
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY) Page | 25
International Journal of Computing Intelligence and Security Research (IJCISR)

DEVELOPMENT OF AN IMPROVED WINTERNITZ HASH-BASED
SIGNATURE ALGORITHM FOR BLOCKCHAIN CRYPTOCURRENCY

TRANSACTION SECURITY

*M.D Noel, S. Ahmad, A.O. Isah and S.O. Subairu
Cyber Security Science Department, Federal University of Technology, PMB 65 Minna

Niger State, Nigeria
*Corresponding author email: moses.noel@futminna.edu.ng

Abstract
The Winternitz One Time Signature Scheme is a Hash-based Signature Schemes that is used to secure online
communicating devices. The low randomness weakness that exists in the ECDSA makes it easier for an attacker using a
quantum algorithm to discover the secret key of a legitimate user. However, the major challenge of the hash-based signature
algorithm is the large key and signature sizes as well as high computation time. This research work developed an improved
Winternitz One Time Signature (i-WOTS) algorithm that could be used for securing cryptocurrency transactions before the
transactions are added to a block in the blockchain. The i-WOTS algorithm uses the randomization technique and exclusive
OR (XOR) instead of bit masking operations. The i-WOTS computation time as compared with the default algorithm was
0.73 seconds as against 5.89 seconds. This gives 87.61% improvement over the default algorithm. Comparing i-WOTS with
WOTS+ and WOTS-S algorithms, the results indicate that the signature generation was 0.011 seconds which was better
than the WOTS+ and WOTS-S with 0.045seconds and 0.025 seconds respectively. The same improvement was noticed in
terms of signature verification time of i-WOTS which was 0.11seconds as against the verification time for WOTS+ and
WOTS-S which was 0.034 seconds and 0.024 seconds. The time complexity for the i-WOTS algorithm was O(nd). The i-
WOTS algorithm could be used on light weight devices such as IoT devices because the computation time for the enhanced
algorithm will be fast with less memory consumption.

Keywords: Hash-based Signature Scheme, One Time Signature, Quantum algorithm, Quantum computer, Digital
Signature Scheme

1. Introduction
Cryptography as a field of science is applied in different
application areas to provide secure communication and
protection of data among communicating devices. To
ensure confidentiality, integrity, and authenticity of sent
messages in communicating devices, digital signature
algorithms and some relevant encryption schemes need to
be deployed (Menezes et al., 2018). The commonly used
public key algorithms are the Rivest, Shamir, and

Adleman (RSA) algorithm, the Digital Signature
Algorithm (DSA), and the Elliptic Curve Digital Signature
Algorithm (ECDSA). These algorithms are based on the
hardness of prime factorization of relatively large integers.
The security provided by RSA, ECDSA, and other public
key digital signature algorithms that are in use by all
cryptosystems are at risk of threats that are related to
quantum computer attacks (Wang et al., 2020).

factorization as well as discrete logarithms (Shor, 1999).

Available Online @
ijcsir.fmsisndajournal.org.ng

IJCISR 3(1) 2024
Original Research

Noel et al
Development of an …

International Journal of Computing Intelligence and Security Research (IJCISR)

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY) P a g e | 26

This implies that a quantum computer is capable of
reconstructing the secret key provided the ECDSA public
key is known. The second security threat to classical
algorithms is Grover’s search algorithm (Sattath, 2020).
Grover’s algorithm offers a great advantage to illegal
cryptocurrency miners. This is because the likelihood of
finding a block increases as the number of algorithm
repetitions also increases when the algorithm is applied on
a target system (Grover, 1996).

Several cryptographic schemes have been proven to resist
quantum computer-related attacks; these include Hash-
based
Cryptography, Code-based Cryptography, Lattice-based
Cryptography, Multivariate-quadratic Equations, and
Secret Key Cryptography (Joseph et al., 2022). These
cryptographic schemes are alleged to repel modern
computer and quantum computer-aided attacks given
sufficient large key sizes (Fernández-Caramès and Fraga-
Lamas, 2020). The Hash-based Cryptography is the
generic term used to develop cryptographic schemes in
which their security is based on the hash function that is
used.

