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Abstract 
The Winternitz One Time Signature Scheme is a Hash-based Signature Schemes that is used to secure online 
communicating devices. The low randomness weakness that exists in the ECDSA makes it easier for an attacker using a 
quantum algorithm to discover the secret key of a legitimate user. However, the major challenge of the hash-based signature 
algorithm is the large key and signature sizes as well as high computation time. This research work developed an improved 
Winternitz One Time Signature (i-WOTS) algorithm that could be used for securing cryptocurrency transactions before the 
transactions are added to a block in the blockchain. The i-WOTS algorithm uses the randomization technique and exclusive 
OR (XOR) instead of bit masking operations. The i-WOTS computation time as compared with the default algorithm was 
0.73 seconds as against 5.89 seconds. This gives 87.61% improvement over the default algorithm. Comparing i-WOTS with 
WOTS+ and WOTS-S algorithms, the results indicate that the signature generation was 0.011 seconds which was better 
than the WOTS+ and WOTS-S with 0.045seconds and 0.025 seconds respectively. The same improvement was noticed in 
terms of signature verification time of i-WOTS which was 0.11seconds as against the verification time for WOTS+ and 
WOTS-S which was 0.034 seconds and 0.024 seconds. The time complexity for the i-WOTS algorithm was O(nd). The i-
WOTS algorithm could be used on light weight devices such as IoT devices because the computation time for the enhanced 
algorithm will be fast with less memory consumption. 

Keywords: Hash-based Signature Scheme, One Time Signature, Quantum algorithm, Quantum computer, Digital 
Signature Scheme 

1. Introduction
Cryptography as a field of science is applied in different
application areas to provide secure communication and
protection of data among communicating devices. To
ensure confidentiality, integrity, and authenticity of sent
messages in communicating devices, digital signature
algorithms and some relevant encryption schemes need to
be deployed (Menezes et al., 2018). The commonly used
public key algorithms are the Rivest, Shamir, and

Adleman (RSA) algorithm, the Digital Signature 
Algorithm (DSA), and the Elliptic Curve Digital Signature 
Algorithm (ECDSA). These algorithms are based on the 
hardness of prime factorization of relatively large integers. 
The security provided by RSA, ECDSA, and other public 
key digital signature algorithms that are in use by all 
cryptosystems are at risk of threats that are related to 
quantum computer attacks (Wang et al., 2020). 

factorization as well as discrete logarithms (Shor, 1999). 
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This implies that a quantum computer is capable of 
reconstructing the secret key provided the ECDSA public 
key is known. The second security threat to classical 
algorithms is Grover’s search algorithm (Sattath, 2020). 
Grover’s algorithm offers a great advantage to illegal 
cryptocurrency miners. This is because the likelihood of 
finding a block increases as the number of algorithm 
repetitions also increases when the algorithm is applied on 
a target system (Grover, 1996). 
 
Several cryptographic schemes have been proven to resist 
quantum computer-related attacks; these include Hash-
based  
Cryptography, Code-based Cryptography, Lattice-based 
Cryptography, Multivariate-quadratic Equations, and 
Secret Key Cryptography (Joseph et al., 2022). These 
cryptographic schemes are alleged to repel modern 
computer and quantum computer-aided attacks given 
sufficient large key sizes (Fernández-Caramès and Fraga-
Lamas, 2020). The Hash-based Cryptography is the 
generic term used to develop cryptographic schemes in 
which their security is based on the hash function that is 
used. 
 
Most cryptocurrency applications  
implemented on the blockchain platforms certainly relied 
on the ECDSA and the RSA algorithms for securing 
transactions on the blockchain. Nofer et al. (2017) 
explained that the security of these two algorithms is 
centered on the large Integer Factorization Problem (IFP) 
and the Discrete Logarithm Problem (DLP). The research 
work of (Fedorov et al., 2018) revealed that the 
advancement in the study of quantum computing proves 
that quantum computers are capable of breaking many 
public key cryptosystems. Given these limitations, the 
hash-based signature algorithms were considered to be 
alternatives to the classical algorithms. The reason is that 
the hash-based signature algorithm security does not rely 
on the IFP or the DLP (Perin et al., 2021). However, the 
major drawback in these algorithms particularly the 
Winternitz One Time Signature (W-OTS) algorithm is the 
problem of relatively large signature sizes and high 
processing time which could lead to an increase in 
computation time (Fernández-Caramés and Fraga-Lamas, 
2020). In this research, an improved Winternitz One Time 
Signature algorithm (i-WOTS) was developed with less 
computation time and reduced cost. 
 
