al. (2018).Islam and Nasrin (2021) examined the 

erratic laminar flow of a dusty, heat-transferable fluid between the two parallel Riga plates. The 

Riga plates have an impact on the uniform Lorentz forces, and the fluid is subjected to a constant 

pressure gradient. The lower plate was held stationary while the upper plate moved at a steady 

speed in accordance with the Couette flow. The Navier-Stokes equation and the Energy equation 

were both solved using the boundary layer approximations. The implications of the required values 

on the temperature and velocity distributions as well as the Nusselt number of dust and clean fluid 

particleswere studied. 

Kalpana and Saleem (2022) studied heat transfer of magnetohydrodynamic stratified dusty fluid 

flow through an inclined irregular porous channel. It was found that the temperature field is higher 

in the convective boundary than the Navier slip boundary. 

Jimoh and Ibrahim (2023) investigated the effect of viscous energy dissipation on transient laminar 

free convective flow of a dusty viscous fluid through a porous medium. The results obtained 

revealed that increase in Peclet number, Eckert number and Grashof number leads to increase in the 

velocity profile. Increase in the mass concentration of the dust particles, concentration resistance 

ratio, Eckert number and Peclet number leads to increase in the velocity profile of the dust 

particles. In this research,modeling of an unsteady laminar heat transmittable dusty fluid flow past 

between two parallel stationary Riga plates is presented and analysed. 

Maheret al. (2024)explores the effects of dusty fluids with suspended solid particles in a single-

walled corrugated channel using electromagnetic hydrodynamics.The analysis of velocity profiles 
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through graphs revealed that corrugation affects fluid and particle velocity behavior, with small 

amplitude reducing wave effects and dusty particles boosting velocity. 

MODEL FORMULATION 

Consider an unsteady incompressible laminar flow of viscous dusty fluid between two horizontal 

parallel Riga plates embedded in a porous medium. Let both the plates be kept stationary, the lower 

plate is rest at 𝑦̂ = −h while the upper plate at 𝑦̂ = h. The direction of the flow be taken along the x− 

axis, the 𝑦̂− axis is perpendicular to the flow and width of the plates parallel to the 𝑥̂𝑧̂− plane. The 

fluid is kept in motion by applying a pressure gradient force 
𝜕𝑝

𝜕𝑥̂
, also a uniform magnetic force is 

applied on the fluid, which is influenced by the Riga plate. The velocity components 𝑣 and 𝑤̂ are 

zero everywhere at the plate. For dust particle, 𝑣𝑝̂ and 𝑤𝑝̂  are also zero everywhere. Alsoconsider 

the plate is long enough in x− direction and the fluid motion is two dimensional. But the continuity 

equation reduces to for the fluid phase 
𝜕𝑢

𝜕𝑥̂
= 0⇒𝑢̂ =  𝑢̂ (𝑦̂, 𝑡̂) and for dust phase 

𝜕𝑢𝑝̂

𝜕𝑥̂
= 0⇒𝑢𝑝̂ =

𝑢𝑝̂(𝑦̂, 𝑡̂) . The two plates are fixed at two constant temperatures; 𝑇̂1 for the lower and 𝑇̂2 for the 

upper plate, where 𝑇̂2 > 𝑇̂1. The physical model is shown in figure (1) 

    

Figure (1) 

Due the Riga plate, the Lorentz force 𝑓̅ = 𝐽𝛬𝐵̂ ≈ 𝜎(𝐸̂𝛬𝐵̂) is defined as magnetic force. According 

to the Grinberg hypothesis this magnetic force is defined as follows𝑓̅ = 𝐽𝛬𝐵̂ =

(
𝜋

8𝜌
𝐽0𝑀0𝑒−

𝜋

𝑙
𝑦, 0,

𝜋

8𝜌
𝐽0𝑀0𝑒−

𝜋

𝑙
𝑦). 

In view of Islam and Nasrin (2020) under the consideration of above assumptions, and also 

applying Boussinesq approximation on the fluid, the dimensional forms of the momentum and 

energy equations for the clean fluid and the dust particle are expressed as follows: 

Momentum equation for fluid phase  

𝜕𝑢

𝜕𝑡̂
= −

1

𝜌

𝜕𝑝

𝜕𝑥̂
+

𝑣𝜕2𝑢

𝜕𝑦̂2
+

𝜋

8𝜌
𝐽0𝑀0𝑒−

𝜋

𝑙
𝑦 −

1

𝜌
𝐾𝑁(𝑢̂ − 𝑢𝑝̂) −

𝑣

𝑘
𝑢̂ −

𝜎𝑒𝐵0
2

𝜌
𝑢̂ + 𝑔𝛽(𝑇̂ − 𝑇2̂)        (1) 

Momentum equation for dusty phase  

𝑚𝑝
𝜕𝑢𝑝̂

𝜕𝑡̂
= 𝜇𝑝

𝜕2𝑢𝑝̂

𝜕𝑦̂2
+ 𝐾𝑁(𝑢̂ − 𝑢𝑝̂)        (2) 

Energy equation for fluid phase 

𝜕𝑇̂

𝜕𝑡̂
=

𝑘

𝜌𝑐𝑝

𝜕2𝑇̂

𝜕𝑦̂2
−

2𝑘𝐾𝑁

3𝜌2𝑐𝑝𝑣
(𝑇̂ − 𝑇𝑝̂) +

𝑣

𝑐𝑝
(

𝜕𝑢

𝜕𝑦̂
)

2

−
1

𝜌𝑐𝑝

𝜕𝑞̂

𝜕𝑦̂
      (3) 

Energy equation for dusty phase 
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𝜕𝑇𝑝̂

𝜕𝑡̂
=

𝑘

𝜌𝑐𝑝

𝜕2𝑇𝑝̂

𝜕𝑦̂2
+

1

𝛾𝑇
(𝑇̂ − 𝑇𝑝̂)         (4) 

