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In this work, a family of hybrid contractions, termed Jaggi-type hybrid (ℵ-𝜏)-contractive mapping 
is proposed in metric space equipped with a graph and new conditions under which the mapping 
is a Picard operator are studied. The novel ideas proposed in this manuscript are exemplified to 
display the validity of the presented results and to show how they differ from the existing ones. 
Additionally, some corollaries which reduce our proposed notion to some recently announced 
concepts in the existing findings are indicated and examined. Finally, we study Ulam-type stability 
for the fixed point equations with hybrid contractions.

1. Introduction and preliminaries

The Banach contraction principle (BCP) is a powerful concept in investigating fixed points (𝐹𝑝) in the framework of metric spaces 
(MS), (see, e.g. [1–3]). This principle is particularly useful because it has practical applications in various fields, including applied 
mathematics, engineering, and even social sciences. Lately, research has focused on the behavior of the 𝐹𝑝 results for rational and 
non-rational contractions within the context of metric spaces (see e.g. [4,7,8,13]). Building on the (BCP), Jaggi [18] launched a new 
and more general concept in 1977.

Definition 1.1. [18]. Presume (𝜇, 𝜐) to be a MS. Consider a self-mapping Ω of 𝜇 is termed a Jaggi contractive mapping if we can 
obtain 𝜆1, 𝜆2 ∈ [0, 1) with 𝜆1 + 𝜆2 < 1 such that for all discrete points 𝑠, ℏ ∈ 𝜇,
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𝜐(Ω𝑠,Ωℏ) ≤ 𝜆1
𝜐(𝑠,Ω𝑠) + 𝜐(ℏ,Ωℏ)

𝜐(𝑠,ℏ)
+ 𝜆2𝜐(𝑠,ℏ).

As reported by Petruşel and Rus [34], a Picard operator (OP) is a mapping Ω of a MS (𝜇, 𝜐) that has a unique 𝐹𝑝 𝑠∗ and 
lim𝑗→∞Ω𝑗𝑠 = 𝑠∗ for all 𝑠 ∈ 𝜇. Ω is termed a weakly PO if {Ω𝑗 𝑠}𝑗∈ℕ is convergent for every 𝑠 ∈ 𝜇 and the limit is a 𝐹𝑝 of Ω.

Jachymski [17] came up with the concept of a graphic contractive mapping in MS. Assume (𝜇, 𝜐) is a MS and Υ, the diagonal of 
the Cartesian product 𝜇 × 𝜇. Take a directed graph ℵ in the sense that its vertices set U(ℵ) is given by 𝜇, and its edges set, D(ℵ). 
The loops set, Υ is a subset of D(ℵ). Assume that ℵ does not contain parallel edges. Then ℵ can be represented as (U(ℵ), D(ℵ)). In 
addition, ℵ can be seen to be a weighted graph if we assign to each edge the distance between its vertices (see [[22], p. 376]). A 
graph ℵ−1 is obtained from ℵ if the directions of edges of ℵ are reversed. In that case,

D(ℵ−1) = {(𝑠,ℏ) ∈ 𝜇 × 𝜇|(ℏ, 𝑠) ∈ D(ℵ)}. (1.1)

In the same way, when the directions of edges of ℵ are neglected or when the set of edges is symmetric, the undirected graph ℵ̃ is 
procured. In that case,

D(ℵ̃) = D(ℵ) ∪ D(ℵ−1). (1.2)

A subgraph of a graph ℵ is a pair (U′, 𝐸′) if U(ℵ) ⊇U′, 𝐷(ℵ) ⊇𝐸′ and for each (𝑠, ℏ) ∈𝐸′, 𝑠, ℏ ∈U′. Let 𝑠, ℏ ∈U. A sequence {𝑠𝑖}𝐽𝑖=0
of 𝐽 +1 vertices satisfying 𝑠0 = 𝑠, 𝑠𝐽 = ℏ and (𝑠𝑗−1, 𝑠𝑗 ) ∈D(ℵ) for all 𝑖 = 1, 2, ..., 𝐽 defines a path in ℵ from 𝑠 to length 𝐽 ∈ ℕ. If there 
is a path for any 𝑠, ℏ ∈U, then ℵ is a connected graph. If ℵ̃ is connected, then ℵ is said to be weakly connected.

In this regard, 𝐹𝑝 results in MS empowered with graph have been discussed by many investigators (e.g. [5,10–12,14,16,17,19,
21,31,36]). Specifically, Bojor [10] launched:

Definition 1.2. [10] Denote by Ψ, the set of all real-valued functions 𝜏 such that:

(i) 𝜏 is monotone non-decreasing, i.e., 𝑞1 ≤ 𝑞2 implies 𝜏(𝑞1) ≤ 𝜏(𝑞2);
(ii)

∑∞
𝑗=0 𝜏

𝑗 (𝑞) converges for all 𝑞 > 0.

Then 𝜏 is referred to as (𝑐)-comparison function.

Definition 1.3. [10] On a MS (𝜇, 𝜐) equipped with a graph ℵ, a self-map Ω of 𝜇 is termed a (ℵ-𝜏)-contractive mapping if:

(i) Ω retains the edges of ℵ, i.e.,
(𝑠, ℏ) ∈D(ℵ) ⇒ (Ω𝑠, Ωℏ) ∈D(ℵ) ∀𝑠, ℏ ∈ 𝜇;

(ii) ∃𝜏 ∈Ψ that confirm

𝜐(Ω𝑠,Ωℏ) ≤ 𝜏(𝜐(𝑠,ℏ)) ∀(𝑠,ℏ) ∈ D(ℵ). (1.3)

Definition 1.4. [10] A self-map Ω of 𝜇 is said to fulfill orbital continuity condition if for all 𝑠, ℏ ∈ 𝜇 and any sequence {𝑘𝑗}𝑗∈ℕ, 
Ω𝑘𝑗 𝑠 ⟶ ℏ ∈ 𝜇 implies that Ω(Ω𝑘𝑗 𝑠) ⟶Ωℏ as 𝑗→∞.