2. Related Literature Review 
The research breaking ground in the development of 
quantum computers in today’s Information Technology 
industry poses a threat to most standardized encryption 
schemes (Bernstein and Lange, 2017). Research works in 
post-quantum cryptography are still in progress to develop 
alternative algorithms that could resist quantum computer-

related attacks such as differential side-channel attacks on 
the PKI. A promising alternative is the hash-based digital 
signature algorithms which are believed to resist quantum 
computer-related threats (de Oliveira et al., 2017). It is in 
line with this that in 1989 Raph Merkle published a 
research article titled: A Certified Digital Signature based 
on encryption function (Merkle, 1989). Merkle uses the 
concept of a binary tree to replace many verification keys 
with one Public Key. The method used was known as 
‘tree signature’. In this method, the divide and conquer 
rule to authenticate signature verification was adopted. 
The limitation of this method was the high cost of the 
authentication path and high memory consumption.  
 
Buchmann et al. (2007) proposed the Chained Merkle 
Signature Scheme (CMSS), an enhanced version of the 
MSS that provides significant improvement in the 
signature and key generation algorithms. The signing key 
size of the CMSS algorithm is reduced with a 
corresponding large signature size. The CMSS algorithm 
stored only the seed input for the PRNG instead of storing 
the whole signing key. This action caused a reduction in 
the size of the signing keys. The CMSS has a limitation 
because the signature size is large when compared to the 
MSS. The reason for the limitation is that the verification 
(auth) path on the sub-tree genesis node and the signature 
are included in the message signature.  
 
In 2013, the Extended MSS also abbreviated as XMSS 
was developed. The algorithm was described as a practical 
forward secure signature scheme based on minimum 
security expectations (Buchmann, et al., 2013). The 
authentication tree construction methods adopted by 
XMSS is similar to the one used by SPR-MSS. This was 
done for the purpose of achieving lower second pre-image 
resistant security needs for the hash function. When 
comparing the XMSS signatures size with the SPR-MSS. 
Buchmann et al. (2013) proved that XMSS is four times 
smaller but at a slightly better in terms of the security 
level. In 2015, the authors improve on the XMSS 
algorithm and rename it as XMSS+. The improvement 
was in the time taken to generate the keys which was from 

)()( nOtonO  using big O notation representation. 
However, testing the algorithm smart card, security level 
of XMSS+ was 71 bits. With the XMSS+ it is feasible to 
apply hash function that is more than 128 bits digest 
length to improve its (Hülsing, et al., 2018). 
 
The research of (De Oliveira and Lopez, 2015) and (de 
Oliveira et al., 2017) focuses on the improvement of 
HBSS by using parallel optimization techniques on XMSS 
key generation, signature verification and execution time. 
The scheme has limitation on the number of signatures it 
can generate.  Pauls et al. (2019) research work 
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investigated the compatibility of XMSS with low-latency 
needs of the tactile internet. The actors designed an 
XMSS-specific accelerator by combining hardware-
software co-design method. The experimental results for 
the signing and verification was 176µs and 42µs which is 
63% better as compared with the work of Wan et al. 
(2020).  
 