Initial and boundary condition  

𝑢̂ = 0, 𝑢̂𝑝 = 0, 𝑇̂ = 𝑇̂1, 𝑇̂𝑝 = 𝑇̂1𝑎𝑡𝑦̂ = −ℎ  (5) 

𝑢̂ = 0, 𝑢̂𝑝 = 0, 𝑇̂ = 𝑇̂2, 𝑇̂𝑝 = 𝑇̂2𝑎𝑡𝑦̂ = ℎ  

Non-Dimensionlization 

Equation (1) to (4) are non-dimensionalized using the following dimensionless variable  

𝑥 =
𝜋

𝑙
𝑥̂, 𝑦 =

𝜋

𝑙
𝑦̂, 𝑢 =

𝑙

𝜋𝑣
𝑢̂ , 𝑢𝑝 =

𝑙

𝜋𝑣
𝑢𝑝̂, 𝑝 =

𝑙2𝑝

𝜋2𝜌𝑣2 , 𝑡 =
𝜋2𝑣𝑡̂

𝑙2  , 𝜃 =
𝑇̂−𝑇̂1

𝑇̂2−𝑇̂1
, 𝜃𝑝 =

𝑇̂𝑝−𝑇̂1

𝑇̂2−𝑇̂1
       (6) 

Now  

𝜕𝑥̂ =
𝑙

𝜋
𝜕𝑥, 𝜕𝑦̂ =

𝑙

𝜋
𝜕𝑦, 𝜕𝑢̂ =

𝜋𝑣

𝑙
𝜕𝑢 , 𝜕𝑢𝑝̂ =

𝜋𝑣

𝑙
𝜕𝑢𝑝, 𝜕𝑝̂ =

𝜋2𝜌𝑣2

𝑙2 𝜕𝑝, 𝜕𝑡̂ =
𝑙2

𝜋2𝑣
𝜕𝑡 ,  (7) 

𝜕𝑇̂ = (𝑇̂2−𝑇̂1)𝜕𝜃, 𝜕𝑇̂𝑝 = (𝑇̂2−𝑇̂1)𝜕𝜃𝑝 

Substitute equation (7) into equation (1) and simplifying, the following equation is obtained 

𝜋3𝑣2

𝑙3

𝜕𝑢

𝜕𝑡
= −

𝜋3𝑣2

𝑙3

𝜕𝑝

𝜕𝑥
+

𝜋3𝑣2

𝑙3

𝜕2𝑢

𝜕𝑦2 +
𝜋

8𝜌
𝐽0𝑀0𝑒−𝑦 −

1

𝜌
𝐾𝑁 (

𝜋𝑣

𝑙
) (𝑢 − 𝑢𝑝) −

𝑣2

𝑘

𝜋

𝑙
𝑢 −

𝜎𝑒𝐵0
2

𝜌

𝜋𝑣

𝑙
𝑢 +

𝑔𝛽 (((𝑇2̂ − 𝑇̂1)𝜃 + 𝑇̂1) − 𝑇̂2)        (8) 

Multiply through by 
𝑙3

𝜋3𝑣2 

𝜕𝑢

𝜕𝑡
= −

𝜕𝑝

𝜕𝑥
+

𝜕2𝑢

𝜕𝑦2 +
𝑙3𝐽0𝑀0

𝜋2𝑣28𝜌
𝑒−𝑦 −

𝐾𝑁𝑙2

𝜌𝑣𝜋2 (𝑢 − 𝑢𝑝) −
𝑙2

𝜋2𝑘
𝑢 −

𝜎𝑒𝐵0
2𝑙3

𝜌𝜋2𝑣
𝑢 +

𝑔𝛽𝑙3((𝑇2̂−𝑇̂1)(𝜃−1))

𝜋3𝑣2       (9) 

Equation (9) becomes  

𝜕𝑢

𝜕𝑡
= 𝛼 +

𝜕2𝑢

𝜕𝑦2 + 𝐻𝑟𝑒−𝑦 − 𝑅(𝑢 − 𝑢𝑝) −
𝑢

𝐾
−

𝜎𝑒𝐵0
2𝑙3

𝜌𝜋2𝑣
𝑢 + 𝐺𝑟(𝜃 − 1)    (10) 

Substitute equation (7) into equation (2) and simplifying, the following equation is obtained 

𝑚𝑝
𝜋3𝑣2

𝑙3

𝜕𝑢𝑝

𝜕𝑡
= 𝜇𝑝

𝜋3𝑣2

𝑙3

𝜕2𝑢

𝜕𝑦2 + 𝐾𝑁 (
𝜋𝑣

𝑙
) (𝑢𝑝 − 𝑢)      (11) 

Multiply through by 
𝑙3

𝑚𝑝𝜋3𝑣2 

𝜕𝑢𝑝

𝜕𝑡
=

𝜇𝑝

𝑚𝑝

𝜕2𝑢

𝜕𝑦2
+

𝐾𝑁𝑙2

𝑚𝑝𝑣𝜋2
(𝑢𝑝 − 𝑢)        (12) 

𝜕𝑢𝑝

𝜕𝑡
= 𝛽

𝜕2𝑢

𝜕𝑦2 +
1

𝐺
(𝑢 − 𝑢𝑝)         (13) 

The fluid is assumed to be optically thin with a relatively low density and radiative heat flux as 

given by Cogley et al. (1968).  