Most cryptocurrency applications
implemented on the blockchain platforms certainly relied
on the ECDSA and the RSA algorithms for securing
transactions on the blockchain. Nofer et al. (2017)
explained that the security of these two algorithms is
centered on the large Integer Factorization Problem (IFP)
and the Discrete Logarithm Problem (DLP). The research
work of (Fedorov et al., 2018) revealed that the
advancement in the study of quantum computing proves
that quantum computers are capable of breaking many
public key cryptosystems. Given these limitations, the
hash-based signature algorithms were considered to be
alternatives to the classical algorithms. The reason is that
the hash-based signature algorithm security does not rely
on the IFP or the DLP (Perin et al., 2021). However, the
major drawback in these algorithms particularly the
Winternitz One Time Signature (W-OTS) algorithm is the
problem of relatively large signature sizes and high
processing time which could lead to an increase in
computation time (Fernández-Caramés and Fraga-Lamas,
2020). In this research, an improved Winternitz One Time
Signature algorithm (i-WOTS) was developed with less
computation time and reduced cost.

2. Related Literature Review
The research breaking ground in the development of
quantum computers in today’s Information Technology
industry poses a threat to most standardized encryption
schemes (Bernstein and Lange, 2017). Research works in
post-quantum cryptography are still in progress to develop
alternative algorithms that could resist quantum computer-

related attacks such as differential side-channel attacks on
the PKI. A promising alternative is the hash-based digital
signature algorithms which are believed to resist quantum
computer-related threats (de Oliveira et al., 2017). It is in
line with this that in 1989 Raph Merkle published a
research article titled: A Certified Digital Signature based
on encryption function (Merkle, 1989). Merkle uses the
concept of a binary tree to replace many verification keys
with one Public Key. The method used was known as
‘tree signature’. In this method, the divide and conquer
rule to authenticate signature verification was adopted.
The limitation of this method was the high cost of the
authentication path and high memory consumption.

Buchmann et al. (2007) proposed the Chained Merkle
Signature Scheme (CMSS), an enhanced version of the
MSS that provides significant improvement in the
signature and key generation algorithms. The signing key
size of the CMSS algorithm is reduced with a
corresponding large signature size. The CMSS algorithm
stored only the seed input for the PRNG instead of storing
the whole signing key. This action caused a reduction in
the size of the signing keys. The CMSS has a limitation
because the signature size is large when compared to the
MSS. The reason for the limitation is that the verification
(auth) path on the sub-tree genesis node and the signature
are included in the message signature.

In 2013, the Extended MSS also abbreviated as XMSS
was developed. The algorithm was described as a practical
forward secure signature scheme based on minimum
security expectations (Buchmann, et al., 2013). The
authentication tree construction methods adopted by
XMSS is similar to the one used by SPR-MSS. This was
done for the purpose of achieving lower second pre-image
resistant security needs for the hash function. When
comparing the XMSS signatures size with the SPR-MSS.
Buchmann et al. (2013) proved that XMSS is four times
smaller but at a slightly better in terms of the security
level. In 2015, the authors improve on the XMSS
algorithm and rename it as XMSS+. The improvement
was in the time taken to generate the keys which was from

)()(nOtonO using big O notation representation.
However, testing the algorithm smart card, security level
of XMSS+ was 71 bits. With the XMSS+ it is feasible to
apply hash function that is more than 128 bits digest
length to improve its (Hülsing, et al., 2018).

The research of (De Oliveira and Lopez, 2015) and (de
Oliveira et al., 2017) focuses on the improvement of
HBSS by using parallel optimization techniques on XMSS
key generation, signature verification and execution time.
The scheme has limitation on the number of signatures it
can generate. Pauls et al. (2019) research work

Noel et al
Development of an …

International Journal of Computing Intelligence and Security Research (IJCISR)

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY) P a g e | 27

investigated the compatibility of XMSS with low-latency
needs of the tactile internet. The actors designed an
XMSS-specific accelerator by combining hardware-
software co-design method. The experimental results for
the signing and verification was 176µs and 42µs which is
63% better as compared with the work of Wan et al.
(2020).

To reduce the hash tree construction time (Shahid et al.,
2020) developed a Smart Digital signature scheme (SDS)
for distributed ledgers. The SDS incorporated a unique
OTS scheme in XMSS which showed a significant
decrease in hash-tree creation time in comparison with the
default XMSS. The authors used a key compression
technique to achieve better results in computation time for
the XMSS tree hashing algorithm. Kearney et al.
(2021) carried out a comparative analysis of the
vulnerability of some selected blockchain-based
cryptocurrency technologies susceptible to quantum
attacks. The results of the analysis showed that 95% of
blockchain-based cryptocurrencies today are vulnerable to
quantum computer attacks. The exposure of quantum
computer-related attacks calls for urgent research in the
field of blockchain application technology.