To reduce the hash tree construction time (Shahid et al., 
2020) developed a Smart Digital signature scheme (SDS) 
for distributed ledgers. The SDS incorporated a unique 
OTS scheme in XMSS which showed a significant 
decrease in hash-tree creation time in comparison with the 
default XMSS. The authors used a key compression 
technique to achieve better results in computation time for 
the XMSS tree hashing algorithm. Kearney et al. 
(2021) carried out a comparative analysis of the 
vulnerability of some selected blockchain-based 
cryptocurrency technologies susceptible to quantum 
attacks. The results of the analysis showed that 95% of 
blockchain-based cryptocurrencies today are vulnerable to 
quantum computer attacks. The exposure of quantum 
computer-related attacks calls for urgent research in the 
field of blockchain application technology.  
 
Bos et al. (2021) presented an improvement in the of 
XMSS when applied on constrained devices. The authors 
applied the W-OTS tuning technique proposed by 
(Perin et al., 2018) which involved a slight change in the 
checksum computation and the application of a 
cryptographic nonce to a message and then hashed. The 
idea is to append a cryptographic nonce to the already 
signed messages before the signature is generated. To 
reduce the cost of verifying signatures, the procedure is 
repeated severally. Although significant results were 
obtained, the limitation of this approach is the additional 
cost of searching the integer used in finding the 
cryptographic nonce that speeds up the W-OTS algorithm.  
Perin et al. (2021) did similar work and the authors 
proposed the WOTS-CS.  In this research work, a new set 
of parameters that caused a decrease in the number of 
hash processes specifically in the key generation was 
introduced. The WOTS-CS key generations were reduced 
by 11.37% less than the WOTS+ scheme. The parameter 
selection problem and the complexity that exist in the 
constant-sum encoding algorithms is a major limitation of 
this algorithm. Based on the related literature reviewed, it 
can be seen that the majority of the research work aimed 
at improving the efficiency of the algorithm. There are 
several research done aim at improving the Winternitz 
One-Time Signature scheme. Some of these researches 
focuses on enhancing the security, efficiency and practical 
deployment of the WOTS. Hulsing et al. (2018) improved 
the security of WOTS. The improved version was called 
WOTS+. The authors achieved this by using different 

chaining techniques for the hash function making it 
resistant to multi-target attacks. In the same vein, the work 
of (Bernstein et al., 2017) provides a comprehensive 
security analysis of the WOTS to know how its strength 
and weaknesses. However, the work of (Perin et al., 2018) 
concentrate on the redunction of the cost in signature 
verification as a result of the number of chained iterations 
of the cryptographic hash function. Oraei and Dehkordi 
(2022) proposed an improved WOTS based on graded 
encoding techniques. Similarly (Shahid et al., 2020) 
developed an improved version of WOTS called WOTS-
S. The improved version of the WOTS was applied on 
Distributed Ledger Technology systems. After reviewing 
some of the research works aimed at improving, there are 
still need for further improving on the WOTS to make the 
scheme more efficient and with less time taken during 
execution particularly on IoT devices. In this research, an 
improved Winternitz One Time Signature algorithm was 
developed with reduced execution time of the key 
generation, signature generation, and verification. 
 
3. METHODOLOGY 
The development of an improved WOTS starts with 
mathematical formulation of the algorithms. The 
algorithm parameters are the Key generation, Signature 
generation and Signature verification. This will be 
followed by the implementation process. In the 
implementation, the secure hash algorithm (SHA 256) was 
used to attain a post-quantum security level. In as much as 
the generic Winternitz OTS uses a collision-resistant hash 
function, the i-WOTS adopts the Pre-image Resistant 
Hash Function (PRHF) in the implementation. The reason 
for adopting the PRHF is that the pre-image-resistant hash 
function is assumed to be more efficient in withstanding 
multi-target attacks as compared to the collision-resistant 
hash function used in the generic W-OTS.  
 
The i-WOTS uses a randomization technique with 
exclusive OR (XOR) operations during the signature 
generation processes. The exclusive OR (XOR) operations 
have a negligible cost on the signature size and signature 
verification while maintaining the same security standard. 
The use of randomization and XOR is to enhance un-
detectability in case of any brute force attacks by an 
adversary. Unlike the default W-OTS algorithm and other 
variance such as the WOTS+ that adopts the use of bit 
masking as a security improvement measure, the i-WOTS 
algorithm does not apply bit masking in the development 
of the algorithm because bit masking operations comes 
with an additional cost of computation. 
 