𝜕𝑞̂

𝜕𝑦̂
= 4𝛼2(𝑇̂2 − 𝑇̂)          (14) 

Substitute equation (7) into equation (3) and simplifying, the following equation is obtained 
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(𝑇̂2−𝑇̂1)𝜕𝜃

𝑙2

𝜋2𝑣
𝜕𝑡

=
𝑘

𝜌𝑐𝑝

𝜕(𝑇̂2−𝑇̂1)𝜕𝜃

(
𝑙

𝜋
)

2
𝜕𝑦2

−
2𝑘𝐾𝑁

3𝜌2𝑐𝑝𝑣
((((𝑇2̂ − 𝑇̂1)𝜃 + 𝑇̂1)) − ((𝑇2̂ − 𝑇̂1)𝜃𝑝 + 𝑇̂1)) +

𝑣

𝑐𝑝
(

𝜋𝑣

𝑙
𝑙

𝜋

)

2

(
𝜕𝑢

𝜕𝑦
)

2

−
1

𝜌𝑐𝑝
4𝛼2 (𝑇̂2 − ((𝑇2̂ − 𝑇̂1)𝜃 + 𝑇̂1))     (15) 

Multiply through by 
𝑙2

(𝑇2̂−𝑇̂1)𝜋2𝑣
 

𝜕𝜃

𝜕𝑡
=

𝑘

𝜌𝑣𝑐𝑝

𝜕2𝜃

𝜕𝑦2 −
2𝑘𝐾𝑁𝑙2

3𝜌2𝑐𝑝𝑣𝜋2𝑣
(𝜃 − 𝜃𝑝) +

𝑣𝜋2𝑣

𝑐𝑝𝑙2(𝑇2̂−𝑇̂1)
(

𝜕𝑢

𝜕𝑦
)

2

−
𝑙2

𝜌𝜋2𝑣𝑐𝑝
4𝛼2(1 − 𝜃)  (16) 

𝜕𝜃

𝜕𝑡
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2
−

2𝑅

3𝑃𝑟
(𝜃 − 𝜃𝑝) + 𝐸𝑐 (

𝜕𝑢

𝜕𝑦
)

2

− 𝑁𝑟(1 − 𝜃)     (17) 

Substitute equation (7) into equation (4) and simplifying, the following equation is obtained 

(𝑇̂2−𝑇̂1)𝜕𝜃𝑝

𝑙2

𝜋2𝑣
𝜕𝑡

=
𝑘

𝜌𝑐𝑝

𝜕(𝑇̂2−𝑇̂1)𝜕𝜃𝑝

(
𝑙

𝜋
)

2
𝜕𝑦2

+
1

𝛾𝑇
((((𝑇2̂ − 𝑇̂1)𝜃 + 𝑇̂1)) − ((𝑇2̂ − 𝑇̂1)𝜃𝑝 + 𝑇̂1)) (18) 

Multiply through by 
𝑙2

(𝑇2̂−𝑇̂1)𝜋2𝑣
 

𝜕𝜃𝑝

𝜕𝑡
=

𝑘

𝜌𝑐𝑝𝑣

𝜕2𝜃𝑝

𝜕𝑦2 +
𝑙2

𝜋2𝑣𝛾𝑇
(𝜃 − 𝜃𝑝)        (19) 

𝜕𝜃𝑝

𝜕𝑡
=

1

𝑃𝑟

𝜕2𝜃𝑝

𝜕𝑦2 + 𝐿0(𝜃 − 𝜃𝑝)         (20) 

From equation (10) 

𝜕𝑢

𝜕𝑡
= 𝛼 +

𝜕2𝑢

𝜕𝑦2 + 𝐻𝑟𝑒−𝑦 − (𝑅 +
1

𝐾
+ 𝐻) 𝑢 + 𝑅𝑢𝑝 + 𝐺𝑟(𝜃 − 1)    (21) 

𝜕𝑢

𝜕𝑡
= 𝛼 +

𝜕2𝑢

𝜕𝑦2 + 𝐻𝑟𝑒−𝑦 − 𝜀𝑢 + 𝑅𝑢𝑝 + 𝐺𝑟(𝜃 − 1)      (22) 

Where: 𝜀 = (𝑅 +
1

𝐾
+ 𝐻) and  𝐻 =

𝜎𝑒𝐵0
2𝑙3

𝜌𝜋2𝑣
       (23) 

Also from equation (13) 

𝜕𝑢𝑝

𝜕𝑡
= 𝛽

𝜕2𝑢

𝜕𝑦2
+

1

𝐺
(𝑢 − 𝑢𝑝)         (24) 

For the energy equation (17) 

𝜕𝜃

𝜕𝑡
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2 −
2𝑅

3𝑃𝑟
𝜃 +

2𝑅

3𝑃𝑟
𝜃𝑝 + 𝐸𝑐 (

𝜕𝑢

𝜕𝑦
)

2

+ 𝑁𝑟𝜃 − 𝑁𝑟     (25) 

𝜕𝜃

𝜕𝑡
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2
− (

2𝑅

3𝑃𝑟
− 𝑁𝑟) 𝜃 +

2𝑅

3𝑃𝑟
𝜃𝑝 − 𝑁𝑟 + 𝐸𝑐 (

𝜕𝑢

𝜕𝑦
)

2

     (26) 

𝜕𝜃

𝜕𝑡
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2 − 𝐵3𝜃 + 𝐵2𝜃𝑝 − 𝑁𝑟 + 𝐸𝑐 (
𝜕𝑢

𝜕𝑦
)

2

       (27) 

Also 

𝜕𝜃𝑝

𝜕𝑡
=

1

𝑃𝑟

𝜕2𝜃𝑝

𝜕𝑦2
− 𝐿0𝜃𝑝 + 𝐿0𝜃         (28) 

The dimensionless equations are  
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Momentum equations: 

Fluid phase  

𝜕𝑢

𝜕𝑡
= 𝛼 +

𝜕2𝑢

𝜕𝑦2
+ 𝐻𝑟𝑒−𝑦 − 𝜀𝑢 + 𝑅𝑢𝑝 + 𝐺𝑟(𝜃 − 1)     (29) 

Dusty phase  

𝜕𝑢𝑝

𝜕𝑡
= 𝛽

𝜕2𝑢

𝜕𝑦2 +
1

𝐺
(𝑢𝑝 − 𝑢)        (30) 