Bos et al. (2021) presented an improvement in the of
XMSS when applied on constrained devices. The authors
applied the W-OTS tuning technique proposed by
(Perin et al., 2018) which involved a slight change in the
checksum computation and the application of a
cryptographic nonce to a message and then hashed. The
idea is to append a cryptographic nonce to the already
signed messages before the signature is generated. To
reduce the cost of verifying signatures, the procedure is
repeated severally. Although significant results were
obtained, the limitation of this approach is the additional
cost of searching the integer used in finding the
cryptographic nonce that speeds up the W-OTS algorithm.
Perin et al. (2021) did similar work and the authors
proposed the WOTS-CS. In this research work, a new set
of parameters that caused a decrease in the number of
hash processes specifically in the key generation was
introduced. The WOTS-CS key generations were reduced
by 11.37% less than the WOTS+ scheme. The parameter
selection problem and the complexity that exist in the
constant-sum encoding algorithms is a major limitation of
this algorithm. Based on the related literature reviewed, it
can be seen that the majority of the research work aimed
at improving the efficiency of the algorithm. There are
several research done aim at improving the Winternitz
One-Time Signature scheme. Some of these researches
focuses on enhancing the security, efficiency and practical
deployment of the WOTS. Hulsing et al. (2018) improved
the security of WOTS. The improved version was called
WOTS+. The authors achieved this by using different

chaining techniques for the hash function making it
resistant to multi-target attacks. In the same vein, the work
of (Bernstein et al., 2017) provides a comprehensive
security analysis of the WOTS to know how its strength
and weaknesses. However, the work of (Perin et al., 2018)
concentrate on the redunction of the cost in signature
verification as a result of the number of chained iterations
of the cryptographic hash function. Oraei and Dehkordi
(2022) proposed an improved WOTS based on graded
encoding techniques. Similarly (Shahid et al., 2020)
developed an improved version of WOTS called WOTS-
S. The improved version of the WOTS was applied on
Distributed Ledger Technology systems. After reviewing
some of the research works aimed at improving, there are
still need for further improving on the WOTS to make the
scheme more efficient and with less time taken during
execution particularly on IoT devices. In this research, an
improved Winternitz One Time Signature algorithm was
developed with reduced execution time of the key
generation, signature generation, and verification.

3. METHODOLOGY
The development of an improved WOTS starts with
mathematical formulation of the algorithms. The
algorithm parameters are the Key generation, Signature
generation and Signature verification. This will be
followed by the implementation process. In the
implementation, the secure hash algorithm (SHA 256) was
used to attain a post-quantum security level. In as much as
the generic Winternitz OTS uses a collision-resistant hash
function, the i-WOTS adopts the Pre-image Resistant
Hash Function (PRHF) in the implementation. The reason
for adopting the PRHF is that the pre-image-resistant hash
function is assumed to be more efficient in withstanding
multi-target attacks as compared to the collision-resistant
hash function used in the generic W-OTS.

The i-WOTS uses a randomization technique with
exclusive OR (XOR) operations during the signature
generation processes. The exclusive OR (XOR) operations
have a negligible cost on the signature size and signature
verification while maintaining the same security standard.
The use of randomization and XOR is to enhance un-
detectability in case of any brute force attacks by an
adversary. Unlike the default W-OTS algorithm and other
variance such as the WOTS+ that adopts the use of bit
masking as a security improvement measure, the i-WOTS
algorithm does not apply bit masking in the development
of the algorithm because bit masking operations comes
with an additional cost of computation.

Other improvement method was to change the
computation of the checksum by padding unused bits with
ones instead of zeros and then applying the bit
compression technique. Padding with ones improved

Noel et al
Development of an …

International Journal of Computing Intelligence and Security Research (IJCISR)

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY) P a g e | 28

signature verification time, while padding with zeros
improved signature generation. The padding operations
carried out in this work are a preventive measure such that
an attacker cannot know the exact length of the plaintext
message used. The i-WOTS used Uniform Transformation
Format (UTF-8) encoding technique. The eight (8) means
the 8-bit string is used at every message encoding. The
UTF-8 encoding offers valuable properties that can reduce
the costs related to the number of chaining function
iterations of the developed algorithm and reduce key
generation costs.

4. Algorithm Formulation
The i-WOTS algorithm uses the function given as:

{ } { }ssf 1,01,0: → and it is has the properties of one-
wayness . The algorithm also need a cryptographic hash
function { } { }sHc 1,01,0: * → .

Let 2≥w .