Definition 1.5. [10] A self-map Ω of 𝜇 is said to fulfill orbital ℵ-continuity condition if for all 𝑠 ∈ 𝜇 and any sequence {𝑠𝑗}𝑗∈ℕ, 
𝑠𝑗 ⟶ 𝑠 with (𝑠𝑗 , 𝑠𝑗+1) ∈D(ℵ) imply that Ω𝑠𝑗 ⟶Ω𝑠 as 𝑗→∞.

Theorem 1.6. [10] On a complete MS (𝜇, 𝜐) Endowed with a graph ℵ, and a (ℵ-𝜏)-contractive mapping Ω, if we suppose in addition that:

(𝑖) ℵ is weakly connected;

(𝑖𝑖) every sequence {𝑠𝑗}𝑗∈ℕ in 𝜇 with 𝜐(𝑠𝑗 , 𝑠𝑗+1) ⟶ 0 is such that we can find 𝑗0 ∈ ℕ fulfilling (𝑠𝑗𝑘 , 𝑠𝑗𝑚 ) ∈ D(ℵ) for all 𝑘, 𝑚 ∈ ℕ with 
𝑘, 𝑚 ≥ 𝑗0;

(𝑖𝑖𝑖)𝑎 Ω meets orbital continuity condition or;

(𝑖𝑖𝑖)𝑏 Ω meets orbital ℵ-continuity condition and there is a subsequence {Ω𝑗𝑘 𝑠0}𝑘∈ℕ of {Ω𝑗𝑠0}𝑗∈ℕ such that (Ω𝑗𝑘 𝑠0, 𝑠∗) ∈𝐷(ℵ) for each 
𝑘 ∈ ℕ and some 𝑠0, 𝑠∗ ∈ 𝜇.

Then Ω is a PO.

Karapınar [23] recently propounded a novel type of contractive mapping derived from the definition of Kannan contractive 
mapping via interpolation. Several academics have utilized this interpolative method to acquire refinement of different types of 
contractions (see e.g., [9,24–26,30,32,35]). In this regard, Karapınar and Fulga [27] presented a new concept of hybrid contractive 
2

mapping, which is a combination of some current linear, nonlinear, and interpolative contractions in MS.
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Definition 1.7. [27] On a complete MS (𝜇, 𝜐), a self-map Ω of 𝜇 is termed a Jaggi-type hybrid (J-type /H) contractive mapping, if 
we can find 𝜏 ∈Ψ such that:

𝜐(Ω𝑠,Ωℏ) ≤ 𝜏( (𝑠,ℏ)), (1.4)

for all distinct 𝑠, ℏ ∈ 𝜇, where

 (𝑠,ℏ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[
𝜆1

(
𝜐(𝑠,Ω𝑠)⋅𝜐(ℏ,Ωℏ)

𝜐(𝑠,ℏ)

)℘
+ 𝜆2𝜐(𝑠,ℏ)℘

] 1
℘
,

𝑓𝑜𝑟 ℘ > 0, 𝑠, ℏ ∈ 𝜇, 𝑠 ≠ ℏ;

𝜐(𝑠,Ω𝑠)𝜆1 ⋅ 𝜐(ℏ,Ωℏ)𝜆2 , 𝑓𝑜𝑟 ℘ = 0, 𝑠, ℏ ∈ 𝜇∖𝐹 𝑖𝑥(Ω),

𝜆1, 𝜆2 ≥ 0 with 𝜆1 + 𝜆2 = 1 and 𝐹 𝑖𝑥(Ω) = {𝑠 ∈ 𝜇 ∶ Ω𝑠 = 𝑠}.

The chief role of hybrid contractions is that they allow for the presentation of contractive conditions involving a substantial 
amount of terms, including certain ones with self-composition of the mapping, while also admitting a number of parameters, allowing 
for extensions in various ways based on the parameters picked. We refer to [6,15,20,27,29,33] and the references therein for various 
improvements on this matter. In accordance with the existing findings, we notice that hybrid 𝐹𝑝 concepts in MS equipped with graph 
have not been exhaustively studied. Hence, inspired by the ideas in [10,13,17,27,28], we initiate a novel view of J-type /H (ℵ-𝜏)-
contractive mapping in MS equipped with a graph and study the criteria under which the mapping is a PO. Comparative illustrations 
are set up to show that our derived results are genuine and different from the existing ones. Moreover, some consequences are noted 
to indicate that the ideas launched in this work add up and complement some corresponding results.

Below here, we consider 𝜇 as non-empty. The symbols ℕ, ℝ, and ℝ+ Symbolize the sets of natural numbers, real numbers, and 
non-negative real numbers respectively.

2. Main results

In this section, a novel idea of J-type /H (ℵ-𝜏)-contractive mapping in MS characterized by a graph ℵ is presented.

Definition 2.1. On a MS (𝜇, 𝜐) characterized by a graph ℵ, a self-mapping Ω of 𝜇 is termed a J-type /H (ℵ-𝜏)-contractive mapping 
if:

(i) Ω maintains the edges of ℵ;
(ii) ∃𝜏 ∈Ψ which verifies

𝜐(Ω𝑠,Ωℏ) ≤ 𝜏( (𝑠,ℏ)) (2.1)

for all (𝑠, ℏ) ∈D(ℵ), where

 (𝑠,ℏ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[
𝜆1

(
𝜐(𝑠,Ω𝑠)⋅𝜐(ℏ,Ωℏ)

𝜐(𝑠,ℏ)

)℘
+ 𝜆2𝜐(𝑠,ℏ)℘

] 1
℘
,

for some ℘ > 0, 𝑠 ≠ ℏ;

𝜐(𝑠,Ω𝑠)𝜆1 ⋅ 𝜐(ℏ,Ωℏ)𝜆2 , for ℘ = 0, {𝑠,ℏ} ⊄  𝑖𝑥(Ω),

 𝑖𝑥(Ω) = {𝑠 ∈ 𝜇 ∶ Ω𝑠 = 𝑠} and 𝜆1, 𝜆2 ≥ 0 with 𝜆1 + 𝜆2 = 1.