Energy equations: 

Fluid phase  

𝜕𝜃

𝜕𝑡
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2 − 𝐵3𝜃 + 𝐵2𝜃𝑝 − 𝑁𝑟 + 𝐸𝑐 (
𝜕𝑢

𝜕𝑦
)

2

      (31) 

 

Dusty phase  

𝜕𝜃𝑝

𝜕𝑡
=

1

𝑃𝑟

𝜕2𝜃𝑝

𝜕𝑦2 − 𝐿0𝜃𝑝 + 𝐿0𝜃        (32) 

Where: 

𝛼 = −
𝜕𝑝

𝜕𝑥
 (dimensionless pressure gradient) 

𝐻𝑟 =
𝑙3𝐽0𝑀0

𝜋2𝑣28𝜌
 (modified Hartman number) 

𝑅 =
𝐾𝑁𝑙2

𝜌𝑣𝜋2 (fluid concentration parameter) 

𝐺 =
𝑚𝑝𝑣𝜋2

𝐾𝑙2  (particle mass parameter) 

𝛽 =
𝜇𝑝

𝑚𝑝𝑣
 (dimensionless stress coefficient per unit volume) 

𝑃𝑟 =
𝜌𝑣𝑐𝑝

𝑘
 (Prandtl number) 

𝐸𝑐 =
𝑣2𝜋2

𝑐𝑝𝑙2(𝑇2̂−𝑇̂1)
 (Eckert number) 

𝐿0 =
𝑙2

𝜋2𝑣𝛾𝑇
 (temperature relaxation time parameter) 

𝑁𝑟 =
𝑙2

𝜌𝜋2𝑣𝑐𝑝
4𝛼2 (radiation parameter) 

𝐺𝑟 =
𝑔𝛽𝑙3(𝑇2̂−𝑇̂1)

𝜋3𝑣2  (Grashof number) 

𝐾 =
𝜋2𝑘

𝑙2  (stoke constant) 

𝐻 =
𝜎𝑒𝐵0

2𝑙3

𝜌𝜋2𝑣
 (Hartman number) 

𝐵3 = 𝐵2 − 𝑁𝑟 and 𝐵2 =
2𝑅

3𝑃𝑟
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Equation (29) to equation (32) are subject to the initial and boundary conditions: 

𝑢 = 0, 𝑢𝑝 = 0, 𝜃 = 0, 𝜃𝑝 = 0  𝑎𝑡𝑦 = −ℎ (33) 

𝑢 = 0, 𝑢𝑝 = 0, , 𝜃 = 1, 𝜃𝑝 = 1   𝑎𝑡𝑦 = ℎ 

MATERIALS AND METHODS 

For any oscillatory flow, we assume  

𝛼 = −
𝜕𝑝

𝜕𝑥
= 𝜎𝑒𝑖𝑤𝑡, 𝑢(𝑦, 𝑡) = 𝑢(𝑦)𝑒𝑖𝑤𝑡, 𝜃(𝑦, 𝑡) = 𝜃(𝑦)𝑒2𝑖𝑤𝑡, (34) 

𝑢𝑝(𝑦, 𝑡) = 𝑢𝑝(𝑦)𝑒𝑖𝑤𝑡, 𝜃𝑝(𝑦, 𝑡) = 𝜃𝑝(𝑦)𝑒2𝑖𝑤𝑡   (Mehta et al., 2020) 

By substituting equation (34) in equations (29), (30), (31) and (32), the following equations are 

obtained: 

𝑑2𝑢

𝑑𝑦2 − 𝜆1
2𝑢 = −(𝑅𝑢𝑝 + 𝐺𝑟𝑒𝑖𝑤𝑡𝜃 − 𝐺𝑟𝑒−𝑖𝑤𝑡 + 𝜎 + 𝐻𝑟𝑒−(𝑖𝑤𝑡+𝑦))    (35) 

𝑑2𝑢𝑝

𝑑𝑦2 − 𝜆2
2𝑢𝑝 = −

1

𝛽𝐺
𝑢         (36) 

𝑑2𝜃

𝑑𝑦2 − 𝜆3
2𝜃 = −𝐵2𝑃𝑟𝜃𝑝 − 𝑃𝑟𝐸𝑐 (

𝑑𝑢(𝑦)

𝑑𝑦
)

2

+ 𝑃𝑟𝑁𝑟𝑒−2𝑖𝑤𝑡     (37) 

𝑑2𝜃𝑝

𝑑𝑦2 − 𝜆4
2𝜃𝑝 = −𝑃𝑟𝐿0𝜃         (38) 

Where: 

 𝜆1
2 =  𝜀 + 𝑖𝑤 

 𝜆2
2 =

𝑖𝑤+
1

𝐺

𝛽
         (39) 

 𝜆3
2 = 𝑃𝑟𝐵3 + 2𝑖𝑤𝑃𝑟 

 𝜆4
2 = 𝑃𝑟(2𝑖𝑤 + 𝐿0) 

The boundary conditions are transformed in line with fully oscillatory flow conditions as follows 

𝑢(−ℎ) =
0

𝑒𝑖𝑤𝑡
= 0, 𝑢(ℎ) =

0

𝑒𝑖𝑤𝑡
= 0 

𝑢𝑝(−ℎ) =
0

𝑒𝑖𝑤𝑡 = 0, 𝑢𝑝(ℎ) =
0

𝑒𝑖𝑤𝑡 = 0  (40) 