Such that:

1
log

)1(1log2;1
2

2 +






 −
=



=

w
wrr

w
sr

Where: r = r1 + r2 (4.1)

The variable ‘r’ in the equation 4.1 is number of n-bytes
string of i-WOTS secret key, publick key and signature.

The variable‘s’ is the hash value of the message, and ‘w’
is the winternitz parameter (w >1)
The signature key α is presented as:

{ }),(
011 1,0),...,,(rs

Rr yyyY ∈= − (4.2)

Let iy be the bit string selected evenly at random. This
implies that the key for the verification Q is calculated by
using function f on every bit sequence in the signature key
for)12(−w number times. Therefore, the verification
key Q is given as:

{ }),(
211 1,0),...,,(rs

r qqqQ ∈= − (4.3)
Where:

10;)(12 −≤≤= − riyfq i
w

i (4.4)

The equations 4.1, 4.2 and 4.3 are the equations that are
required in the key generation process. To compute the
key generation,)12(−wr evaluations of the function f is
required.
A). Signature generation
Let G equal to the message digest from

)...,,()(01 dddGHc s−== is needed to be signed. The
digest d may be padded with ones for ease of division by
W. The string of d is sliced into r1 bit strings of

11 ...,, rbb rr −− with the length to be the value of ‘W’.
Then,

11 || rrr bbd −−= (4.5)

The strings bi are recognized with integers in the set
{ }12...,,1,0 −w and the checksum is computed as:

)2(
1

1
i

r

rri

w bCs −= ∑
−

−=

 (4.6)

If the checksum wrCs 21≤ implies that the checksum
length in binary representation is less than taken the floor
of     1log12log 1212 +++ wrequalsr w (4.7)

The equation 4.6 is padded with zeros so as enable the
length of the extended string to be divided easily by ‘W’
equally. The next step is the splitting of the lengthy string
into r2 blocks as 012 ...,, bbr − of length w; such that:

012 ||....|| bbCs r −= . The signature of message ‘G’ is
calculated as:

))(),(...,),((0
0

1
1

1
1 yfyfyf bb

r
br

−
−=α (4.8)

The signature generation requires)12(−wr evaluations
of the function f.

Signature Verification
To verify the signatureα , it is computed as:

)....,,(01 ααα −= r The bit strings in binary for

01 ...,, bbr− are computed by the verifier. The applying F,
gives:

)....,,(?))(...,),(010
012

1
112 qqff s

bw
s

brw
−

−−
−

−−− αα (4.9)

The signature is valid if the comparison holds in equation
4.35 or it is rejected.
The equation 4.35 holds for .0...,,1−= ri
Also note that to verify the signature, it requires

)12(−wr evaluations of the function f.
The equations 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, and 4.9
are the basic mathematical equations in the formulation of
the i-WOTS algorithm.

The flowcharts for the formulated i-WOTS algorithm is
illustrated in the figures 1, 2, and 3. The flowchart in the
figure 1 provides i-WOTS key generation process to
obtain the public key and the secret key. The flowchart in

Noel et al
Development of an …

International Journal of Computing Intelligence and Security Research (IJCISR)

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY) P a g e | 29

figure 2 provides a clear steps from hashing the message
to generate the final signature, while the figure 3 is the
flowchart that provides i-WOTS signature verification
process from hashing the message to verify the derived
public key against the given public key.

Start

Compute derived values
r1= ceil (8n/log2(W)

r2= floor (logw(r1 * (W-1)) + 1
r = r1+r2

If w ≤ 0

Define
parameters

N, W

Generate secret key
Generate r random n-bytes

strings
(Sk1,…,Skr)

Endyes

No

Compute Public key
for each Ski,

Compute Pki – H^(w-1) (Ski)
Combine to form

(Pk = (Pk1, …,Pkr)

End

Figure 1. Key generation flowchart

Start

Compute checksum Cs
for i=0; i < r1; i++
Cs = Cs (w+1-Hi)

Convert Cs to base utf-8
encoding

Split into r2 values

Concatenate values
Combine hash and checksum

values

End

Hash the message M
Convert h(m)

Convert Hash to utf-8 encoding
Split h(m) into r1 base utf-8

values

No

If i > r1

Generate signature
For i=1 to Cs:

Si= H^ (hi (Ski)

Output Signature
(S1, S2,…,Sr)

yes

Noel et al
Development of an …

International Journal of Computing Intelligence and Security Research (IJCISR)