Example 2.2. Let 𝜇 = {𝑠|𝑠 ≤ 4, 𝑠 ∈ℕ} along with the metric 𝜐(𝑠, ℏ) = |𝑠 − ℏ| ∀𝑠, ℏ ∈ 𝜇. Consider a self-map Ω on 𝜇 defined by

Ω𝑠 =

⎧⎪⎪⎨⎪⎪⎩
2𝑠, if 𝑠 = 1;
𝑠, if 𝑠 = 2;
1, if 𝑠 = 3;
𝑠

2 , if 𝑠 = 4.

Then Ω is a J-type /H (ℵ-𝜏)-contractive mapping with 𝜏(𝑡) = 4𝑡
5 , 𝜆1 =

2
5 and 𝜆2 =

3
5 for ℘ = 0, 5, where ℵ̃ is a symmetric graph such 

that U(ℵ̃) = 𝜇 and
3

𝐷(ℵ̃) = {(1,2), (1,3), (1,4), (2,4), (3,4)} ∪ Υ,
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𝟐

𝟑

𝟒𝟏

Fig. 1. Symmetric graph ℵ̃ given in Example 2.2.

but Ω doesn’t satisfy the J-type /H contractive mapping as given in [27], given that 𝜐(Ω2, Ω3) = 1 while 𝜏( (2, 3)) = 0 for ℘ = 0 and 
for ℘ = 5, 𝜏( (2, 3)) ≈ 18

25 , that is,

𝜏( (2,3)) = 4
5

⎛⎜⎜⎝
[
2
5

(
𝜐(2,Ω(2)) ⋅ 𝜐(3,Ω(3))

𝜐(2,3)

)5
+ 3

5
𝜐(2,3)5

] 1
5 ⎞⎟⎟⎠

= 4
5

⎛⎜⎜⎝
[
2
5

(
𝜐(2,2) ⋅ 𝜐(3,1)

𝜐(2,3)

)5
+ 3

5
𝜐(2,3)5

] 1
5 ⎞⎟⎟⎠

= 4
5

⎛⎜⎜⎝
[
2
5

(0 ⋅ 2
1

)5
+ 3

5
(1)5

] 1
5 ⎞⎟⎟⎠

= 4
5

((3
5

) 1
5

)
= 0.72230436 ≈ 0.72 = 18

25
.

(Fig. 1) is the symmetric graph given in Example 2.2.

We proceed with the proof of our main result.

Theorem 2.3. On a complete MS (𝜇, 𝜐) characterized by a graph ℵ, and a J-type /H (ℵ-𝜏)-contractive mapping Ω. Additionally, assume:

(𝑖) ℵ is weakly connected;

(𝑖𝑖) for all sequence {𝑠𝑗}𝑗∈ℕ in 𝜇 with 𝜐(𝑠𝑗 , 𝑠𝑗+1) ⟶ 0 is such that we can identify 𝑗0 ∈ ℕ satisfying (𝑠𝑗𝑘 , 𝑠𝑗𝑚 ) ∈ D(ℵ) for all 𝑘, 𝑚 ∈ ℕ
with 𝑘, 𝑚 ≥ 𝑗0;

(𝑖𝑖𝑖)𝑎 Ω meets orbital continuity condition or;

(𝑖𝑖𝑖)𝑏 Ω meets orbital ℵ-continuity condition and there is a subsequence {Ω𝑗𝑘 𝑠0}𝑘∈ℕ of {Ω𝑗𝑠0}𝑗∈ℕ such that (Ω𝑗𝑘 𝑠0, 𝑠∗) ∈𝐷(ℵ) for each 
𝑘 ∈ ℕ and some 𝑠0, 𝑠∗ ∈ 𝜇.

Then Ω is a PO.

Proof. Consider 𝑠0 ∈ 𝜇 with (𝑠0, Ω𝑠0) ∈ D(ℵ) and define a sequence {𝑠𝑗}𝑗∈ℕ by 𝑠𝑗 = Ω𝑗𝑠0. Following a well-proposed inductive 
approach, we can establish that (Ω𝑗𝑠0, Ω𝑗+1𝑠0) ∈𝐷(ℵ). By (2.1), we have

𝜐(Ω𝑠𝑗−1,Ω𝑠𝑗 ) ≤ 𝜏( (𝑠𝑗−1, 𝑠𝑗 )) (2.2)

Considering Case 1 of (2.1), we have

 (𝑠𝑗−1, 𝑠𝑗 ) =
[
𝜆1

(
𝜐(𝑠𝑗−1,Ω𝑠𝑗−1) ⋅ 𝜐(𝑠𝑗 ,Ω𝑠𝑗 )

𝜐(𝑠𝑗−1, 𝑠𝑗 )

)℘

+ 𝜆2𝜐(𝑠𝑗−1, 𝑠𝑗 )℘
] 1

℘

[ (
𝜐(𝑠𝑗−1, 𝑠𝑗 ) ⋅ 𝜐(𝑠𝑗 , 𝑠𝑗+1)

)℘
℘
] 1

℘

4

= 𝜆1
𝜐(𝑠𝑗−1, 𝑠𝑗 )

+ 𝜆2𝜐(𝑠𝑗−1, 𝑠𝑗 )
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=
[
𝜆1𝜐(𝑠𝑗 , 𝑠𝑗+1)℘ + 𝜆2𝜐(𝑠𝑗−1, 𝑠𝑗 )℘

] 1
℘ .

Hence, (2.2) becomes

𝜐(Ω𝑠𝑗−1,Ω𝑠𝑗 ) ≤ 𝜏

([
𝜆1𝜐(𝑠𝑗 , 𝑠𝑗+1)℘ + 𝜆2𝜐(𝑠𝑗−1, 𝑠𝑗 )℘

] 1
℘

)
.

