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Abstract

One distinct family of methods for the numerical approximation of general and special second order ordinary
differential equation is the Falkner-type methods which consists of a couple of rational formulas, one to follow the
solution and the order to follow the derivative. In this paper, we explore this method by introducing a number of off-
step points in order to increase the number of function evaluation in the derivation process of a two-step Falkner-type
method through the interpolation and collocation technique. The two main Falkner formulas and the additional ones
to complete the block procedure are obtained from a continuous formulation. The basic properties of the proposed
method were investigated and found to be zero-stable and of order p=9 which implies convergence.The

performance of the new method was shown through some numerical examples and found to have higher accuracy than
the existing methods considered in the literature.
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1. Introduction
Differential equation of the form

Y'(x)=F(xy(x).y'(x)). y(a)=Yo ¥'(a)=Y; &)
where x€[a,b], y:[a,b] >0 and f:[a,b]x] —0 are sufficiently differentiable functions; is usually used to

model numerous problems such as chemical kinetics, orbital dynamics, circuit and control theory and Newton’s
second law of motion. However, in most cases, the differential equations so formed for these real life problems often
do not have analytical solution. Therefore one of the possible ways to tackle this problem is to consider a discrete
domain rather a continuous one. Hence for practical purposes such as engineering, a numerical approximation to the
solution is often sufficient. Although it is possible to integrate (1) by reducing it to a first-order system and applying
one of the methods available for such systems, it however, seems natural to employ numerical methods to integrate the
problem directly as this result to more efficiency of the method (Ramos et al., 2016, Mohammed et al., 2010,
Mohammed et al., 2019, Badmus and Yahaya, 2009, Awoyemi, 2001). Scholars have proposed numerous numerical
methods for approximating initial value problems such as (1); these methods range from discrete schemes (Lambert,
1973; Butcher, 2008; Fatunla, 1988) to predictor corrector methods (Onuman;yiet al., 1994; Fatunla 1994; Awoyemi,
and Idowu, 2005; Areo and Adeniyi, 2013; Omar and Kuboye, 2015; Ndanusa and Tafida, 2016) and then block
methods ((Badmus and Yahaya, 2009; Jator and Li, 2012; Mohammed, 2011; Mohammed and Adeniyi, 2014,
Badmus, et al., 2015; Akinfenwa, et al., 2013; Omar and Adeyeye, 2016; Akinfenwaet al., 2017).

One distinct family of methods for the numerical approximation of (1) is the Falkner-type methods (see Falkner,
1936) which can be written in the form:

k-1
yn+l:yn+hyr,1+h22ﬂjvjfn (2)
j=0
) k-1 J .
yr’1+1:y:1+h zijjfn (3)
j=0

where h is the step-size, Y, and Y, are numerical approximations to the theoretical solution and its derivative at the

(b-a)

grid point X, =a+nh; n=0,1,2,3,...,N, hzT, f.=f (X, Y, Y,) and V' f_ is the standard notation for the

backward differences.
There exist similar implicit Falkner formulas (see Collatz, 1966) given by

Kk
yn+l = yn + hyr'1 + hzZﬂijml (4)
j=0
k .
Yo = Yo + h227jvj foi ®)
=0
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We note that the formulas given in (4) and (5) are the Adams-Bashforth and Adams-Moulton methods respectively for
solving the problem

!
(Y()) = (xy(x).y'(x))
which are used to obtain the values of the first derivatives.

The usual and unusual implementation of these methods have been considered in the literature. For instance, in
molecular dynamics, when the acceleration at time only depends on position and not on velocity, the direct integration
methods are usually implemented in a semi-implicit formulation. This is the case for the well known Velocity Verlet
algorithm (Swope, et al., 1982). This method uses the one-step explicit method in (2) to compute the positions.

2

! h "
yn+1 = yn + hyn +? yn (6)
and the one-step implicit method in (5) to update the velocities

"

! ’ h2 "
Yo =Y +?(4yn + yn+1) (7)
Beeman (1976) proposed the modification of the Verlet family of methods for the calculation of velocities. The
method used to compute the positions at time X, + his the following two-step explicit method given in (2)

, b
You=Ynt hyn +€(4 fn - fn—l) (8)
while the formula to update the velocities is the following two-step method
yr’wl = hyr: +g(2 fn+1 +5 fn - fn—l) (9)

In this paper, we present the hybrid-block form of the Falkner formulas where generalized 6 off-step points
are considered within 0 < x < 2in order to increase the number of function evaluation.