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY) P a g e | 30

Start

Convert h(M) to base utf-8 encoding
Message = utf-8 (m, w, r1)

Compute verification key
for i=0; i < r; i ++

Compute derived public key Pk’

End

Hash the message M
Compute h(M)

Valid signature

Input
values of

W, M

Compute checksum Cs
for i=0; i < r1; i++

Cs = Cs +w-1-msg(i)
Convert Cs to base utf-8 encoding

Split into r2 values

Concatenate values
Combine hash and checksum values

If Pk’=PK Invalid signatureNo

Yes

Figure 3 Signature verification flowchart

5.0 i-WOTS Algorithms
5.1 Secret Key Algorithm
The enhanced algorithm secret key is a collection of n-
byte string lengths. The secret key is used to sign a single
message at a time. The n-byte string should be randomly
selected from the even spread or can be selected using a

secure pseudorandom technique (i.e. using a
pseudorandom number generator).

The algorithm 5.1 describes the secret key generation. The
inputs include the seed and the i-WOTS parameter. The
seed is a pseudorandom number generated using the PRF
generator. The i-WOTS parameter (w) must be greater
than 1. In the experiment, the value of w chosen was eight
(8) and sixteen (16). The choice of these two values is to
compare which among them gives the best output in terms
of the time taken in key generation. The algorithm 3.1 is
to return the i-WOTS secret key

Noel et al
Development of an …

International Journal of Computing Intelligence and Security Research (IJCISR)

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY) P a g e | 31

Algorithm 5.1 i-WOTS_genSk Generating i-WOTS Secret key
Input: Seed, i-WOTS parameter (w > 1)
Output: i-WOTS secret key

;
}

;)(
{);;0(

k

k

Sreturn

stringbytenrandomunifiormawithiPinitialize
iriifor

−
++<=

5.2 Public Key Algorithm

The key pairs of the i-WOTS algorithm
comprise r hashed chains of length w (w > 1). The
value of r is computed as given in equation 4.1. The
public key (pk) comprises of the last node of the
hashed chains. The public key is a length
of r collection of n-byte strings. The chaining function
is applied to compute the hash chain. It is required that

the hashed address of the OTS with the seed SEED should be
made available by an algorithm. The seed used here is
available to the public for the verifier to access. The
algorithm 5.2 computes the public key. The inputs in this
algorithm are the secret key, the address (ADRS) that is
generated by the algorithm, and the seed. The secret key is to
be kept secret and not to be known by the public.

Algorithm 5.2 i-WOTS_genPk – Generating a i-WOTS PK from SK
Input: i-WOTS secret key Sk, address ADRS, seed SEED
Output: i-WOTS public key Pk

;
{

);,,1,0,][()(
;)(.
{);;0(

Pkreturn

ADRSSEEDwiSkchainiPk
idresssetchainAdADRS

iriifor

−=

++<=

5.3 Signature Generation Algorithm
The i-WOTS Signature generation is presented in
algorithm 5.3. The inputs required in algorithm 5.3
include the message (m) to be hashed, the secret key
and the public key are generated in algorithm 5.1 and
5.2, and the address (ADRS). The output of the
algorithm is the i-WOTS signature. The operations
executed by the algorithm are explained as comments
lines.

Noel et al
Development of an …

International Journal of Computing Intelligence and Security Research (IJCISR)

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY) P a g e | 32

Algorithm 5.3 i-WOTS_Sign
Input: Message (M), Sk.seed, pk.seed, ADRS
Output: i-WOTS Signature (Sign)

Signaturereturn
ADRSseedpkimsgSkchainiSign

ADRSseedSkPRFSk
idresssetchainAdADRS

iriifor
rbytesrcsumbytetoutfmsgmsg

wrceilbytesr
wrCsCs

encodingutftoCsConvert
imsgwCsCs

splitbetobitsofnumberequalgivenotdoesdivisiontheifchecksumcomputedthetoAppend
iriifor

equationinaschecksumCompute
rwmutfmsg

encodingutftomessageConvert
sm

equationfromrCompute

;),.],[,0,(][
);,.(
;][.
);;0

;)2,)_2,((8||
;)8/)(log*2((2

);)8%))(log*2((8(
8_//
;)(1

1//
;1;0

6.4//
)1,,(8_

8_//
256,256

;1.4

=
=

++<=
−=

−−
−<<=

−−+=

++<=

=

==

5.4 Signature Verification Algorithm
The algorithm 5.4 is the i-WOTS verification algorithm
from the given message M and with the signature. In
the algorithm, the inputs include the message with the
secret seed value, the public seed, and lastly the
address. The output is the i-WOTS signature. The
operations explaining each operation command are
written as comments within the algorithm for clarity.