Other improvement method was to change the 
computation of the checksum by padding unused bits with 
ones instead of zeros and then applying the bit 
compression technique. Padding with ones improved 
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signature verification time, while padding with zeros 
improved signature generation. The padding operations 
carried out in this work are a preventive measure such that 
an attacker cannot know the exact length of the plaintext 
message used. The i-WOTS used Uniform Transformation 
Format (UTF-8) encoding technique. The eight (8) means 
the 8-bit string is used at every message encoding. The 
UTF-8 encoding offers valuable properties that can reduce 
the costs related to the number of chaining function 
iterations of the developed algorithm and reduce key 
generation costs. 
 
4. Algorithm Formulation 
The i-WOTS algorithm uses the function given as:  

{ } { }ssf 1,01,0: → and it is has the properties of one-
wayness . The algorithm also need a cryptographic hash 
function { } { }sHc 1,01,0: * → . 
 
Let 2≥w . 
 
Such that:  

1
log

)1(1log2;1
2

2 +

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Where:  r = r1 + r2    (4.1) 

 
The variable ‘r’ in the equation 4.1 is number of n-bytes 
string of i-WOTS secret key, publick key and signature.
   
The variable‘s’ is the hash value of the message, and ‘w’ 
is the winternitz parameter (w >1)  
The signature key α is presented as: 

{ } ),(
011 1,0),...,,( rs

Rr yyyY ∈= −  (4.2)  

Let iy be the bit string selected evenly at random. This 
implies that the key for the verification Q is calculated by 
using function f on every bit sequence in the signature key 
for )12( −w number times. Therefore, the verification 
key Q is given as:  

{ } ),(
211 1,0),...,,( rs

r qqqQ ∈= −                   (4.3)   
Where: 

10;)(12 −≤≤= − riyfq i
w

i   (4.4) 
     

The equations 4.1, 4.2 and 4.3 are the equations that are 
required in the key generation process. To compute the 
key generation, )12( −wr evaluations of the function f is 
required. 
A). Signature generation 
Let G equal to the message digest from 

)...,,()( 01 dddGHc s−== is needed to be signed. The 
digest d may be padded with ones for ease of division by 
W. The string of d is sliced into r1 bit strings of 

11 ...,, rbb rr −−  with the length to be the value of ‘W’. 
Then,  

11 || rrr bbd −−=     (4.5) 
     

The strings bi are recognized with integers in the set 
{ }12...,,1,0 −w and the checksum is computed as: 

)2(
1

1
i

r

rri

w bCs −= ∑
−

−=

   (4.6)  

If the checksum wrCs 21≤ implies that the checksum 
length in binary representation is less than taken the floor 
of      1log12log 1212 +++ wrequalsr w  (4.7)
  
The equation 4.6 is padded with zeros so as enable the 
length of the extended string to be divided easily by ‘W’ 
equally. The next step is the splitting of the lengthy string 
into r2 blocks as 012 ...,, bbr − of length w; such that: 

012 ||....|| bbCs r −= . The signature of message ‘G’ is 
calculated as: 

))(),(...,),(( 0
0

1
1

1
1 yfyfyf bb

r
br

−
−=α  (4.8)  

The signature generation requires )12( −wr evaluations 
of the function f. 
 
Signature Verification 
To verify the signatureα , it is computed as: 

)....,,( 01 ααα −= r  The bit strings in binary for 

01 ...,, bbr− are computed by the verifier. The applying F, 
gives: 

)....,,(?))(...,),( 010
012

1
112 qqff s

bw
s

brw
−

−−
−

−−− αα  (4.9) 

     
The signature is valid if the comparison holds in equation 
4.35 or it is rejected.  
The equation 4.35 holds for .0...,,1−= ri  
Also note that to verify the signature, it requires 

)12( −wr evaluations of the function f. 
The equations 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, and 4.9 
are the basic mathematical equations in the formulation of 
the i-WOTS algorithm. 
 