2. Development of the method
In developing the new 2-step Falkner type computational method for solving general and special second order
differential equation in (1), we shall consider the power series as a basis function in the form

r+s-1 .
y(x)= 2 ax @
j=0
on the partition
a=X% <X <..<X, <Xy <..<Xy =bof the interval of integration [a,b], with a constant step size h, given by
h=X,,—%;Nn=01..,N-1a's are unknown coefficients to be determined r and s are numbers of

interpolation and collocation points respectively. We impose that the interpolating function (2) coincides with the
analytical solution at the end point X, (r =1) to obtain the equation

y(xn) = Yn 3)

Also if the function (2) satisfies the differential equation (1), we demand that in order to obtain the Falkner type
method, we collocate the first derivative of (2) at X, to obtain the following equation

y' (%)=, (@)

and collocate its second derivative at the grid points (0,1,2) and at the carefully selected off-step points

v:(g§ﬂgzgjto obtain

y”(vaj ) = fn+vj (5)
We emphasize that equations (3), (4) and (5) lead to a system of eleven equations which is solved using the matrix
inversion method to obtain &, 'S . The proposed 2-step Falkner method is constructed by substituting the values of

a; 'S into equation (2) and then simplified to obtain the continuous representation of the method in the form

y(X) = yn + Xyr: + n+j (X) fn+j + n+v (X) fn+v (6)
Differentiating (6) we get the first derivative of the continuous scheme as y’(x) =y + ,Br:H. (x) fnﬂ. +p., (x) f..
()
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Evaluating (6) and (7) at (%gglgggzj respectively, we obtain the 2-step block hybrid Falkner-type method
defined in general matrix form as

AiYm = Aomez +h ( BanLz ) +h? (Co mez + ClFm ) (8)

andBY, =B, Y, ,+h(D,F,_, +DF,) 9)

whereY,,Y and F_ are vectors defined as

L 1
J,
<
E]
o
I

r T
Ym = |:yn+%! ym%: yn+%! Vi1 yn+%' yn+%! ymgl Yni2 _yn,%' yn,%’ yn,%' Yno1s yn_g’ yn,%! yn_%, yn:| '

L 1
J,
<
3 <
o
I

- T
r ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
Ym - [yrH_% 1 yrH,% 1 yl'H—% 1 yn+l’ yn+% 1 yn+% 1 yn+% 1 yn+2 yn—% 1 ynf% 1 yn7% 1 yn—l' yn_% 1 yn—%’ yn_%7 yn } 1

T - T
Fo=[ s fons s Fos g fo s o | o= e f g frn s f £ 1|
1 00 0O0OO0OTO O 0 00O0O0OO0OT 01
01 00 O0O0OO0TPO 0 00O0O0OO0OT 01
0 01 00 O0O0OTUO 0 00O0O0OO0OT 01
A 0 00O1 00 O0TUO A 0 00OO0OO0OT 01
0O 0O0O0O0O1O0O0TO0 0O OO0 0O OOV 012
0O 0O0OO0OO1O0TUO0 0O OO0 0O OOV 012
0 00OO0OO0OOT1O 0 000 O0OOT 01
0O 00O O0OO0OTU 0?1 0 000 O0OOT 01
2
000O0O0O0TO0 =<
5
00000003
c 1000000 0 00000GO0UO01
6000000 4 01000000 00000O0OCOCT1
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B—OOOOOOOlB000100005—00000001
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1
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c | 677376 63504 2502 12006 48384 127008 762048 2032128
'7| 303507 15234 16920 15066 6879 17334 1462 2349
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2880000 1944000 648000 900000 1555200 3240000 1458000 129600000
6187023 749160 212139 7236783 685017 4374 173151 1275021
3136000 196000 35000 1400000 224000 6125 1960000 78400000
2605 50650 3830 358 22825 2770 5210 5
1176 11907 567 63 6804 3069 35721 31752

122



Proceedings of September 2020 57th Annual National Conference (Mathematics Science)