Now, if 𝜐(𝑠𝑗−1, 𝑠𝑗 ) ≤ 𝜐(𝑠𝑗 , 𝑠𝑗+1), then we have

𝜐(Ω𝑠𝑗−1,Ω𝑠𝑗 ) = 𝜐(𝑠𝑗 , 𝑠𝑗+1) ≤ 𝜏

([
𝜆1𝜐(𝑠𝑗 , 𝑠𝑗+1)℘ + 𝜆2𝜐(𝑠𝑗−1, 𝑠𝑗 )℘

] 1
℘

)
≤ 𝜏

([
𝜆1𝜐(𝑠𝑗 , 𝑠𝑗+1)℘ + 𝜆2𝜐(𝑠𝑗 , 𝑠𝑗+1)℘

] 1
℘

)
≤ 𝜏

([
(𝜆1 + 𝜆2)𝜐(𝑠𝑗 , 𝑠𝑗+1)℘

] 1
℘

)
= 𝜏

(
𝜐(𝑠𝑗 , 𝑠𝑗+1)

)
< 𝜐(𝑠𝑗 , 𝑠𝑗+1),

a contradiction. Therefore, 𝜐(𝑠𝑗 , 𝑠𝑗+1) < 𝜐(𝑠𝑗−1, 𝑠𝑗 ), so that (2.2) becomes

𝜐(𝑠𝑗 , 𝑠𝑗+1) ≤ 𝜏
(
𝜐(𝑠𝑗−1, 𝑠𝑗 )

)
.

Continuing inductively, we obtain

𝜐(𝑠𝑗 , 𝑠𝑗+1) ≤ 𝜏𝑗
(
𝜐(𝑠0,Ω𝑠0)

)
∀ 𝑗 ∈ℕ.

Also by Case 2, we have

𝜐(Ω𝑠𝑗−1,Ω𝑠𝑗 ) ≤ 𝜏
(
𝜐(𝑠𝑗−1,Ω𝑠𝑗−1)𝜆1 ⋅ 𝜐(𝑠𝑗 ,Ω𝑠𝑗 )𝜆2

)
< 𝜐(𝑠𝑗−1,Ω𝑠𝑗−1)𝜆1 ⋅ 𝜐(𝑠𝑗 ,Ω𝑠𝑗 )𝜆2 .

Since 𝜆1 + 𝜆2 = 1, then the above inequality yields

𝜐(𝑠𝑗 , 𝑠𝑗+1) < 𝜐(𝑠𝑗−1, 𝑠𝑗 ) ∀ 𝑗 ∈ℕ.

Hence, inequality (2.2) becomes

𝜐(𝑠𝑗 , 𝑠𝑗+1) ≤ 𝜏
(
𝜐(𝑠𝑗−1, 𝑠𝑗 )

)
,

and by induction, we obtain

𝜐(𝑠𝑗 , 𝑠𝑗+1) ≤ 𝜏𝑗
(
𝜐(𝑠0,Ω𝑠0)

)
∀ 𝑗 ∈ℕ.

That is,

𝜐(Ω𝑗𝑠0,Ω𝑗+1𝑠0) ≤ 𝜏𝑗
(
𝜐(𝑠0,Ω𝑠0)

)
for every 𝑗 ∈ℕ. Therefore, we have

lim
𝑗→∞

𝜐(Ω𝑗𝑠0,Ω𝑗+1𝑠0) = 0,

furthermore, by (𝑖𝑖), we can identify 𝑗0 ∈ ℕ such that

(Ω𝑗𝑘 𝑠0,Ω𝑗𝑚𝑠0) ∈𝐷(ℵ) ∀ 𝑘,𝑚 ∈ℕ with 𝑘,𝑚 ≥ 𝑗0.

Since 𝜐(Ω𝑗𝑘 𝑠0, Ω𝑗(𝑘+1)𝑠0) ⟶ 0 for all 𝑘 ∈ ℕ, so for any given 𝜖 > 0, we can choose 𝑁 ∈ℕ, 𝑁 ≥ 𝑗0 so that

𝜐(Ω𝑗𝑘 𝑠0,Ω𝑗(𝑘+1)𝑠0) < 𝜖 − 𝜏(𝜖) for all 𝑁 ∈ℕ.

Since (Ω𝑗𝑘 𝑠0, Ω𝑗(𝑘+1)𝑠0) ∈𝐷(ℵ), then for any 𝑘 ≥𝑁 , we have

𝜐(Ω𝑗𝑘 𝑠0,Ω𝑗(𝑘+2)𝑠0) ≤ 𝜐(Ω𝑗𝑘 𝑠0,Ω𝑗(𝑘+1)𝑠0) + 𝜐(Ω𝑗(𝑘+1)𝑠0,Ω𝑗(𝑘+2)𝑠0)

< 𝜖 − 𝜏(𝜖) + 𝜏𝑗 (𝜐(Ω𝑗𝑘 𝑠0,Ω𝑗(𝑘+1)𝑠0)) < 𝜖.
5

Similarly, since (Ω𝑗𝑘 𝑠0, Ω𝑗(𝑘+2)𝑠0) ∈𝐷(ℵ), then for every 𝑘 ≥𝑁 , we have
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𝜐(Ω𝑗𝑘 𝑠0,Ω𝑗(𝑘+3)𝑠0) ≤ 𝜐(Ω𝑗𝑘 𝑠0,Ω𝑗(𝑘+1)𝑠0) + 𝜐(Ω𝑗(𝑘+1)𝑠0,Ω𝑗(𝑘+3)𝑠0)

< 𝜖 − 𝜏(𝜖) + 𝜏𝑗 (𝜐(Ω𝑗𝑘 𝑠0,Ω𝑗(𝑘+2)𝑠0)) < 𝜖.

Continuing inductively, we see that

𝜐(Ω𝑗𝑘 𝑠0,Ω𝑗(𝑘+𝑚)𝑠0) ≤ 𝜖 for each 𝑘,𝑚 ∈ℕ, 𝑘,𝑚 ≥𝑁.

Therefore, {Ω𝑗𝑘 𝑠0}𝑘∈ℕ is a Cauchy sequence in (𝜇, 𝜐), and so by the completeness of (𝜇, 𝜐), we have Ω𝑗𝑘𝑠0 ⟶ 𝑠∗ as 𝑘 →∞. Since 
𝜐(Ω𝑗𝑠0, Ω𝑗+1𝑠0) ⟶ 0 as 𝑗→∞, then we have Ω𝑗𝑠0 ⟶ 𝑠∗ as 𝑗→∞.

