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ABSTRACT

Aufomated Short Answer Grading [ASAG] systems contribufe immensely fo providing prompt feedback fo students,
which eases the workload of insfructors. This research focuses on the development of an opfimized ASAG model using
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LSTM model and particle swarm optimization techniques to prevent model overfitting. The popular ASAG dafaset by
Mohler was utilized for the experiment. The datfaset contains fraining samples from Computer Science department of
the Federal University of Technology, Minna, Nigeria, with grades befween 0 and 6. In order fo effectively optimize the
LSTM model parameters, which are learning rate and number of neurons in the LSTM layers, four experiments were
performed, each with different particle population sizes (5, 10. 15 and 20). The results show that PS5 model produced the
lowest RMSE and MAPE of 0.77697 and 44.5356%, respectively. The PS15 model, however, produced the highest RMSE
and MAE of 0.80985 and 56.6192%, respectively. In order to validate the developed PSO-LSTM ASAG model, normal
LSTM model for ASAG was implemented and fested. The PSO-LSTM has an RMSE value of 0.77687 and MAPE of
44.5356%, as compared with LSTM, which has an RMSE value of 0.9423 and MAPE of 85.73%. The resulfs clearly show the
superiority of the developed hybrid model in predicting the scores of short answer grading. The model's performance
can be further improved by increasing the sample size and using other opfimization algorithms, such as genetic
algorithms or ant colony optimization. Further research can also investigate the effect of other variables, such as
question complexity and student writing style, on the model's performance.

Keywords: Deep Learning, Automated Short Answer Grading, LSTM Recurrent Neural Network, Long Short-Term Memory,
Particle Swarm Opfimization.

INTRODUCTION

As aresult of the COVID-19 pandemic, education system
shifted fo online mode. Aimost all educational institutions,
from schools to colleges, have adopted the online
education method at this time. Automated Short Answer
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Grading (ASAG) is the use of statistical model to award
grades to fexts in an educational setting, which is a highly
desired goal in education. Machine learning advances
are bringing this objective closer to reality (Ghavidel et al.,
2020). Assessment plays a significant role in measuring
the leaming ability of the student. Students can leamn
individually using online futoring systems while answers are
being evaluated in order to provide users with
personalized feedback on their responses. There are an
abundance of domain-related questions available on
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large tutoring platforms, but domain-related information
is frequently required to evaluate an answer. Furthermore,
the rising accuracy of short answer grading systems
makes their use in exams possible. Natural Language
Processing (NLP) and deep leaming are two arfificial
intelligence subfields widely used in e-leamning (Chanaa
& El-Faddouli, 2018; Camus & Filighera, 2020; Robinson
etal., 2016; Shehab et al., 2016). For automatic grading,
natural language answers are divided into essays or short
answers. Each student answer is graded on a nominal,
ordinal, or ratio scale in both short answers and essays
(Roy et al., 2018). On the nominal scale, grades are inthe
form of labels like correct, confradictory, andincorrect.

ASAG is an area of NLP where a different sort of dynamic
network is widely employed. These dynamic networks are
mostly called Recurrent Neural Networks (RNNs) and are
powerful tools used to model and classify data that is
sequential in nature. These types of networks have been
used in engineering and science for the identification
and modeling of complex systems (Jafari & Hagan,
2018). A sequence of words can be fransformed into a
sequence of vectors while preserving the semantic
information by using an embedding. RNNs, in
combination with embedding, have many applications
in NLP tasks like sentiment analysis, fopic labeling,
language detection, and machine translation (Conneau
etal., 2016).

Developing a generic system for short-answer grading is
difficult. Grading can be an expensive and time-
consuming operation when there are a high number of
student answers fo the question. Since textual scoring is @
component of practically every educational setting for
student assessment procedures, there are many ASAG
engines being used in large-scale formative and
summative assessment (Shermis, 2015). The basic
concept behind textual scoring is to assess a text against
a rubric that takes into account characteristics such as
grammar, text organization, and ftfopic-specific
information. An ASAG engine is designed to extract
measurable features that may be used to approximate
these attributes and, as a consequence, calculate alikely
score using statistical inference. Researchers have begun

training very deep language models, which are networks
meant to predict some element of the text (typically
words) based on the other parts, due to the volume of
unlabeled text data accessible. Contextual information is
eventually learned by these networks. In many NLP tasks,
state-of-the-art outcomes have been attained by
extending these language models to predict labels rather
than words or sentences. Many of these models are
made up of layers of transformers that use attention to
locate the most relevant attributes for completing a
specific task (Devlin et al., 2018; Mathew et al., 2021;
Yangetal., 2019; Zhavoronkov et al., 2020).