The flowcharts for the formulated i-WOTS algorithm is 
illustrated in the figures 1, 2, and 3. The flowchart in the 
figure 1 provides i-WOTS key generation process to 
obtain the public key and the secret key. The flowchart in 
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figure 2 provides a clear steps from hashing the message 
to generate the final signature, while the figure 3 is the 
flowchart that provides i-WOTS signature verification 
process from hashing the message to verify the derived 
public key against the given public key. 
 

Start

Compute derived values
r1= ceil (8n/log2(W)

r2= floor (logw(r1 * (W-1)) + 1
r = r1+r2

If w ≤  0

Define 
parameters

N, W

Generate secret key
Generate r random  n-bytes 

strings  
(Sk1,…,Skr)

Endyes

No

Compute Public key
for each Ski,

Compute Pki – H^(w-1) (Ski )
Combine to form 

(Pk = (Pk1, …,Pkr)

End
 

 
Figure 1. Key generation flowchart 
 

Start

Compute checksum  Cs
for i=0; i < r1; i++
Cs = Cs (w+1-Hi)

Convert Cs to base utf-8 
encoding

Split into r2 values

Concatenate values
Combine hash and checksum 

values

End

Hash the message M
Convert h(m)

Convert Hash to utf-8 encoding
Split h(m) into r1 base utf-8 

values

No

If i > r1

Generate signature
For i=1 to Cs:

Si= H^ (hi (Ski)

Output Signature
(S1, S2,…,Sr)

yes
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Start

Convert h(M) to base utf-8 encoding
Message = utf-8 (m, w, r1)

Compute verification key
for i=0; i < r; i ++

Compute derived public key Pk’

End

Hash the message M
Compute h(M)

Valid signature

Input 
values of 

W, M

Compute checksum  Cs
for i=0; i < r1; i++

Cs = Cs +w-1-msg(i)
Convert Cs to base utf-8 encoding

Split into r2 values

Concatenate values
Combine hash and checksum values

If Pk’=PK Invalid signatureNo

Yes

 
Figure 3 Signature verification flowchart 
 
5.0 i-WOTS Algorithms 
5.1 Secret Key Algorithm 
The enhanced algorithm secret key is a collection of n-
byte string lengths. The secret key is used to sign a single 
message at a time. The n-byte string should be randomly 
selected from the even spread or can be selected using a 

secure pseudorandom technique (i.e. using a 
pseudorandom number generator). 

The algorithm 5.1 describes the secret key generation. The 
inputs include the seed and the i-WOTS parameter. The 
seed is a pseudorandom number generated using the PRF 
generator. The i-WOTS parameter (w) must be greater 
than 1. In the experiment, the value of w chosen was eight 
(8) and sixteen (16). The choice of these two values is to 
compare which among them gives the best output in terms 
of the time taken in key generation. The algorithm 3.1 is 
to return the i-WOTS secret key 
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Algorithm 5.1   i-WOTS_genSk      Generating i-WOTS Secret key 
Input:   Seed, i-WOTS parameter (w > 1) 
Output:   i-WOTS secret key 

               

;
}

;)(
{);;0(

k

k

Sreturn

stringbytenrandomunifiormawithiPinitialize
iriifor

−
++<=

 

       
 
5.2 Public Key Algorithm 

The key pairs of the i-WOTS algorithm 
comprise r hashed chains of length w (w > 1). The 
value of r is computed as given in equation 4.1. The 
public key (pk) comprises of the last node of the 
hashed chains. The public key is a length 
of  r collection of n-byte strings. The chaining function 
is applied to compute the hash chain. It is required that 

the hashed address of the OTS with the seed SEED should be 
made available by an algorithm. The seed used here is 
available to the public for the verifier to access. The 
algorithm 5.2 computes the public key. The inputs in this 
algorithm are the secret key, the address (ADRS) that is 
generated by the algorithm, and the seed. The secret key is to 
be kept secret and not to be known by the public. 