Noel et al
Development of an …

International Journal of Computing Intelligence and Security Research (IJCISR)

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY) P a g e | 33

Algorithm 5.4 i-WOTS_Verification
Input: Message (M), Sk.seed, pk.seed, ADRS
Output: i-WOTS Signature (Sign)

SignPkreturn
tmpeWOTSADRSseedPkrTSigPk

valuekeypublicmatchesvaluedecryptedifcheck
AddressgetKeyPairADRSAddresssetKeyPairSeWOTSPkADR

PkeWOTSsetTypeSeWOTSPkADR
ADRSseedPkimsgwimsgiSigchainitmp

idresssetchainAdADRS
iriifor

rwbytesrCsbytetoutfmsgmsg
wrceilbytesr
wrCsCs

encodingutftoCsConvert
imsgwCsCs

iriifor
equationguCschecksumCompute

rwmutfmsg
encodingutftomessageConvert

messageSHAmessage
equationfromrcompute

m
w

.
);,,.(__

//
);)(.(.

);_(.
);,.],[1],[,][(][

;)(.
;;0

;)2,,)_2,((8||
;)8/)(log*2((_2

);)8%))(log*2((8(
8//
;][1

;1;0
6.4sin)(//

)1,,(8
8//

)(256//
1.4

256
16

−

−−=

++<=
−=

=
−<<=

−
−−+=

++<=

−=
−

=

=
=

6. RESULTS AND DISCUSSION
The implementation results of the improved algorithm
is discussed in this section. The computation time of
the three parameters would be discussed. The
Winternitz parameter “W” chosen is 16, while the
hashing algorithm is SHA256. The Table 1 is the
computation time of the improved algorithm as
compared with the default algorithm (WOTS). In the
table 6.1, the key generation time for the default
algorithm was 5.77 seconds as against 0.711 seconds of

the improved algorithm. In the same way, the signature
generation of the default algorithm was 0.064 seconds while
the improved algorithm recorded o.011 seconds. The
verification time for the default algorithm was 0.057
seconds, while the verification time for the improved
algorithm was 0.011 seconds. The overall total computation
time for the improved algorithm was 0.73 seconds as
compared with the default algorithm which was 5.89
seconds. The results shows that the i-WOTS algorithm
recorded 87.61% as compared with the default algorithm.

Table 1 Algorithms Computation Time when w = 16 and Hashing Algorithm = SHA256
Parameter Algorithm parameters Default algorithm Improved algorithm

W = 16
SHA256

Key generation

Signature generation

5.77

2104.6 −×

11011.7 −×

Noel et al
Development of an …

International Journal of Computing Intelligence and Security Research (IJCISR)

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY) P a g e | 34

Total execution time
in (seconds)

Signature verification

2107.5 −×

5.89 seconds

2101.1 −×

2101.1 −×

1103.7 −× seconds

The graphical representation of the Table 1 is the Figure 4

Figure 4 Algorithm Computation Time (w = 16)

6.2 Performance Evaluation of i-WOTS Algorithm
The Table 2 is the summary that shows the
performance of the three algorithms using the chosen
parameters. The i-WOTS total execution time was
0.733 seconds as compared with the WOTS-S

algorithm that has total time for execution of 0.861 seconds.
This mean that the i-WOTS performed better than the
WOTS-S with 14.87%. The total execution time of the i-
WOTS as compared with the W-OTS and the WOTS+
algorithms.

Table 2 Summary of the Performance Analysis of i-WOTS Algorithm
Algorithm KeyGen (s) SignGen (s) SignVerif (s) Total execution

time (s)
W-OTS

WOTS+

WOTS-S

i-WOTS

5.77

2103.4 −×

11012.8 −×

11011.7 −×

2104.6 −×

11045.7 −×

2105.2 −×

2101.1 −×

2107.5 −×

2104.3 −×

2104.2 −×

2101.1 −×

5.89

11022.8 −×

11061.8 −×

11033.7 −×

The summary of the Table 2 is represented in the graph
in the Figure 5 for better understanding performance

analysis.