0000 00 1116326
37209375
00000O0O 238697
4900000
111628125
00000O0O el
762048
00000O0O 643
6125
000000 o D067
36450000
500000 1581093
9800000
00000 A%
35721
1544381 151783 1038277 56543 22867 268871 203741 181751
1323000 59535 283500 16875 12150 496125 4465125 19845000
1938789 73931 397701 261603 2047 416457 35123 70533
1568000 31360 112000 80000 1600 784000 784000 7840000
203789 135104 262046 55036 11302 265792 201472 22469
165375 59535 70875 16875 6075 496125 4465125 2480625
417875 3476125 276025 11041 28625 270125 205175 9157
338688 1524096 72576 3456 15552 508032 4572288 1016064
60399 557 13221 1017 97 3303 2717 2223
49000 245 3500 625 50 6125 6125 245000
1066583 355201 4935427 6758129 817369 597737 515627 115493
864000 155520 1296000 2160000 388800 1296000 11664000 1296000
1875717 65259 367173 182079 1971 158679 143379 141669
1568000 31360 112000 80000 1600 784000 784000 7840000
13025 26875 8425 79 875 275 13025 1529
35721 11907 2268 27 486 3069 35721 31752
0000000 04
89302500
0000000 ot
3920000
0000000 220
22325625
0000000 25
4572288
0000000 —o
122500
0000000 0308
58320000
0000000 1%
3920000
00000 13393
142884

123




Proceedings of September 2020 57th Annual National Conference (Mathematics Science)

4. Analysis of the method

4.1. Local truncation error and order of accuracy.
Following the definition of Fatunla (1991) and Lambert (1973), we define the local truncation error associated with

the conventional forms of (8) and (9) to be the linear difference operators

L[ y(x,)ih]= Z(ajy(xn +jh)=hBy'(x,)=h?y, T (x, + jvh))

and

L[y'(xn);h]:Z(thy'(xn + jvh)=h’Fhf (x, + jvh))

respectively. Assuming that Y (X, ) and Y'(X, ) are sufficiently differentiable, we can expand the terms in (10) and

(11) as Taylor series about the point X, to obtain the expression
L[ y(%,)ih]=Coy(x,)+Chy'(%,) +...+ ChTy @ (x,)+...

and

L[y’(xn);h]:C_:Oy’(xn)+C_31hy”(xn)+...+C_:qhqy(q“) (X,)+ ...

respectively;
where the constants C, and C, q=0,1,

C:

o

= 1&, .0 1 K s
C,=— a. — g

... are given as follows

10)

(11)

(12)

(13)

(13)

(14)

According to Henrici (1962), we say the methods (8) and (9) are of order p if C;=C, =..C, =C_,=0,C ,#0

and C_,,isthe error constantand C,.,

hP2y(Pr2) (x,) the principal truncation error at the point X, .
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From our analysis, the block method (8) and (9) have a uniform order p = 9 with relative small error constants
T

671233 3737673 7614548 541157
C  _c. _|106589355468750" 336875000000000  479652099609375  26195400000000°
prz T 3348 151458853 13630599 14027
131591796875  5011875000000000" 336875000000000 306977343750
1687517 29203 208892 34123 !
& _E - 69767578125000 1225000000000 8720947265625 1428840000000
prz T 2293 2168887 173151 521

95703125000 91125000000000° 6125000000000 22325625000

4.2. Zero Stability
Zero-stability is concerned with the stability of the difference system in the limit as h tends to zero (Akinfenwaet al.,
2018). Thus, as h — 0, the method (8) tends to the difference system

AYY — A% -0 (14)
whose first characteristic polynomial p(ﬂ,) is given by
p(2)=[aAY - A (15)

Definition (Zero-stability): The block method (8) is said to be zero stable if the roots of the first characteristic
polynomial p(A) satisfies ‘/1]‘31, j=1,2,3,... and for those roots with ‘/1]‘:1, the multiplicity must not exceed 2
(Fatunla, 1991).

p(A)=AT(A-1)=0

A= {0,0,0,0,0,0,0,1}

Therefore, our method (8) is zero stable since is satisfies ‘/Ij‘ <1.

(16)

4.2. Consistency: The block method (8) is consistent if it has order of accuracy p > 1. According to Henrici the method

is convergent, since the necessary and sufficient condition for convergence is for the method to be zero-stable and
consistent.