 

Algorithm 5.2   i-WOTS_genPk – Generating a i-WOTS PK from SK 
Input:      i-WOTS secret key Sk, address ADRS, seed SEED 
Output:   i-WOTS public key Pk 
 

                

;
{

);,,1,0,][()(
;)(.
{);;0(

Pkreturn

ADRSSEEDwiSkchainiPk
idresssetchainAdADRS

iriifor

−=

++<=

 

 
5.3 Signature Generation Algorithm 
The i-WOTS Signature generation is presented in 
algorithm 5.3. The inputs required in algorithm 5.3 
include the message (m) to be hashed, the secret key 
and the public key are generated in algorithm 5.1 and 
5.2, and the address (ADRS). The output of the 
algorithm is the i-WOTS signature. The operations 
executed by the algorithm are explained as comments 
lines.  
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Algorithm 5.3   i-WOTS_Sign 
Input:      Message (M), Sk.seed, pk.seed, ADRS 
Output:   i-WOTS Signature (Sign) 
 

Signaturereturn
ADRSseedpkimsgSkchainiSign

ADRSseedSkPRFSk
idresssetchainAdADRS

iriifor
rbytesrcsumbytetoutfmsgmsg

wrceilbytesr
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5.4 Signature Verification Algorithm 
The algorithm 5.4 is the i-WOTS verification algorithm 
from the given message M and with the signature. In 
the algorithm, the inputs include the message with the 
secret seed value, the public seed, and lastly the 
address. The output is the i-WOTS signature. The 
operations explaining each operation command are 
written as comments within the algorithm for clarity. 
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Algorithm 5.4   i-WOTS_Verification  
Input:      Message (M), Sk.seed, pk.seed, ADRS 
Output:   i-WOTS Signature (Sign) 
 

SignPkreturn
tmpeWOTSADRSseedPkrTSigPk

valuekeypublicmatchesvaluedecryptedifcheck
AddressgetKeyPairADRSAddresssetKeyPairSeWOTSPkADR
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6. RESULTS AND DISCUSSION 
The implementation results of the improved algorithm 
is discussed in this section. The computation time of 
the three parameters would be discussed. The 
Winternitz parameter “W” chosen is 16, while the 
hashing algorithm is SHA256. The Table 1 is the 
computation time of the improved algorithm as 
compared with the default algorithm (WOTS). In the 
table 6.1, the key generation time for the default 
algorithm was 5.77 seconds as against 0.711 seconds of 

the improved algorithm. In the same way, the signature 
generation of the default algorithm was 0.064 seconds while 
the improved algorithm recorded o.011 seconds. The 
verification time for the default algorithm was 0.057 
seconds, while the verification time for the improved 
algorithm was 0.011 seconds. The overall total computation 
time for the improved algorithm was 0.73 seconds as 
compared with the default algorithm which was 5.89 
seconds. The results shows that the i-WOTS algorithm 
recorded 87.61% as compared with the default algorithm. 

 

Table 1 Algorithms Computation Time when w = 16 and Hashing Algorithm = SHA256 
Parameter Algorithm parameters Default algorithm Improved algorithm 

W = 16 
SHA256 
 

Key generation 
 
Signature generation 

5.77 
 

2104.6 −×  

11011.7 −×  
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Total execution time 
in (seconds) 

 
Signature verification 
 
 

 
2107.5 −×  

 
 
5.89 seconds 

2101.1 −×  
 

2101.1 −×  
 
 

1103.7 −×  seconds 
 
The graphical representation of the Table 1 is the Figure 4 

 
Figure 4 Algorithm Computation Time (w = 16) 

 

6.2 Performance Evaluation of i-WOTS Algorithm  
The Table 2 is the summary that shows the 
performance of the three algorithms using the chosen 
parameters. The i-WOTS total execution time was 
0.733 seconds as compared with the WOTS-S 

algorithm that has total time for execution of 0.861 seconds. 
This mean that the i-WOTS performed better than the 
WOTS-S with 14.87%. The total execution time of the i-
WOTS as compared with the W-OTS and the WOTS+ 
algorithms. 