5.
77

0.
06

4

0.
05

70.
71

1

0.
01

1

0.
01

1

K E Y G E N S I G N G E N S I G N V E R I F

ALGORITHM COMPUTATION TIME: W=16

Default Enhanced

Noel et al
Development of an …

International Journal of Computing Intelligence and Security Research (IJCISR)

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY) P a g e | 35

Figure 5 Comparing i-WOTS with other OTS

7. The i-WOTS Algorithm Validation
The validation of the i-WOTS algorithm will be done
using the big O notation. The space complexity of the i-
WOTS was considered. The space complexity of the i-
WOTS algorithm is subject to the message length to be
signed, the winternitz parameter and the hashing
algorithm used.
The Space complexity:)*(nwOSc =

Where:
w: is the winternitz parameter
n: the number chains of the winternitz parameter
The i-WOTS hash function produces 256-bit outputs. If
‘w’ is chosen to be 16 and n=67, the space complexity

bytesOOSc)1072()67*16(== .

8. The i-WOTS Formal Security Proof
The security proof of the i-WOTS algorithm is built on
the Chosen Plaintext Attack (CPA) model. The CPA is
a cryptanalytic type of attack model that assumes that
the adversary can find the cipher texts for some given
plaintexts. The main goal for the attacker is to know the
information that reduces the security of the encryption
algorithm. The steps of a CPA attack process are as
follows:

Step1: Attacker adaptively choose plaintext
and examine their encryption techniques
Step2: At some point, attacker select

messages 10 ,mm such that |||| 10 mm = and
obtain a cipher text Ct

Step3: Attacker can choose more plaintexts

and observe their encryption techniques
Step4: Attacker tries to guess whether 10 morm
is encrypted or not.
Step5: The attacker repeat these process many
times

The CPA model based on the improved algorithm is describe
as follows:
It is assumed that the CPA model allows an attacker ‘A’ to
query the signature of the chosen message

)...,,,(10 CCC n

mmm
. A signing oracle Os responds to the

attacker’s queries, and returned a message and signature pair

),(AA

m SigC provided that SigA are valid signatures of

.)....,,,(10 CCC n

mmm
AA mandm ∉ In a secure CPA

scheme, the probability of ‘A’ to be successful is very
insignificant)(ε .

9. CONCLUSION
In this research, an improved Winternitz One Time Signature
(i-WOTS) was developed and implemented. The
improvement as shown by the results is in the signature
generation and verification. The i-WOTS algorithm performs
better than the W-OTS+ algorithm when considering the
signature creation and the time taken to verify the signature.
The i-WOTS signature creation time is 44% better than the
WOTS+. While in the signature verification time, the i-
WOTS algorithm is 45.8% better than the WOTS+
algorithm. However, the WOTS+ algorithm outperformed
the i-WOTS in terms of the time taken for key
generation. The key generation time of WOTS+ is 6.05%
better than the i-WOTS key generation time. The i-WOTS
algorithm was validated using the Big O notation. The total

0

1

2

3

4

5

6

7

WOTS WOTS+ WOTS-S I-WOTS

KeyGen SignGen SignVeirf

Noel et al
Development of an …

International Journal of Computing Intelligence and Security Research (IJCISR)

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY) P a g e | 36

space complexity of the i-WOTS was
bytesOOSc)1072()67*16(== . The results

obtained for the total computational time as compared
with other One Time Signatures was less. The space
complexity performed better than the default algorithm.
It is recommended that the i-WOTS algorithm could be
applied on lightweight devices such as Internet of
Things (IoT) because the computation time will be less
with low memory consumption.

References

Bernstein, D. J., & Lange, T. (2017). Post-quantum
cryptography. Nature, 549(7671),
 (pp.188-194).
https://doi.org/10.1038/nature23461
Bos, J. W., Hülsing, A., Renes, J., & van Vredendaal,
C. (2021). Rapidly verifiable XMSS

signatures. IACR Transactions on
Cryptographic Hardware and Embedded
Systems, 137-168.

Buchmann, J. Dahmen, E. Klintsevich, E., Okeya, K,
and Vuillaume, C. (2007). “Merkle

signatures with virtually unlimited signature
capacity,” in Applied Cryptography and
Network Security, ser. LNCS, J. Katz and M.
Yung, Eds., vol. 4521, Jun. 2007, (pp. 31–45).

Buchmann, J., Dahmen, E., Ereth, S., Hülsing, A., &
Rückert, M. (2013). On the security of

the Winternitz one-time signature scheme.
International Journal of Applied
Cryptography, 3(1), 84-96.
https://doi.org/10.1504/IJACT.2013.053435

de Oliveira, A. K. D., Lopez, J., & Cabral, R. (2017).
High Performance of Hash-Based.