𝜃(−ℎ) =
0

𝑒2𝑖𝑤𝑡
= 0, 𝜃(ℎ) =

1

𝑒2𝑖𝑤𝑡
= 𝑒−2𝑖𝑤𝑡 

𝜃𝑝(−ℎ) =
0

𝑒2𝑖𝑤𝑡
= 0, 𝜃𝑝(ℎ) =

1

𝑒2𝑖𝑤𝑡
= 𝑒−2𝑖𝑤𝑡 

Therefore, the boundary conditions are, 

𝑢(−1) = 0, 𝑢(1) = 0 

𝑢𝑝(−1) = 0, 𝑢𝑝(1) = 0    (41) 

𝜃(−1) = 0, 𝜃(1) = 𝑒−2𝑖𝑤𝑡 



40 
 

   
xxx 

 

𝜃𝑝(−1) = 0, 𝜃𝑝(1) = 𝑒−2𝑖𝑤𝑡 

Let 

0< Gr << 1 such that 

 R = aGr, 
1

𝐺
= b Gr, Pr = dGr 

Now 𝑢(𝑦) = 𝑢0(𝑦) +  𝐺𝑟𝑢1(𝑦) + ⋯  

𝑢𝑝(𝑦) = 𝑢𝑝0(𝑦) +  𝐺𝑟𝑢𝑝1(𝑦) + ⋯        (42) 

𝜃(𝑦) = 𝜃0(𝑦) +  𝐺𝑟𝜃1(𝑦) + ⋯ 

𝜃𝑝(𝑦) = 𝜃𝑝0(𝑦) +  𝐺𝑟𝜃𝑝1(𝑦) + ⋯ 

Therefore 

𝑢0(−1) = 0, 𝑢0(1) = 0, 𝑢1(−1) = 0, 𝑢1(1) = 0 

𝑢_𝑝0 (−1) = 0, 𝑢_𝑝0 (1) = 0, 𝑢_𝑝1 (−1) = 0, 𝑢_𝑝1 (1) = 0    (43) 

𝜃0(−1) = 0, 𝜃0(1) = 𝑒−2𝑖𝑤𝑡, 𝜃1(−1) = 0, 𝜃1(1) = 0 

𝜃𝑝0(−1) = 0, 𝜃𝑝0(1) = 𝑒−2𝑖𝑤𝑡, 𝜃𝑝1(−1) = 0, 𝜃𝑝1(1) = 0 

By substituting equation (42) in equation (35) and equating coefficients of corresponding terms on 

both sides, the following set of equations are obtained:   

For order 0,𝐺𝑟
0: 1 

ⅆ2𝑢𝑂

ⅆ𝑦2 − 𝜆
2
1

𝑢0  =  − (𝜎 +  𝐻𝑟𝑒−(𝑖𝑤𝑡 + 𝑦))     (44) 

𝑢0(−1) = 0, 𝑢0(1) = 0 

For order 1,𝐺𝑟
1: 𝐺𝑟 

ⅆ2𝑢1

ⅆ𝑦2 − 𝜆
2
1

𝑢1  =  −(𝑎𝑢𝑝0 + 𝑒𝑖𝑤𝑡𝜃0 − 𝑒𝑖𝑤𝑡)    (45) 

𝑢1(−1) = 0, 𝑢1(1) = 0 

By substituting equation (42) in equation (36) and equating coefficients of corresponding terms on 

both sides, the following set of equations are obtained:   

For order 0,𝐺𝑟
0: 1 

ⅆ2𝑢𝑃0

ⅆ𝑦2 −  𝜆2
2𝑢𝑝0 = 0                                     (46) 

𝑢𝑝0(−1) = 0, 𝑢𝑝0(1) = 0 

For order 1,𝐺𝑟
1: 𝐺𝑟 

ⅆ2𝑢𝑝1

ⅆ𝑦2 − 𝜆2
2𝑢𝑝1 =  −

𝑏

𝛽
𝑢𝑜                            (47) 

𝑢𝑝1(−1) = 0, 𝑢𝑝1(1) = 0 

By substituting equation (42) in equation (37) and equating coefficients of corresponding terms on 

both sides, the following set of equations are obtained:   
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For order 0,𝐺𝑟
0: 1 

ⅆ2𝜃𝑜

ⅆ𝑦2
−  𝜆3

2𝜃𝑂 = 0                                                   (48) 

𝜃0(−1) = 0, 𝜃0(1) = 𝑒−2𝑖𝑤𝑡 

For order 1,𝐺𝑟
1: 𝐺𝑟 

ⅆ2𝜃1 

ⅆ𝑦2
− 𝜆3

2𝜃1 =  −𝐵2𝑑𝜃𝑝𝑜 − 𝑑𝐸𝑐 (
𝑑𝑢𝑜

𝑑𝑦
)

2

−  𝑑𝑁𝑟𝑒−2𝑖𝑤𝑡    (49) 

𝜃1(−1) = 0, 𝜃1(1) = 0 

By substituting equation (42) in equation (38) and equating coefficients of corresponding terms on 

both sides, the following set of equations are obtained:   

For order 0,𝐺𝑟
0: 1 

ⅆ2𝜃𝑝𝑜

ⅆ𝑦2
−  𝜆4

2𝜃𝑝𝑜 = 0          (50) 

𝜃𝑝0(−1) = 0, 𝜃𝑝0(1) = 𝑒−2𝑖𝑤𝑡, 

For order 1,𝐺𝑟
1: 𝐺𝑟 

ⅆ2𝜃𝑝1 

ⅆ𝑦2 −  𝜆4
2𝜃𝑝1 =  −𝑑𝐿𝑜𝜃𝑜      (51) 

𝜃𝑝1(−1) = 0, 𝜃𝑝1(1) = 0 

The boundary value problems (44) to (51) are solved by the method of undetermined coefficients 

and obtained the following results: 

𝑢(𝑦, 𝑡) =  [𝐴7𝑒𝜆1𝑦 + 𝐴6𝑒−𝜆1𝑦  +  𝐴5𝑒−𝑦 +  𝐴4 +  𝐺𝑟(𝐴22𝑒𝜆1𝑦 +  𝐴21𝑒−𝜆1𝑦 +  𝐴18𝑒𝜆3𝑦 +