5. Numerical Examples
We consider various problems of the type (1) to test the performance of the two-step block hybrid Falkner-type
method and the errors obtained from the solutions are compared with some of its kinds in the literature. For the
purpose of comparative analysis, the following notations are adopted.
e HFBM,: 2-step, one off-step hybrid block Falkner-type method by Nicholas (2019)
HFBM,,: 2-step, 2 off-step hybrid block Falkner-type method by Nicholas (2019)
HFBM,,: 2-step, one off-grid hybrid block Falkner-type method by Nicholas (2019)
HFBM, 4: 4-step, two off-grid hybrid block Falkner-type method by Nicholas (2019)
BFMg: Block Falkner method for k=6 by Ramos et al., (2016)

Problem 1. (Source: Ramos et al. (2016))
Consider the non-linear homogeneous problem given by

4 ! ! l
y'=x(y)", y(0)=1 y'(0)=7, 0<x=1

with the exact solution y ( x) =1+ % In (?]
—X
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Table 5.1: comparison of absolute errors for problem 1

X Numerical solution Jamesetal. BFM;s Mohammad  HFBMy, New
(2013) h=0.05 and Zurni h=0.1 Method
h=0.1 (2017), h=0.1

h=0.05

0.1 1.0500417292784912678  1.110*10" 3.114*10% 2.220*10%®  2.000*10%* 4.112*107%°

0.2 1.1003353477310755792  5.995*10™°  6.660*10"* 2.220*10"®  3.000*10%*  1.388*107®

0.3 1.1511404359364668019  2.554*10™* 09.833*10™* 6.661*10"°  6.000*10"*  3.305*107®

0.4 1.2027325540540821840  7.105*10** 2.173*10 1.110*10%  9.000*10*  6.972*10"®

0.5 1.2554128118829953275  1.157*10™ 3.570*10™  4.440*10™°  1.400*10™  1.412*107"

0.6 1.3095196042031116868  1.199*10™  4.859*10™  8.881*10™®  2.200*10™  2.860*10°"

0.7 1.3654437542713961096  6.857*10™  1.310*10%° 1.554*10"  3.500*10™  5.932*10°"

0.8 1.4236489301936016784  3.475*10%° 2.313*10"° 4.440*10"®  5.900*10*  1.284*107°

0.9 1.4847002785940514471  1.222*10™  3.286*10%° 8.660*10™°  1.010*10%°  2.943*107°

1.0 1.5493061443340541188  7.728*10™  1.335*10%° 1.266*10™ - 7.267*10°

Problem 2. (Source: Ramos et al. (2016))
Consider a linear homogeneous problem given by
y'=y, y(0)=0, y'(0)=-1 0<x<1
with the exact solution y(Xx)=1-e™
Table 5.2: comparison of absolute errors for problem 2
X Kayode and BFMg Mohammad HFBM 4 New Method
Adeyeye. h=0.1 and Zurni h=0.1 h=0.1
(2013), h=0.1 (2017), h=0.01
0.2 8.171*10" 2.427*10™" 1.388*10%° 2.000*10* 5.556*10™"°
0.3 3.103*10% 4.001*10™ 3.331*10%° 1.000*10* 1.178*10™%°
0.4 6.569*10% 5.746*10" 4.996%107% 1.010*10™*2 1.930*10™"®
0.5 1.143*10°% 7.741*10 7.772%10*° 1.400*10™ 3.093*10*®
0.6 1.796*10% 9.517*10" 1.332*10™ 2.100*10 4.457%1078
0.7 2.644*10°% 1.221*10%° 1.776*10™" 3.000*10** 6.372*108
0.8 3.722*10°% 1.604*10° 2.887*10"° 4.000%10™ 8.582*10®
0.9 5.067*10°% 2.013*10™%° 3.775*10%° 5.000%10" 1.152*10"
1.0 5.255*10% 2.466*101° 5.107*10%° - 1.489*10"
Problem 3. (Source: Adediran and Ogundare,(2015))
Consider a highly stiff initial value problem given by
y" =-100y'-1000y, y(0)=1, y'(0)=-1,0<x<1
with the exact solution y(X)=e™"
Table 5.3: comparison of absolute errors for problem 3 with h=0.1
X Numerical solution Adediran and Mohammad and  New Method
Ogundare. Zurni (2017)
(2015)
0.1 0.90483741803595957330  2.050*10™* 1.055*10™ 1.400*10™°
0.2 0.81873075307798185950  4.390*10™* 1.776*10™ 8.300*10*°
0.3 0.74081822068171786593  6.550*10* 2.342*10 1.400*10°
04  0.67032004603563930116  8.380*10™ 2.798*10 4.200*10"
0.5 0.60653065971263342286  9.860*10° 3.131*10* 7.400%10™"°
0.6  0.54881163609402643237  1.100*10™%° 3.397*10° 2.600*107"°
0.7  0.49658530379140951345  1.190*107%° 3.564*10° 1.250*1078
0.8 0.44932896411722159065  1.240*10° 3.675*10™* 7.800*10*°
0.9 0.40656965974059911030  1.280*10° 3.730*10* 1.580*10*®
1.0  0.36787944117144232048  1.300*107%° 3.741*10 1.120*1078
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X Numerical solution Adeyefa HFBM,, HFBM, 3 New Method
(2017)