Now for any arbitrary 𝑠 ∈ 𝜇, we see that:

1. if (𝑠, 𝑠0) ∈D(ℵ), then (Ω𝑗𝑠, Ω𝑗𝑠0) ∈D(ℵ) for each 𝑗 ∈ℕ. Therefore,

𝜐(Ω𝑗𝑠,Ω𝑗𝑠0) ≤ 𝜏𝑗 (𝜐(𝑠, 𝑠0)) ∀𝑗 ∈ℕ.

Letting 𝑗→∞ and using the property of 𝜏 , we have that Ω𝑗𝑠 ⟶ 𝑠∗.
2. if (𝑠, 𝑠0) ∉ D(ℵ), as a result of (𝑖), we can find a path in ℵ̃, {𝑠̃𝑖}𝑁𝑖=0 from 𝑠0 to 𝑠 so that 𝑠̃0 = 𝑠0, 𝑠̃𝑁 = 𝑠 with (𝑠̃𝑖−1, ̃𝑠𝑖) ∈ D(ℵ̃) for 

all 𝑖 = 1, 2, ..., 𝑁 . Then, by simple induction, we end up with

(Ω𝑗 𝑠̃𝑖−1,Ω𝑗 𝑠̃𝑖) ∈𝐷(ℵ̃) for 𝑖 = 1,2, ...,𝑁 and

𝜐(Ω𝑗𝑠0,Ω𝑗𝑠) ≤
𝑁∑
𝑖=1
𝜏𝑗 (𝜐(𝑠̃𝑖−1, 𝑠̃𝑖)),

so that 𝜐(Ω𝑗𝑠0, Ω𝑗𝑠) ⟶ 0, which implies Ω𝑗𝑠 ⟶ 𝑠∗.

Therefore, for every 𝑠 ∈ 𝜇, a unique point 𝑠∗ ∈ 𝜇 exists so that

lim
𝑗→∞

Ω𝑗𝑠 = 𝑠∗.

To see that 𝑠∗ ∈ 𝐹 𝑖𝑥(Ω), if (𝑖𝑖𝑖)𝑎 holds, it is evident that, 𝑠∗ ∈ 𝐹 𝑖𝑥(Ω). Alternatively if (𝑖𝑖𝑖)𝑏 holds, consequently {Ω𝑗𝑘 𝑠0}𝑘∈ℕ ⟶ 𝑠∗

and (Ω𝑗𝑘 𝑠0, 𝑠∗) ∈ D(ℵ), then since Ω satisfies the orbital ℵ-continuity condition, we have Ω𝑗𝑘+1𝑠0 ⟶ Ω𝑠∗ as 𝑘 → ∞. Therefore, 
Ω𝑠∗ = 𝑠∗.

Assuming the existence of ℏ ∈ 𝜇 satisfying Ωℏ = ℏ, therefore, based on the foregoing, we get Ω𝑗ℏ ⟶ 𝑠∗, this implies that ℏ = 𝑠∗. 
Hence, Ω is a PO. □

Example 2.4. Let 𝜇 = {𝑠|𝑠 ≤ 6, 𝑠 ∈ℕ} be prepared with the Euclidean metric 𝜐(𝑠, ℏ) = |𝑠 −ℏ| for all 𝑠, ℏ ∈ 𝜇. Then (𝜇, 𝜐) is a complete 
MS. Consider Ω to be a self-mapping on 𝜇 defined by

Ω𝑠 =

{
𝑠

2 , if 𝑠 ∈ {2𝑖 ∶ 𝑖 = 1,3};
1, if 𝑠 ∈ {2𝑖− 1 ∶ 𝑖 = 1,3}

for all 𝑠 ∈ 𝜇.
Define a symmetric graph ℵ̃ such that 𝑈 (ℵ̃) = 𝜇 and

D(ℵ̃) = {(1,2), (1,3), (2,3), (2,4), (3,4), (3,6), (4,5), (4,6), (5,6)} ∪ Υ.

Obviously, Ω is edge preserving and ℵ is weakly connected.
Next, we display that Ω is a J-type /H (ℵ-𝜏)-contractive mapping. Given that 𝜏(𝑡) = 7𝑡

8 for all 𝑡 ≥ 0, 𝜆1 =
3
5 and 𝜆2 =

2
5 for ℘ = 0, 3. 

The following scenarios are considered:

Case 1: 𝑠, ℏ ∈ {2𝑖 ∶ 𝑖 = 1,3}, 𝑠 = ℏ;
Case 2: 𝑠, ℏ ∈ {2𝑖 ∶ 𝑖 = 1,3}, 𝑠 ≠ ℏ;
Case 3: 𝑠, ℏ ∈ {2𝑖 − 1 ∶ 𝑖 = 1,3}, 𝑠 = ℏ;
Case 4: 𝑠, ℏ ∈ {2𝑖 − 1 ∶ 𝑖 = 1,3}, 𝑠 ≠ ℏ;
Case 5: 𝑠 ∈ {2𝑖 ∶ 𝑖 = 1,3} and ℏ ∈ {2𝑖 − 1 ∶ 𝑖 = 1,3};
Case 6: 𝑠 ∈ {2𝑖 − 1 ∶ 𝑖 = 1,3} and ℏ ∈ {2𝑖 ∶ 𝑖 = 1,3}.

It will be displayed using the following Table 1 that contractive condition (2.1) is verified for each of the aforementioned instance.
It can be seen in the above Table 1 that for each of Cases 1 −6, 𝜐(Ω𝑠, Ωℏ) ≤ 𝜏( (𝑠, ℏ)) for all (𝑠, ℏ) ∈D(ℵ̃) as indicated by Columns 

4, 5 and 6.
Fig. 2 as depicted below the symmetric graph ℵ̃ for Example 2.4, while Figs. 3 and 4 further attest that contractive condition 
6

(2.1) holds true for Example 2.4.
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Table 1

Verification of contractive inequality (2.1).