The long-term memory (LSTM) is widely used in various
areas of research, such as analyzing sentiment,
recognizing speech, and modeling language. The
performance of these models can be improved by the
use of non-permanent data sources, which are crucial in
predicting future frends. Unlike a feedforward neural
network, the LSTM model takes into account the changes
in the past time step to provide a forecast. It also
generates a memory of past scenarios through its
recurrent connection (Bouktif et al., 2020). The LSTM
model has showcased immense potential in the field of
natural text processing. Neural networks have the
capability to exploit the context of natural text to create a
single dense vector representation, also known as ifs
embedding. This embedding is then used for
mathematical models and computations. Neural
networks have proven to be more robust than fraditional
machine learning models, which make use of
handcrafted features (LeCun et al., 2015; Schmidhuber,
2015).

LSTM comprises cycles that feed network activations from
the past time step as network input to motivate forecasts
at the present time step. Although the recumrrent
connection enables the model to build a memory of past
scenarios that is implicitly encoded in its hidden state
variables, many techniques for ASAG have been
proposed, including deep leaming approaches such as
LSTM, Bidirectional Encoder Representations from
Transformers (BERT), and XLNET (Condor et al., 2021;
Ghavidel et al.,, 2020; Prabhudesai & Duong, 2019,
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Sabharwal & Agrawal, 2021). These models, despite
being successful, are susceptible to overfitting, leading to
poor performance and reducing the accuracy of the
grading system (Mayfield & Black, 2020). This paper
presents the ASAG system by optimizing the
hyperparameters of the LSTM model using PSO. The
performance of the proposed ASAG model was
compared with that of the existing LSTM model for ASAG.

1. Methods
1.1 LSTM-PSO Model Architecture

Figure 1 shows the proposed LSTM-PSO ASAG model
architectural diagram. It shows various steps that the
systern passed through to achieve the set-out aim of the
research work. The process involves data collection and
pre-processing, LSTM model design and training, model
festing, hyperparameter optimization, and performance
evaluation. For each optimization phase, the objective
function was evaluated to obtain the optimal parameters
of the model. The PSO-LSTM ASAG model was designed by

LSTM Model Architecture
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Figure 1. LSTM Model Architeciure

setting appropriate parameters for the model. The
parameters, such as the learning rate, number of epochs,
number of inputs, and number of layers, were selected for
the design.

Figure 2 shows the LSTM architecture for ASAG with the
layer connections and their functions. The input layer
takes in pre-processed data from the tokenization and
other preprocessing steps and converts it to numerical
values for processing. The embedding layer serves as the
mapping layer, where words and relationships are

* The model takes in a sequence of numerical representations of words (obtained
Input through tokenization and word embedding techniques) as input.

Layer

~

N\
+ The input is passed through an embedding layer. which maps the input words to
denise vectors in a lower-dimensional space. This allows the model to capture
the relationships between words and their meanings.

~

* The output of the embedding layer is passed through one or more LSTM layers.
The number of layers and the size of the hidden state in each layer can be
adjusted to suit the complexity of the task and the amount of data available.

J
* The final output of the LSTM layers is passed through a dense layer with a
sigmoid activation function, which maps the output to a probability between 0
Dense and 1.
Layer 1)
~
. *» The output of the dense layer is then passed through this layer to combine all
1.Filly input features
Connected
J
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prediction

* This is also a dense layer with linear activation function to enable score

Figure 2. LSTM-PSO ASAG Architectural Description
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mapped.

The PSO algorithm was used to optimize the
hyperparameters of the LSTM model. The objective or
fitness function used to evaluate the fitness of the particles
is the root mean squared error. Itis given as,

F(x) = Round
(1
Where, Ais the actual grade, P is the predicted grade, M is
the total number of answers.