 𝐴19𝑒−𝜆3𝑦 +  𝐴20)]𝑒𝑖𝑤𝑡         (52) 

𝑢𝑝(𝑦, 𝑡) =  [𝐺𝑟(𝐴17 𝑒
𝜆2𝑦 +  𝐴16 𝑒

−𝜆2𝑦 +  𝐴12 𝑒
𝜆1𝑦 +  𝐴14 𝑒

−𝑦+ 𝐴15 )]𝑒𝑖𝑤𝑡  (53) 

𝜃(𝑦, 𝑡) = [𝐴3 𝑒
𝜆3𝑦 +  𝐴2 𝑒

−𝜆3𝑦 +  𝐺𝑟(𝐴32𝑒𝜆3𝑦 + 𝐴31𝑒−𝜆3𝑦 + 𝐴23𝑒𝜆4𝑦 + 𝐴24𝑒−𝜆4𝑦 + 𝐴25𝑒2𝜆1𝑦 +

𝐴26𝑒(𝜆1−1)𝑦 + 𝐴27𝑒(−𝜆1−1)𝑦 + 𝐴28𝑒−2𝜆1𝑦 + 𝐴29𝑒−2𝑦 + 𝐴30)]𝑒2𝑖𝑤𝑡  (54) 

𝜃𝑝(𝑦, 𝑡) =  [
𝐴1𝑒𝜆4𝑦 + 𝐴0𝑒−𝜆4𝑦 +

𝐺𝑟(𝐴11𝑒𝜆4𝑦 + 𝐴10𝑒−𝜆4𝑦 +   𝐴8𝑒𝜆3𝑦 + 𝐴9 𝑒
−𝜆3𝑦)

] 𝑒2𝑖𝑤𝑡   (55) 

Where; 

𝐴0 =
𝑒−2𝑖𝑤𝑡

𝑒−𝜆4− 𝑒𝜆4
,   𝐴1 = −𝐴0𝑒2𝜆4 , 𝐴2 =

𝑒−2𝑖𝑤𝑡

𝑒−𝜆3− 𝑒2𝜆3
, 𝐴3 =  −𝐴2 𝑒

2𝜆3 , 𝐴4 =  
𝜎

𝜆1
2, 𝐴5 =

−𝑓

(1−𝜆1
2)

,  

𝐴6 =
(𝐴4 + 𝐴5𝑒) 𝑒2𝜆1−(𝐴4 + 𝐴5𝑒−1)

𝑒−𝜆1− 𝑒3𝜆1
, 𝐴7 = − 𝐴6𝑒2𝜆1 − (𝐴4 + 𝐴5𝑒) 𝑒𝜆1 , 𝐴8 =  

−𝑑𝑙𝑜𝐴3

𝜆3
2−  𝜆4

2 

𝐴9 =
−𝑑𝐿𝑜𝐴2

𝜆3
2 −  𝜆4

2 , 𝐴10 = − 
(𝐴8𝑒−𝜆3 +  𝐴9 𝑒

−𝜆3) +  (𝐴8𝑒𝜆3 +  𝐴9 𝑒
−𝜆3)𝑒−2𝜆4 )

𝑒𝜆4 −  𝑒−3𝜆34
 

𝐴11 = 𝐴10𝑒−2𝜆4 −  (𝐴8𝑒𝜆3 +  𝐴9 𝑒
−𝜆3) 𝑒−2𝜆4 )𝑒−𝜆4 , 𝐴12 =  

−𝑏𝐴7

𝛽 (𝜆1
2 −  𝜆2

2) 
, 𝐴13 = −

𝑏𝐴6

𝛽 (𝜆1
2 − 𝜆2

2) 
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𝐴14 =
−𝑏𝐴5

𝛽(1 −  𝜆2
2)

, 𝐴15 =
𝑏𝐴4

𝛽𝜆2
2 ,  

𝐴16 

=
− (𝐴12 𝑒

𝜆1 +  𝐴13 𝑒
−𝜆1 +  𝐴14 𝑒

−1 +  𝐴15 ) +  (𝐴12 𝑒
−𝜆1 +  𝐴13 𝑒

𝜆1 +  𝐴14 𝑒 +  𝐴15 )𝑒2𝜆2

− 𝑒3𝜆2 + 𝑒−𝜆2
 

𝐴17 = (𝐴16 𝑒
2𝜆2 − 𝐴12 𝑒

−𝜆1 +  𝐴13 𝑒
𝜆1 + 𝐴13 𝑒 +  𝐴15 ))𝑒𝜆2  

𝐴18 = − 
𝐴3 𝑒

𝑖𝑤𝑡

𝜆3
2 – 𝜆1

2 , 𝐴19 = − 
𝐴2 𝑒

𝑖𝑤𝑡

𝜆3
2 – 𝜆1

2 , 𝐴20 = −
𝑒𝑖𝑤𝑡

𝜆1 
2  

𝐴21 =
−( 𝐴18𝑒−𝜆3 − 𝐴19𝑒𝜆3 + 𝐴20) +  (𝐴18𝑒𝜆3 − 𝐴19𝑒−𝜆3 +  𝐴20)𝑒−2𝜆1

𝑒𝜆1 −  𝑒−3𝜆1
 

𝐴22 = 𝐴21𝑒−2𝜆1 −  (𝐴18𝑒𝜆3 +  𝐴19)𝑒−𝜆3 +  𝐴20)𝑒−𝜆1 , 𝐴23 =
−𝐵2𝑑𝐴1

(𝜆4
2−𝜆3

2)
, 𝐴24 =

−𝐵2𝑑𝐴0

(𝜆4
2−𝜆3

2)
  