Cases 𝑠 ℏ 𝜐(Ω𝑠,Ωℏ) 𝜏( (𝑠, ℏ)), ℘ = 0 𝜏( (𝑠, ℏ)), ℘ = 3

Case 1

2 2 0 0.875 -
4 4 0 1.75 -
6 6 0 2.625 -

Case 2

2 4 1 1.15456 1.36542
4 2 1 1.32625 1.36542
4 6 1 2.05813 2.35112
6 4 1 2.23199 2.35112

Case 3
3 3 0 1.75 -
5 5 0 3.5 -

Case 4
1 3 0 - 1.28941
3 1 0 - 1.28941

Case 5

2 1 0 - 0.64470
2 3 0 1.15456 1.51591
4 3 1 1.75 2.96222
4 5 1 2.30913 5.90659
6 3 2 2.23199 2.18633
6 5 2 2.94513 8.85718

Case 6

1 2 0 - 0.64470
3 2 0 1.32625 1.51591
3 4 1 1.75 2.96222
3 6 2 2.05813 2.18633
5 4 1 2.65250 5.90659
5 6 2 3.11955 8.85718

𝟏 𝟐

𝟑

𝟒 𝟓

𝟔

Fig. 2. Symmetric graph ℵ̃ given in Example 2.4.

For ℘ = 0 and ℘ = 3 respectively, Figs. 3 and 4 have shown that 𝜐(Ω𝑠, Ωℏ) ≤ 𝜏( (𝑠, ℏ)) for all (𝑠, ℏ) ∈ D(ℵ̃) as given in Exam-
ple 2.4.

Therefore, all the hypotheses regarding Theorem 2.3 have been confirmed, there is a unique point 𝑠 = 1 such that Ω𝑠 = 𝑠, and 
lim
𝑗→∞

Ω𝑗𝑠 = 1 for all 𝑠 ∈ 𝜇. In light of this, Ω is a PO.

Subsequently, we display that Theorem 3.2 obtained in [17] can be formulated from our main results. According to [17], consider 
Ω to be a self-mapping on 𝜇. A collection of all points 𝑠 ∈ 𝜇 fulfilling (𝑠, Ω𝑠) ∈D(ℵ) is denoted by 𝜇Ω, that is,

𝜇Ω = {𝑠 ∈ 𝜇 ∶ (𝑠,Ω𝑠) ∈ D(ℵ)}.

Definition 2.5. [17]. On a MS (𝜇, 𝜐) Incorporated with a graph ℵ, a self-map Ω of 𝜇 is termed a Banach ℵ-contractive mapping (or 
simply an ℵ-contractive mapping) if:
7

(i) Ω conserves the edges of ℵ;
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Fig. 3. Verification of contractive condition (2.1) for ℘ = 0.

Fig. 4. Verification of contractive condition (2.1) for ℘ = 3.

(ii) ∃𝜇 ∈ (0, 1) ∀𝑠, ℏ ∈ 𝜇 such that (𝑠, ℏ) ∈𝐷(ℵ) ⇒ 𝜐(Ω𝑠, Ωℏ) ≤ 𝜇𝜐(𝑠, ℏ).

Corollary 2.6. (see [[17], Theorem 3.2]). On a complete MS (𝜇, 𝜐) characterized by a graph ℵ, and a ℵ-contractive mapping Ω. Consider 
further that:

(i) 𝜇Ω ≠ ∅ and ℵ is weakly connected;

(ii) for each sequence {𝑠𝑗}𝑗∈ℕ in 𝜇, if 𝑠𝑗 ⟶ 𝑠 and (𝑠𝑗 , 𝑠𝑗+1) ∈𝐷(ℵ) for all 𝑗 ∈ ℕ, then we can find subsequence {𝑠𝑘𝑛}𝑘∈ℕ with (𝑠𝑘𝑛 , 𝑠) ∈
𝐷(ℵ) for each 𝑘 ∈ℕ.

Then Ω is a PO.

Proof. Take into account Definition 2.1 and given that 𝜏(𝑡) = 𝜇𝑡 for all 𝑡 ≥ 0, 𝜇 ∈ (0, 1), ℘ > 0, 𝜆1 = 0 and 𝜆2 = 1. Then J-type /H 
(ℵ-𝜏)-contractive mapping becomes ℵ-contractive mapping due to Jachymski [17]. Hence, the proof is immediate from Theorem 3.2
of Jachymski [17]. □

Hereafter Corollary 2.7 displays that Theorem 1.6 due to [10] is derivable from our main results.

Corollary 2.7. On a complete MS (𝜇, 𝜐) characterized by a graph ℵ, let Ω ∶ 𝜇⟶ 𝜇 be a (ℵ-𝜏)-contractive mapping which verifies all the 
8

hypotheses of Theorem 1.6. Then Ω is a PO.
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𝟕

𝟓 𝟔

𝟑 𝟒

𝟏 𝟐

Fig. 5. Symmetric graph ℵ̃ given in Example 2.8.

Proof. Assume in Definition 2.1 that ℘ > 0, 𝜆1 = 0 and 𝜆2 = 1. Then J-type /H (ℵ-𝜏)-contractive mapping reduces to (ℵ-𝜏)-
contractive mapping given by Bojor [10] (see Definition 1.3). Therefore, the proof follows using a similar line of approach. □

Example 2.8. Let 𝜇 = {𝑠|𝑠 ≤ 7, 𝑠 ∈ ℕ} be equipped with the Euclidean metric 𝜐(𝑠, ℏ) = |𝑠 − ℏ| for every 𝑠, ℏ ∈ 𝜇. Then (𝜇, 𝜐) is a 
complete MS. Consider Ω to be a self-mapping on 𝜇 given by

Ω𝑠 =
⎧⎪⎨⎪⎩
1, if 1 ≤ 𝑠 ≤ 2;
𝑠− 2, if 3 ≤ 𝑠 ≤ 5;
𝑠− 5, if 6 ≤ 𝑠 ≤ 7

for all 𝑠 ∈ 𝜇.
Define a symmetric graph ℵ̃ such that 𝑉 (ℵ̃) = 𝜇 and

𝐸(ℵ̃) = {(1, 𝑠𝑛), (2, 𝑠𝑛) | 𝑠𝑛 ∈ 𝜇, 𝑛 ∈ℕ}.