The particle size of the PSO algorithm is one important
parameter that affects the performance of the algorithm
and is common in all metaheuristic optimization
algorithms which are population-based. The parameter
affects not only the quality of the result but also the
complexity of the solution. Investigating this parameter to
determine its effect and determine the most appropriate
value for fine-tuning the LSTM algorithm is essential to this
research. This is due to the fact that this is one of the first
studies to apply metaheuristic PSO to fine-tune LSTM
model parameters. Four different particle sizes were
investigated. They are [5, 10, 15, and 20]. These values
are proposed due to the complexity of the model and
fime of simulation. For each parameter, the entire PSO
process was repeated for Root Mean Squared Error (RMSE)
and Mean Absolute Percentage Error (MAPE).

1.2 Dataset

The dataset contains fotal of 81 questions from 10
assignments and 2 examinations. The questions in the
dataset consist of 24 to 31 student answers. An average of
28 answers is given per question, for a total of 2273
answers in the dataset. The answers are graded on ascale
of 0 to 5, representing a completely correct and perfect
answer. In this research work, the average grade was
used. Table 1 shows the sample of the: dataset collected.

For each class, the performance of the test dataset was
evaluated using the metrics Mean Absolute Percentage
Error (MAPE), and Root Mean Squared Eror (RMSE).
Mathematically, they are,

M
1
RMSE = | (:Z;(Ai - Pi)z) 2

Question 1 Where do C+ + program begin to execute?

Reference Answer At the main function.

Students Answers Grade
Answer (a) The Function Main (). 5.0
Answer (b) At the Root 2.5
Answer (C) In the Testing Phase 0.0
Question 2 How many constructors can be made for a Class?
Reference Answer At the Main Function.

Students Answers Grade
Answer (Q) Any Number you Want 5.0
Answer (b) Several 4.5
Answer (C) One 0.0

Table 1. Dataset Sample

M
1
MAPE = —
M; (3)

Where, A is the actual output of the i sample while P,isthe
i" output of the forecasting model, M is the number of
samples. A and P are the mean values of A and P
distributions.

Ai—P,
A

* 100%

2. Results and Discussion

Figure 3 shows the convergence curve obtained when
using Particle Swarm Optimization (PSO) algorithm to
optimize a Long Short-Term Memory (LSTM) model for
automated short answer grading, which represents the
behavior of the optimization process over time. Typically,
the convergence curve shows how the objective function
(or fitness function) value changes over iterations or
epochs of the PSO algorithm. The objective function
measures how well the LSTM model is performing at
grading short answers, and the PSO algorithm works by
iteratively updating the weights and biases of the model
in order fo minimize the objective function.

As the PSO algorithm progresses, the convergence curve
shows a decreasing trend in the objective function value
overtime. This indicates that the algorithm is finding better
solutions to the optimization problem.

Table 2 shows the summary of the optimal parameters
(learning rate, number of neurons) obtained with their
corresponding fitness values for Population Size (PS) of 5,
10, 15, and 20, respectively.

At PS of 5, learning rate of 0.0528 and 54 neurons were
obtained as optimal hyperparameters: 0.0422 and 56 for
PSof 10, 0.0492 and 61 for PS of 15, and 0.050 and 53 for
PS of 20. Overall, the experimental results obfained show

i-manager’s Journal on Data Science & Big Data Analytics, Vol. 1 ¢ No. 2 # July - December 2023 15