0.1  0.90483741803595957228  3.240*10"  1.365*107° 8.130*10®  8.800*10™

0.2 0.81873075307798185656 1.794*10™ 7.844*10" 7.680%10%  2.110*1078

0.3 0.74081822068171786286  6.910*10™ 3.090*10° 2.745*10Y  3.210*%1078

0.4 0.67032004603563929664  2.372*10%° 2.400*10*° 1.074*10"  4.100*10*®

0.5  0.60653065971263341881  7.810*10"  4.203*107% 9.31010%®  4.790*107®

Problem 4. Dynamic Problem (Source: Nicholas (2019))
A 10kg mass is attached to a spring having a constant of 140N/m. The mass is started in motion from the equilibrium

position with an initial value of 1m/sec in upward direction and with an applied external force F (t) =0.5sin (t) . The
resulting equation due to air resistance 90y’'N is given as

y"+9y'+14y:%sint, y(0)=0, y'(0)=-1,0<x<0.1

9 2,99 9

with the exact solution y(t)= ——cos(t) +%sin(t)

50 500 500
Table 5.5: Numerical solution of problem 4 with h=0.001
X Numerical solution
0.01 -0.0095608891946498468041664969408183840
0.02 -0.018285603224426365353666983008451928
0.03 -0.026233952945284610061734300806231079
0.04 -0.033461640772405912220290869637185496
0.05 -0.040020539768239219056775516866554309
0.06 -0.045958953836075225438313904734123363
0.07 -0.051321860297053846359402482277050722
0.08 -0.056151136042101352630537395135211578
0.09 -0.060485768369730929574669608793358429
0.10 -0.064362051545524582478780919666828961
Table 5.6: comparison of absolute errors for problem 3 with h=0.1
X HFBszl HFBMQQ HFBM2’4 New Method
0.01  1.304*10% 4.500*10% 1.700%10" 2.567*%10°!
0.02  3.323*10% 1.000*10™ 4.000%10 8.954*10%
0.03  6.448*10™ 6.000%10™ 2.000%10™ 1.855*10%°
0.04  1.003*10% 1.500*10* 7.130%10™ 3.081*10%°
0.05  1.438*10% 9.000*10* 1.000*10™ 4.525+%10%
0.06  1.899*10°% 1.400*107* 4.000*10*® 6.144*10°
0.07  2.412*10% 2.001*10™ 1.010*10™" 7.901*%10%°
0.08  2.933*10% 1.500*10*2 4.000%107 9.762*10™%°
0.09  3.489*10% 1.600*10*2 5.000*10 1.170*10%
0.10  4.041*10% 1.400*10* 3.000%10™ 1.368*10%

Problem 5. VVan Der Pol Oscillator (Source: Mohammed et al.,(2019))

y'-2£(1-y*)y'-y=0, y(0)=0, y'(0)=05, £=0.025, 0<x<1

This problem has no exact solution, our result is however validated usingRunge-Kutta (RK45) and compared with
Mohammed et al., (2019).

Table 5.7: Result for the Van Der Pol Oscillator Problem with h=0.1

X RK(5) 4(2019) New Method
0.0 0 0 0
1.0 0.431051 0.431051 0.43105
2.0 0.47631 0.476309 0.47636
3.0 0.076077 0.076076 0.076241
4.0 -0.41546 -0.41546 -0.41532
5.0 -0.53857 -0.53857 -0.53866
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6.0 -0.16135 -0.16134 -0.16167
7.0 0.386024 0.386025 0.38573
8.0 0.595231 0.59523 0.59530
9.0 0.254655 0.254653 0.25509
10.0 -0.34157 0.34158 -0.34110

6. Conclusion

In this paper, we have developed a modified 2-step hybrid block linear multistep method of Falkner type to solve
initial value problem of general and special second order ordinary differential equations. Our method is found to be
zero stable, consistent and convergent. The numerical results show that our method is computationally reliable and
gave better accuracy than the existing methods found in the literature.
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