Then Ω is edge preserving and orbitally continuous. Also, ℵ is weakly connected.
Now, notice that if 𝜏(𝑡) = 3𝑡

4 , then

𝜐(Ω1, Ω1) = 𝜐(Ω1, Ω2) = 𝜐(Ω1, Ω3) = 𝜐(Ω1, Ω6) = 0,

𝜐(Ω1, Ω4) = 1 < 9
4 = 𝜏(𝜐(1, 4)),

𝜐(Ω1, Ω5) = 2 < 3 = 𝜏(𝜐(1, 5)),
𝜐(Ω1, Ω7) = 1 < 9

2 = 𝜏(𝜐(1, 7)).

Similarly

𝜐(Ω2, Ω1) = 𝜐(Ω2, Ω2) = 𝜐(Ω2, Ω3) = 𝜐(Ω2, Ω6) = 0,

𝜐(Ω2, Ω4) = 1 < 3
2 = 𝜏(𝜐(2, 4)),

𝜐(Ω2, Ω5) = 2 < 9
4 = 𝜏(𝜐(2, 5)),

𝜐(Ω2, Ω7) = 1 < 15
4 = 𝜏(𝜐(2, 7)).

Therefore, Ω is a (ℵ-𝜏)-contractive mapping which satisfies all the assumptions of Theorem 1.6, there is a unique point 𝑠 = 1 such 
that Ω𝑠 = 𝑠, and lim

𝑛→∞
Ω𝑛𝑠 = 1 for every 𝑠 ∈ 𝜇. Thus, Ω is a PO.

Fig. 5 as depicted below the symmetric graph ℵ̃ for Example 2.8, while Fig. 6 visualizes contractive condition of Theorem 1.6.

Fig. 6 has shown that 𝜗(Ω𝑠, Ωℏ) ≤ 𝜏(𝜗(𝑠, ℏ)) for all (𝑠, ℏ) ∈𝐸(ℵ̃) as given in 2.8.

3. Ulam-type stability

Ulam launched a stability idea, which is a data dependence result. Hyers and other scholars developed this notion further (see 
9

[13,28]). In the context of the 𝐹𝑝 problem in MS, the general Ulam-type stability was examined by Karapınar and Fulga [28]. In the 
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Fig. 6. Demonstration of contractive condition (1.3).

framework of a MS with a graph, we view the generic Ulam-type stability as a 𝐹𝑝 problem.
Suppose that Ω ∶ 𝜇⟶ 𝜇 is a mapping on a MS (𝜇, 𝜐) characterized by a graph ℵ. Then the 𝐹𝑝 problem

Ω𝑠 = 𝑠 (3.1)

is of the general Ulam-type stability if and only if we can find an increasing function 𝜏 ∶ℝ+ ⟶ℝ+, continuous at 0, 𝜏(0) = 0 in the 
sense that for any 𝜖 > 0 and for each ℏ′ ∈ 𝜇 verifying the inequality

𝜐(ℏ′,Ωℏ′) ≤ 𝜖, (3.2)

we can find a solution 𝑠∗ ∈ 𝜇 of (3.1) verifying

𝜐(𝑠∗, ℏ′) ≤ 𝜏(𝜖). (3.3)

For any 𝐶 > 0, we take 𝜏(𝑡) = 𝐶𝑡 for every 𝑡 ≥ 0. Then the 𝐹𝑝 of (3.1) is Ulam-type stable.
On a MS (𝜇, 𝜐) endowed with a graph ℵ, the 𝐹𝑝 problem (3.1) is termed well-posed if the conditions below are verified:

(i) Ω has a unique 𝐹𝑝 𝑠∗ ∈ 𝜇;
(ii) 𝜐(𝑠𝑗 , 𝑠∗) = 0 for each sequence {𝑠𝑗}𝑗∈ℕ in 𝜇 such that 𝜐(𝑠𝑗 , Ω𝑠𝑗 ) ⟶ 0 as 𝑗⟶∞.

Theorem 3.1. On a complete MS (𝜇, 𝜐) characterized by a graph ℵ, if in addition to the assumptions of Theorem 2.3, in the case of ℘ > 0, 
we have (𝑠∗, ℏ′) ∈ D(ℵ) for any ℏ′ ∈ 𝜇, (𝑠∗, 𝑠𝑗 ) ∈ D(ℵ) for each sequence {𝑠𝑗}𝑗∈ℕ in 𝜇, 𝑠∗ ∈ 𝐹 𝑖𝑥(Ω) and 𝜆2 ∈ [0, 1), then the conditions 
below hold:

(i) the 𝐹𝑝 equation (3.1) is Ulam-Hyers stable;

(ii) the 𝐹𝑝 equation (3.1) is well-posed for any {𝑠𝑗}𝑗∈ℕ in 𝜇 such that lim
𝑗→∞

𝜐(𝑠𝑗 , Ω𝑠𝑗 ) = 0 and 𝐹 𝑖𝑥(Ω) = {𝑠∗}.

Proof. (i) We displayed in Theorem 2.3, the existence of a unique 𝑠∗ ∈ 𝜇 such that Ω𝑠∗ = 𝑠∗. For a given 𝜖 > 0, let ℏ′ ∈ 𝜇 such that

𝜐(ℏ′,Ωℏ′) ≤ 𝜖.