RESEARCH PAPERS

& Training Progress (23-Apr-2023 07:08:43) - u] X

Training Progress (23-Apr-2023 07:08:43) Eaoett

Vahdation RMSE 13778
Training finished: Max epochs completed
Training Time
10 Start time: 23-Apr-2023 07:08:43
Elapsed time 13 sec
Bl Training Cycle
i Epoch 10 of 10
g 6~ Heration: 10 of 10
& Iterations per epoch 1
a4 Maximum iterations: 10
Validation
2k Frequency 50 iterations
Epoch1 | Epoch2  Epoch3 Epoch4 [Epoch5 Epoch6 Epoch7 Epoch8  Epoch9  Epoct Qv nlcemation
DG 1 2 3 B 5 8 ?‘ ; ; 1‘9 Hardware resource: Single CPU
Iteration Leaming rate schedule: Constant
Leaming rate: 001
60
50 . Exportasimage| ([} Learn more
g 40 )
Saf RMSE
20 Training (smoothed)
108k TANN,
J[Epoch 1 F====Fposn2— JEpoch-3- — Epoch & — Epoch5_ FaaE n8 _ Fpochd Enast = g
0 1 2 3 4 5 [ 7 8 9 10
Iteration Loss
Figure 3. LSTM- PSO ASAG Training Process
Parameter PSat5 PSat10 PSat15 PS at 20 Test Actual PS5 PS 10 PS15 PS 20
Iterations lterations Iterations Iterations Sample ID Score Score Score Score Score
Leaming Rate 0.0528 0.0422 0.0492 0.050 1 4.00 492 5.16 4.89 4,90
Number of Neurons 54 56 61 53 2 2.00 519 5.44 4.69 5.16
Fitness Value 0.7296 0.7296 0.7931 0.7296 3 4,50 513 475 5.45 513
4 450 5.12 4.70 5.52 511
) . 5 450 4,89 4.66 4.50 5.04
Table 2. Effect of Particle Size on Key LSTM Parameter Values " 5.00 5.18 4.21 5.45 4.90
- : : 7 5.00 517 4,57 5.19 5.36
that with population sizes of 5, 10, and 20, the same : iy gl .o i o
optimal fitness was obtained. However, the convergence 9 5.00 515 5.11 5.40 5.35
" . ) : ; : 10 5.00 5.24 5.40 5.14 519
rate differs with population size. A population size of 10 i e & i o E & s
provides the best fiiness and convergencerrate. 12 5.00 5.13 4.55 5.29 5.31
) 13 5.00 5.15 4.71 5.26 5.21
2.1LSTM-PSOASAG Tesnng Performance Results 14 5.00 501 A.89 5.36 5.02
. . 15 5.00 5.21 4,28 5.44 5.08
Table 3 shows the testing prediction for the LSTM-PSO 16 450 g £a7 5 15 A0
ASAG model and the actual score for the test samples. 17 5.00 5.10 4.61 5.38 5.47
. 18 4.00 5.09 4,27 5.43 5.39
The results show that the model produces a maximum 19 5.00 4.94 4.49 479 473
score of 5.24 and a minimum score of 4.89 forthe PS of 5. 20 5.00 5.16 419 5.39 5.28
o 21 5.00 5.07 4.66 5.45 5.45
Similarly, the results show that the model produces a o9 5.00 514 AN 541 503
maximum score of 5.44 and a minimum score of 4.11 for 23 5.00 5.10 4.78 4.71 4.7
24 3.50 5.08 4.44 5.41 5.03
the PS of 10. The results also show that the model 05 350 1.95 214 4.60 4.52
produces a maximum score of 5.52 and a minimum 26 5.00 5.16 4.89 4.92 5.34
) 27 5.00 5.24 5.02 5.03 5.22
score of 4.06 for the PS size of 15. As for the PS of 20, the 28 5.00 5.33 4.75 514 4.81
model produces 5.47 as its maximum score and 29 5.00 5.08 4.63 541 505
o ) . 30 5.00 5.28 5.28 5.06 5.07
4.5958867 as the minimum score for this PS. From the 3] 5.00 4.94 4.65 4.06 4.93
results, it can be observed that all the models fail to
accurately predict scores that are low, especially the Table 3. Test Predictions for the LSTM-PSO ASAG Model
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second sample with a target score of 2. All the models
predicted about 5, except model 3 with PS 5, which
predicted 4.69. The results also show that the models
predicted higher scores better than lower scores. This
could be attributed to the number of samples with lower
scoresinthetarget samples.

Figure 4 shows the line curve of actual scores versus
predicted scores for the developed PSO-LSTM ASAG
Model. From the graph, it can be noficed that the model
that closely follows the actual score (black curve) at
higher scores is the red curve (at PS 5) followed by blue
curve (at PS 20). At lower actual scores, the green curve
follows the actual curve by predicting lower values for
some cases betterthan modelsforPS 5, 20and 15.