 

Table 2 Summary of the Performance Analysis of i-WOTS Algorithm  
Algorithm KeyGen (s) SignGen (s) SignVerif (s) Total execution 

time (s) 
W-OTS 

 
WOTS+ 

 
WOTS-S 

 
i-WOTS 

5.77 
 

2103.4 −×  
 

11012.8 −×  
 

11011.7 −×  

2104.6 −×  
 

11045.7 −×  
 

2105.2 −×  
 

2101.1 −×  

2107.5 −×  
 

2104.3 −×  
 

2104.2 −×  
 

2101.1 −×  

5.89 
 

11022.8 −×  
 

11061.8 −×  
 

11033.7 −×  

 
 

The summary of the Table 2 is represented in the graph 
in the Figure 5 for better understanding performance 

analysis. 
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Figure 5 Comparing i-WOTS with other OTS 

 

7. The i-WOTS Algorithm Validation 
The validation of the i-WOTS algorithm will be done 
using the big O notation. The space complexity of the i-
WOTS was considered. The space complexity of the i-
WOTS algorithm is subject to the message length to be 
signed, the winternitz parameter and the hashing 
algorithm used. 
The Space complexity: )*( nwOSc =   
     
Where: 
w:   is the winternitz parameter  
n:  the number chains of the winternitz parameter 
The i-WOTS hash function produces 256-bit outputs. If 
‘w’ is chosen to be 16 and n=67, the space complexity

bytesOOSc )1072()67*16( == . 
 
8.  The i-WOTS Formal Security Proof 
The security proof of the i-WOTS algorithm is built on 
the Chosen Plaintext Attack (CPA) model. The CPA is 
a cryptanalytic type of attack model that assumes that 
the adversary can find the cipher texts for some given 
plaintexts. The main goal for the attacker is to know the 
information that reduces the security of the encryption 
algorithm. The steps of a CPA attack process are as 
follows: 
 
Step1:  Attacker adaptively choose plaintext 
and examine their encryption techniques 
Step2:  At some point, attacker select 

messages 10 ,mm  such that |||| 10 mm = and 
obtain a cipher text Ct 

Step3:  Attacker can choose more plaintexts 

and observe their encryption techniques 
Step4:  Attacker tries to guess whether 10 morm
is encrypted or not. 
Step5:  The attacker repeat these process many 
times 
 
The CPA model based on the improved algorithm is describe 
as follows: 
It is assumed that the CPA model allows an attacker ‘A’ to 
query the signature of the chosen message

)...,,,( 10 CCC n

mmm
. A signing oracle Os responds to the 

attacker’s queries, and returned a message and signature pair 

),( AA

m SigC  provided that SigA are valid signatures of  

.)....,,,( 10 CCC n

mmm
AA mandm ∉ In a secure CPA 

scheme, the probability of ‘A’ to be successful is very 
insignificant )(ε .  
 
9. CONCLUSION 
In this research, an improved Winternitz One Time Signature 
(i-WOTS) was developed and implemented. The 
improvement as shown by the results is in the signature 
generation and verification. The i-WOTS algorithm performs 
better than the W-OTS+ algorithm when considering the 
signature creation and the time taken to verify the signature. 
The i-WOTS signature creation time is 44% better than the 
WOTS+. While in the signature verification time, the i-
WOTS algorithm is 45.8% better than the WOTS+ 
algorithm. However, the WOTS+ algorithm outperformed 
the               i-WOTS in terms of the time taken for key 
generation. The key generation time of WOTS+ is 6.05% 
better than the i-WOTS key generation time. The i-WOTS 
algorithm was validated using the Big O notation. The total 
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space complexity of the i-WOTS was
bytesOOSc )1072()67*16( == . The results 

obtained for the total computational time as compared 
with other One Time Signatures was less. The space 
complexity performed better than the default algorithm. 
It is recommended that the i-WOTS algorithm could be 
applied on lightweight devices such as Internet of 
Things (IoT) because the computation time will be less 
with low memory consumption. 
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