𝐴25 =
−𝐸𝑐𝑑𝜆1

2𝐴7
2

(4𝜆1
2−𝜆3

2)
, 𝐴26 =

2𝑑𝐸𝑐𝜆1𝐴5𝐴7

((𝜆1−1)2−𝜆3
2)

, 𝐴27 =
−2𝑑𝐸𝑐𝜆1𝐴5𝐴6

((−𝜆1−1)2−𝜆3
2)

, 𝐴28 =  
−𝐸𝑐𝑑𝜆1

2𝐴6
2

(4𝜆1
2−𝜆3

2)
, 𝐴29 =

−𝐸𝑐𝑑𝐴5
2

(4−𝜆3
2)

 

𝐴30 =
−(2𝑑𝐸𝑐𝜆1

2𝐴6𝐴7 − 𝑑𝑁𝑟𝑒−2𝑖𝑤𝑡)

𝜆3
2  

𝐴31 =
1

(𝑒−𝜆3−𝑒3𝜆3)
((𝐴23𝑒−𝜆4 + 𝐴24𝑒𝜆4 + 𝐴25𝑒−2𝜆1 + 𝐴26𝑒−(𝜆1−1) + 𝐴27𝑒−(−𝜆1−1) + 𝐴28𝑒2𝜆1

+ 𝐴29𝑒2 + 𝐴30)𝑒2𝜆3

− (𝐴23𝑒𝜆4 + 𝐴24𝑒−𝜆4 + 𝐴25𝑒2𝜆1 + 𝐴26𝑒(𝜆1−1) + 𝐴27𝑒(−𝜆1−1) + 𝐴28𝑒−2𝜆1

+ 𝐴29𝑒−2 + 𝐴30)) 

= 𝐴32 = −𝐴31𝑒2𝜆3 − (𝐴23𝑒−𝜆4 + 𝐴24𝑒𝜆4 + 𝐴25𝑒−2𝜆1 + 𝐴26𝑒−(𝜆1−1) + 𝐴27𝑒−(−𝜆1−1) +

𝐴28𝑒2𝜆1 + 𝐴29𝑒2 + 𝐴30)𝑒𝜆3  

 

RESULTS  

The effect of Prandtl number (𝑃𝑟), stoke constant (K), Eckert number (𝐸𝑐), modified Hartman 

number (𝐻𝑟), particle mass parameter (𝐺), temperature relaxation time parameter (𝐿0), fluid 

concentration parameter (𝑅), dimensionless stress coefficient per unit volume (𝛽), dimensionless 

pressure gradient (𝛼), Hartman number (H),radiation parameter (𝑁𝑟), Grashof number (𝐺𝑟), on the 

velocity𝑢(𝑦, 𝑡) of fluid particle, velocity 𝑢𝑝(𝑦, 𝑡) of dusty particle, temperature 𝜃(𝑦, 𝑡)of fluid 

particle and temperature𝜃𝑝(𝑦, 𝑡) of dusty particle were presented and analyzed graphicallyusing 

computer symbolic algebraic package MAPLE 17.  
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Figure 1: Effect of Modified Hartman 

Number 𝑯𝒓 on V 

Figure 2: Effect of Grashof Number 𝑮𝒓 on 

Velocity of fluid 𝒖(𝒚, 𝒕) against Distance y 

  

  

Figure 3: Effect of dimensionless stress 

coefficient per unit volume (𝜷) on Velocity 

of fluid 𝐮(𝐲, 𝐭) against Distance y 

Figure 4: Effect of Modified Hartman 

Number 𝐇𝐫 on Velocity of dusty particles 

𝐮𝐩(𝐲, 𝐭) against Distance y 
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Figure 5: Effect of particle mass parameter 

(𝐆) on Velocity of dusty particles 𝐮𝐩(𝐲, 𝐭) 

against Distance y 

Figure 6: Effect of Eckert number (𝐄𝐜) on 

Temperature of fluid 𝛉(𝐲, 𝐭) against Distance 

y 

  

  

Figure 7: Effect of Prandtl number (𝐏𝐫) on 

Temperature of fluid 𝛉(𝐲, 𝐭) against 

Distance y 

Figure 8: Effect of Radiation parameter (𝐍𝐫) 

on Temperature of fluid 𝛉(𝐲, 𝐭) against 

Distance y 
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Figure 9: Effect of temperature relaxation 

time parameter (𝐋𝟎) on Temperature of 

dusty particle 𝛉(𝐲, 𝐭) against Distance y 

Figure 10: Effect of Prandtl number (𝐏𝐫) on 

Temperature of dusty particle 𝛉𝐩(𝐲, 𝐭) 

against Distance y 

  

  

Figure 11: Effect of Radiation parameter 

(𝐍𝐫) on Temperature of dusty particles 

𝛉𝐩(𝐲, 𝐭) against Distance y 

Figure 12: Effect of Modified Hartman 

Number 𝐇𝐫 on Velocity of fluid 𝐮(𝐲, 𝐭) 

against time t 
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Figure 13: Effect of dimensionless stress 

coefficient per unit volume (𝛃) on Velocity 

of fluid 𝐮𝐩(𝐲, 𝐭) against time t 

Figure 14: Effect of Eckert number (𝐄𝐜) on 

Temperature of fluid 𝛉(𝐲, 𝐭) against time t 

  

  

Figure 15: Effect of Prandtl number (𝐏𝐫) on 

Temperature of fluid 𝛉(𝐲, 𝐭) against time t 

Figure 16: Effect of Radiation parameter (𝐍𝐫) 

on Temperature of fluid 𝛉(𝐲, 𝐭) against time t 

 

DISCUSSION OF RESULTS
 

Figure 1 shows the effect of modified Hartman number Hr on velocity of fluid u(y, t) against 

distancey. it is observed that velocity of fluid increases to a point and later decreases along distance 

and this velocity increases as modified Hartman number Hr increases. 