Table 4 shows the performance of the PSO-LSTM models
for different population sizes. The results show that PSS
model produced the lowest RMSE and MAPE of 0.77697
and 44.5356%., respectively. The PS15 model, however,
produced the highest RMSE and MAPE of 0.80985 and
56.6192%, respectively. Figure &5 shows the RMSE
comparison for PSO-LSTM models, and Figure 6 shows the
MAPE comparison for PSO-LSTM models.

Actual Score Vs Predicted Score

Scores

4 56 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Test Samples

Figure 4. Actual Vs Prediction Score for PSO-LSTM

Models RMSE MAPE (%)
PS5 0.77687 44,5356
PS10 0.781674 48.8759
PS15 0.80985 56.6192
Ps20 0.777301 48.1482

Table 4. Performance of the PSO-LSTM Models

RMSE
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Figure 5. RMSE Comparison for PSO-LSTM Models

MAPE
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Figure 6. MAPE Comparison for PSO-LSTM Models
2.2 Performance Validation

In order fo validate the developed PSO-LSTM ASAG
model, normal LSTM model for ASAG was implemented
and tested. Table & shows the testing prediction for the
LSTM ASAG model and the actual score for the fest
samples. The results show that the model produces a
maximum score of 4.2576 and a minimum score of
3.782165.

Figure 7 shows that the results generated are plotted and
compared with the actual scores. The results show that the
LSTM model predicted scores lower than the actual
scores, exceptin three cases with very low actual scores.
This result, when compared with the proposed PSO-LSTM
ASAG model, shows that the optimization of LSTM
hyperparameters allows forimproved score prediction.

To validate the performance of the proposed and normal
LSTM ASAG models, the PSO-LSTM has an RMSE value of
0.77687 and a MAPE of 44.5356%, as compared with the
LSTM, which has an RMSE value of 0.9423 and a MAPE of
85.73%. The results clearly show the superiority of the
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Actual Score LSTM Prediction Actual Score LSTM Prediction
4.00 4.04 5.00 3.97
2.00 4.22 4.00 3.90
4.50 3.98 5.00 3.87
4.50 4.00 5.00 3.96
4.50 3.82 5.00 3.92
5.00 3.96 5.00 3.86
5.00 4.06 5.00 4.08
5.00 4.16 3.50 3.94
5.00 4.08 3.50 3.81
5.00 4.21 5.00 4.18
5.00 4.04 5.00 4.24
5.00 3.94 5.00 4.24
5.00 3.90 5.00 3.24
5.00 3.98 5.00 4.26
5.00 3.99 5.00 3.78

Table 5. Sample Test Predictions for the LSTM ASAG Model

Actual Score vs LSTM Predicted Score

N\ [~

1 2 3 45 6 7 8 91011121314151617 1819 202122 232425 2627
Test Samples

28 29 30 31
— ACtUA| SCOTE  e— STM

Figure 7. Actual Vs Prediction Score for LSTM

developed hybrid model in predicting the scores of short
answer grading.

Conclusion

In conclusion, this paper presents a significant
contribution to the field of Automated Short Answer
Grading (ASAG) through the development of an
optimized model using Long Short-Term Memory (LSTM])
architecture enhanced with Particle Swarm Optimization
(PSO) technigues. The research aimed at addressing the
challenges of overfitting in ASAG models, which is crucial
for providing accurate and efficient grading, especiallyin
the evolving landscape of online education accelerated
bythe COVID-19 pandemic.

The experiments conducted with different particle
population sizes demonstrated that the PSO-LSTM model,
particularly with a population size of 5, outperformed
other variants by producing the lowest Root Mean
Squared Error (RMSE) and Mean Absolute Percentage Error

(MAPE). The comparison with a traditional LSTM model
underscored the superiority of the proposed hybrid
approach in terms of accuracy, as evident from the lower
RMSE and MAPE values.

The research developed ASAG model using LSTM and
PSO, which was validated using RMSE. The model's
performance was satisfactory, indicating that it could be
used for grading short answers automatically. The particle
swarm optimization algorithm was used to optimize the
model's performance, which significantly improved the
model's accuracy. From the findings, it can also be
concluded that the optimized PSO-LSTM model is good at
predicting high scores rather than lower scores, while the
LSTM model predicted performs poorly in predicting
higherscores.
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