Then obviously, 𝑠∗ satisfies (3.2). Since (𝑠∗, ℏ′) ∈ D(ℵ), then (Ω𝑠∗, Ωℏ′) ∈ D(ℵ). Hence, by the weak connectivity of ℵ and 
triangle inequality, we have

𝜐(𝑠∗, ℏ′) ≤ 𝜐(𝑠∗,Ωℏ′) + 𝜐(Ωℏ′, ℏ′)

= 𝜐(Ω𝑠∗,Ωℏ′) + 𝜐(ℏ′,Ωℏ′)

≤ 𝜏( (𝑠∗, ℏ′)) + 𝜐(ℏ′,Ωℏ′)

<  (𝑠∗, ℏ′) + 𝜐(ℏ′,Ωℏ′)

=
[
𝜆1

(
𝜐(𝑠∗,Ω𝑠∗) ⋅ 𝜐(ℏ′,Ωℏ′)

𝜐(𝑠∗, ℏ′)

)℘

+ 𝜆2𝜐(𝑠∗, ℏ′)℘
] 1

℘
+ 𝜐(ℏ′,Ωℏ′)

[ (
𝜐(𝑠∗, 𝑠∗) ⋅ 𝜐(ℏ′,Ωℏ′)

)℘
∗ ′ ℘

] 1
℘ ′ ′
10

= 𝜆1
𝜐(𝑠∗, ℏ′)

+ 𝜆2𝜐(𝑠 ,ℏ ) + 𝜐(ℏ ,Ωℏ )
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= 𝜆
1
℘

2 𝜐(𝑠
∗, ℏ′) + 𝜐(ℏ′,Ωℏ′),

from which we obtain(
1 − 𝜆

1
℘

2

)
𝜐(𝑠∗, ℏ′) < 𝜐(ℏ′,Ωℏ′)

implying that

𝜐(𝑠∗, ℏ′) <
⎛⎜⎜⎜⎝

1

1 − 𝜆
1
℘

2

⎞⎟⎟⎟⎠𝜐(ℏ
′,Ωℏ′) ≤ 𝐶𝜖,

where 𝐶 = 1

1−𝜆
1
℘
2

for any ℘ > 0 and 𝜆2 ∈ [0, 1).

(ii) Considering the additional criteria and because 𝐹 𝑖𝑥(Ω) = {𝑠∗}, we have

𝜐(𝑠∗, 𝑠𝑗 ) ≤ 𝜐(𝑠∗,Ω𝑠𝑗 ) + 𝜐(Ω𝑠𝑗 , 𝑠𝑗 )

= 𝜐(Ω𝑠∗,Ω𝑠𝑗 ) + 𝜐(𝑠𝑗 ,Ω𝑠𝑗 )

≤ 𝜏( (𝑠∗, 𝑠𝑗 )) + 𝜐(𝑠𝑗 ,Ω𝑠𝑗 )

<  (𝑠∗, 𝑠𝑗 ) + 𝜐(𝑠𝑗 ,Ω𝑠𝑗 )

=
[
𝜆1

(
𝜐(𝑠∗,Ω𝑠∗) ⋅ 𝜐(𝑠𝑗 ,Ω𝑠𝑗 )

𝜐(𝑠∗, 𝑠𝑗 )

)℘

+ 𝜆2𝜐(𝑠∗, 𝑠𝑗 )℘
] 1

℘
+ 𝜐(𝑠𝑗 ,Ω𝑠𝑗 )

=
[
𝜆1

(
𝜐(𝑠∗, 𝑠∗) ⋅ 𝜐(𝑠𝑗 ,Ω𝑠𝑗 )

𝜐(𝑠∗, 𝑠𝑗 )

)℘

+ 𝜆2𝜐(𝑠∗, 𝑠𝑗 )℘
] 1

℘
+ 𝜐(𝑠𝑗 ,Ω𝑠𝑗 )

= 𝜆
1
℘

2 𝜐(𝑠
∗, 𝑠𝑗 ) + 𝜐(𝑠𝑗 ,Ω𝑠𝑗 ),

from which we obtain(
1 − 𝜆

1
℘

2

)
𝜐(𝑠∗, 𝑠𝑗 ) < 𝜐(𝑠𝑗 ,Ω𝑠𝑗 )

implying that

𝜐(𝑠∗, 𝑠𝑗 ) <
⎛⎜⎜⎜⎝

1

1 − 𝜆
1
℘

2

⎞⎟⎟⎟⎠ 𝜐(𝑠𝑗 ,Ω𝑠𝑗 ).
Letting 𝑗→∞ and keeping in mind that lim

𝑗→∞
𝜐(𝑠𝑗 , Ω𝑠𝑗 ) = 0, we obtain

lim
𝑗→∞

𝜐(𝑠∗, 𝑠𝑗 ) ≤ lim
𝑗→∞

𝜐(𝑠𝑗 ,Ω𝑠𝑗 ) = 0.

That is, the 𝐹𝑝 equation (3.1) is well-posed. □

4. Conclusion

The idea of J-type /H (ℵ-𝜏)-contractive mapping in MS characterized with a graph is launched in this paper (Definition 2.1). 
Sufficient criteria under which such a mapping is a PO are investigated (Theorem 2.3). Contrasting examples with graphical illus-
trations are built to validate the assumptions of our theorems and to display that the new notions can be generalized (Examples 2.2
and 2.4). Corollaries 2.6 and 2.7 are provided to display that the approach described herein is a generalization and improvement on 
several famous results in the literature. In addition, for the contractive mappings presented here, their well-posedness and Ulam-type 
stability were investigated . The results in this paper are influenced by and compared to [10,13,17,27,28].
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[36] M. Younis, D. Singh, S. Radenović, M. Imdad, Convergence theorems for generalized contractions and applications, Filomat 34 (3) (2020) 945–964.

https://doi.org/10.1155/2021/6721296
http://refhub.elsevier.com/S2405-8440(24)07300-6/bibA71B66BD9307CB1A57A42D226745A807s1
http://refhub.elsevier.com/S2405-8440(24)07300-6/bib17CB53AFA9F087542E55D8E12B70C6B4s1
http://refhub.elsevier.com/S2405-8440(24)07300-6/bib17CB53AFA9F087542E55D8E12B70C6B4s1
http://refhub.elsevier.com/S2405-8440(24)07300-6/bib4C66E67F6D58075F6710A95F70545F5Cs1

	Hybrid fixed point theorems of graphic contractions with applications
	1 Introduction and preliminaries
	2 Main results
	3 Ulam-type stability
	4 Conclusion
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	Availability of data and materials
	Acknowledgements
	References