Figure 2 shows the effect of Grashof number Gr on velocity of fluid u(y, t) against distance y. it is 

observed that velocity of fluid increases to a point and later decreases along distance and this 

velocity decreases as Grashof number Gr increases. 

Figure 3 shows the effect of dimensionless stress coefficient per unit volume (β) on velocity of 

fluid u(y, t) against distance y. it is observed that velocity of fluid increases to a point and later 

decreases along distance and this velocity decreases as dimensionless stress coefficient per unit 

volume (β)  increases. 
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Figure 4 shows the effect of modified Hartman number Hr on velocity of dusty particles up(y, t) 

against distance y. it is observed that velocity of fluid increases to a point and later decreases along 

distance and this velocity increases as modified Hartman number Hr increases. 

Figure 5 shows the effect of particle mass parameter (G) on velocity of dusty particles up(y, t) 

against distance y. it is observed that velocity of fluid increases to a point and later decreases along 

distance and this velocity decreases as particle mass parameter (G) increases. 

 Figure 6 shows the effect of Eckert number (Ec) on temperature of fluid θ(y, t) against distance y. 

it is observed that temperature of fluid increases along distance and this temperature increases as 

Eckert number (Ec) increases. 

Figure 7 shows the effect of Prandtl number (Pr) on temperature of fluid θ(y, t) against distance y. 

it is observed that temperature of fluid decreases along distance and this temperature decreases as 

Prandtl number (Pr) increases. 

 Figure 8 shows the effect of radiation parameter (Nr) on temperature of fluid θ(y, t) against 

distance y.it is observed that temperature of fluid decreases along distance and this temperature 

decreases as radiation parameter (Nr) increases. 

Figure 9 shows the effect of temperature relaxation time parameter (L0) on temperature of dusty 

particle θp(y, t) against distance y. it is observed that temperature of dusty particle increases along 

distance and this temperature increases as temperature relaxation time parameter (L0) increases. 

 Figure 10 shows the effect of Prandtl number (Pr) on temperature of dusty particle θp(y, t) against 

distance y.it is observed it is observed that temperature of dusty particle increases along distance 

and this temperature increases as Prandtl number (Pr) increases. 

 Figure 11shows the effect of radiation parameter (Nr) on temperature of dusty particles θp(y, t) 

against distance y. it is observed that temperature of dusty particle increases along distance and this 

temperature increases and later converges at a point as radiation parameter (Nr) increases. 

Figure 12 shows the effect of modified Hartman number Hr on velocity of fluid u(y, t) against time 

t. it is observed that velocity of fluid moves in a sinusoidal way against time and this velocity 

increases as modified Hartman number Hr increases. 

Figure 13 shows the effect of dimensionless stress coefficient per unit volume (β) on velocity of 

fluid up(y, t) against time t. it is observed that velocity of dusty particles moves in a sinusoidal way 

against time and this velocity increases as dimensionless stress coefficient per unit volume (β)  

increases. 

 Figure 14 shows the effect of Eckert number (Ec) on temperature of fluid θ(y, t) against time t. it is 

observed that temperature of fluid moves in a sinusoidal way against time and this temperature 

increases as Eckert number (Ec) increases. 

Figure 15 shows the effect of Prandtl number (Pr) on temperature of fluid θ(y, t) against time t. it is 

observed that temperature of fluid moves in a sinusoidal way against time and this temperature 

decreases as Prandtl number (Pr) increases. 

Figure 16 shows the effect of radiation parameter (Nr) on temperature of fluid θ(y, t) against time t. 

it is observed that temperature of fluid moves in a sinusoidal way against time and this temperature 

decreases as radiation parameter (Nr) increases. 

CONCLUSION  
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This mathematical analysis investigates the heat transfer characteristics of MHD dusty fluid flow 

between two Riga plates embedded in a porous medium. The non-dimensionalization of model 

equations revealed significant insights into the effects of various dimensionless parameters on fluid 

velocity and temperature. 

Key Findings: 

At the end of this analysis, several insightful key observations were made. These includes: 

1. The Modified Hartman number (Hr) enhances fluid and dusty particle velocities, indicating 

the significance of magnetic field strength in MHD flows. 

2. Grashof number (Gr) and dimensionless stress coefficient per unit volume (β) decrease 

fluid velocity, highlighting the opposing effects of buoyancy and particle interactions. 

3.  Particle mass parameter (G) reduces dusty particle velocity, demonstrating the impact of 

particle inertia on flow behavior. 

4.  Eckert number (Ec) increases fluid temperature, illustrating the role of viscous dissipation 

in heat transfer. 

5. Prandtl number (Pr) and radiation parameter (Nr) decrease fluid temperature, emphasizing 

the combined effects of thermal diffusivity and radiative heat transfer. 

6.  Temperature relaxation time parameter (L0) increases temperature, indicating the 

significance of thermal relaxation in heat transfer processes. 

7.  Radiation parameter (Nr) also increases dusty particle temperature, underscoring the 

importance of radiative effects in particle heating. 

The analysis of MHD dusty fluid flow between Riga plates embedded in a porous medium has 

broad applications across various fields. By improving knowledge of fluid flow and heat transfer 

under magnetic fields, it helps energy systems optimise operations in nuclear fusion reactors, MHD 

pumps, and geothermal energy systems. It facilitates the design of effective dust control, 

combustion chamber, and multiphase oil recovery systems in industrial operations. It supports 

pollution control and climate research by predicting the movement and dispersion of particle 

contaminants in porous medium through environmental modelling. 

Enhancing targeted medication delivery systems and comprehending blood flow dynamics in 

magnetic fields are examples of biomedical applications. This analysis is useful for optimising fluid 

flow, heat transfer, and particle behaviour across a variety of scientific and engineering 

applications. Furthermore, the understanding of heat transfer mechanisms is essential for spacecraft 

thermal systems, heat exchangers, and materials intended for thermal insulation. 
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