International Journal of Advanced Computer
Science and Applications, Vol. 8, No. 3, 2017

de Oliveira, A. K. D., & López, J. (2015, August). An
Efficient Software Implementation of the
Hash-Based Signature Scheme MSS and Its
Variants. In International Conference on
Cryptology and Information Security in Latin
America (pp. 366-383). Springer, Cham.

Fedorov, A. K., Kiktenko, E. O., & Lvovsky, A. I.
(2018). Quantum computers put
 blockchain security at risk. Nature (pp. 465-
467).

doi: https://doi.org/10.1038/d41586-018-
07449-z
Fernández-Caramés, T. M., & Fraga-Lamas, P. (2020).

Towards post-quantum blockchain: A review
on blockchain cryptography resistant to
quantum computing attacks. IEEE Access, 8,
21091-21116. Future Generation Computer
Systems, 102, 507-513.

Grover, L. K. (1996). A fast quantum mechanical algorithm
for database search. In
Proceedings of the twenty-eighth annual ACM
symposium on Theory of computing (pp. 212-219).

Hülsing, A., Butin, D., Gazdag, S. L., Rijneveld, J., &
Mohaisen, A. (2018). XMSS:

eXtended Merkle signature scheme. In RFC 8391.
IRTF. Retrieved from: https://www.rfc-
editor.org/rfc/rfc8391.html

Joseph, D., Misoczki, R., Manzano, M., Tricot, J., Pinuaga,
F. D., Lacombe, O. & Hansen,

R.(2022). Transitioning organisations to post-
quantum cryptography. Nature, 605(7909), 237-
243. https://doi.org/10.1038/s41586-022-04623-2

Kearney, J. J., & Perez-Delgado, C. A. (2021). Vulnerability
of blockchain technologies to
quantum attacks. Array, 10, 100065.
https://doi.org/10.1016/j.array.2021.100065.

Menezes, A. J., Van Oorschot, P. C., & Vanstone, S. A.
(2018). Handbook of applied
Cryptography. CRC press.

Merkle, R. C. (1989, August). A certified digital signature. In
Conference on the Theory and
Application of Cryptology (pp. 218-238). Springer,
New York, NY.

Nofer, M., Gomber, P., Hinz, O., & Schiereck, D. (2017).
Blockchain. Business & Information Systems
Engineering, 59(3), 183-187. DOI 10.1007/s12599-
017-0467-3

Pauls, F., Wittig, R., & Fettweis, G. (2019, July). A latency-
optimized hash-based digital signature accelerator
for the tactile Internet. In International Conference
on Embedded Computer Systems (pp. 93-106).
Springer, Cham.

Perin, L. P., Zambonin, G., Custódio, R., Moura, L., &
Panario, D. (2021). Improved

constant-sum encodings for hash-based signatures.
Journal of Cryptographic Engineering, 11(4), 329-
351.

Perin, L. P., Zambonin, G., Martins, D. M. B., Custódio, R.,
& Martina, J. E. (2018, June).

Tuning the Winternitz hash-based digital signature
scheme. In 2018 IEEE Symposium on Computers
and Communications (ISCC) (pp. 00537-00542).
IEEE.

Sattath, O. (2020). On the insecurity of quantum Bitcoin
mining. International Journal of

Information Security, 19(3), 291-302. Download
from
 https://doi.org/10.1007/s10207-020-00493-9

Shahid, F., Khan, A., Malik, S. U. R., & Choo, K. K. R.
(2020). WOTS-S: A quantum secure
 compact signature scheme for distributed ledger.

https://doi.org/10.1504/IJACT.2013.053435
https://www.rfc-editor.org/rfc/rfc8391.html
https://www.rfc-editor.org/rfc/rfc8391.html
https://doi.org/10.1016/j.array.2021.100065
https://doi.org/10.1007/s10207-020-00493-9

Noel et al
Development of an …

International Journal of Computing Intelligence and Security Research (IJCISR)

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY) P a g e | 37

Information Sciences, 539, 229-249.
Shor, P. W. (1999). Polynomial-time algorithms for
prime factorization and discrete

Signature Schemes. International Journal of
Advanced Computer Science and
Applications, 8(3), p(421-432).

Wang, Z., Yu, H., Zhang, Z., Piao, J., & Liu, J. (2020).
ECDSA weak randomness in Bitcoin.
Future Generation Computer Systems, 102,
507-513.
https://doi.org/10.1016/j.future.2019.08.034

https://doi.org/10.1016/j.future.2019.08.034

