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1.0   Introduction 

An image is commonly represented as an X-Y matrix, 

with the value of each pixel corresponding to its 

intensity. In general, the higher the value, the brighter 

the pixel, and the lower the value, the darker the pixel. 

In a color image, separate channels can be used for 

each color. Images are generally represented as such, 

but they are actually stored in a completely different 

manner. Assume we have a 12 mega pixel color image 

that is 4000 pixels wide and 3000 pixels deep, This 

means that we have to store 12 million values for each 
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color channel, bringing the total number of value to 36 

million (4000 x 3000 x 3). If these values are assumed 

to be stored as single byte integers, then a 36MB file 

is expected, but such large file can be reduced to a 

lower size by compressing the image. (Lalnunhlima et 

al., 2021). Several signals, images and videos are 

captured everyday around the world and they have to 

be stored, compressed, transferred and processed with 

all kinds of algorithms that are utilized for such 

purposes. Techniques related to images compression 

are of utmost importance in recent developments. The 
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traditional approach to processing images and signals 

is based on the Fourier transform/analysis on both 

continuous and discrete data (Krasmala et al., 2017; 

Vasanth et al., 2019; Rasheed et al., 2020). Currently, 

advances in variational image compression have 

supplemented these techniques as well (Ericsson et al., 

2017; Pandey and Singh-Umrao, 2019; Hilles and 

Shafii, 2019; Compton and Ernstberger, 2020; 

Przystupa et al., 2021; Zhou et al., 2022). As the 

volume of experimental and computational data 

increases rapidly, there is a growing need for creative 

algorithms to characterize the data such that the 

essential features can be easily extracted. Large 

dimension of images can be compressed through the 

use of SVD into a much smaller space losing very 

small data along the way (Bonaccorso and Incognito, 

2020). SVD is a vital technique used in Data science, 

Machine learning, Sciences, Statistics, Computer 

sciences and Engineering. It is actually useful and 

helps us to accomplish many physical things in the real 

world. For instance, SVD can be used to solve linear 

systems of equations Ax b   for non-square 

matrices, especially in linear regression models. It can 

also be applied to data science, in the case of a matrix 

that is potentially very large and using the SVD, one 

can compress it into a much smaller space losing very 

small data along the way (Brunton and Kutz, 2019). It 

can also be applied to solve tensor problems (Qin et 

al., 2022). 

 Many applications necessitate the transmission and 

storage of images. The transmission and storage costs 

are lower when the image is smaller. As a result, data 

compression is frequently required in order to reduce 

the amount of storage space required by an image 

(Kumar and Parmar 2020; Xu et al., 2021; Intawichai 

and Chaturantabut, 2022; Li and Wu, 2021; Asnaoui, 

2020). Recently, some authors have carried out studies 

on image compression in different perspective. 

Sandhu and Singh (2018) discussed how the SVD can 

be applied to digital image processing through Matlab. 

The SVD serves as basis for principal component 

analysis used in most statistical computations. Rani et 

al. (2021) proposed an hybrid SVD technique which 

was implemented on an X-ray and MRI images and 

they discovered an improved compression ratio of 

images. Olajide and Kolawole (2021) compared the 

performance of the SVD technique with that of QR 

decomposition and observed that SVD technique is 

quite effective in tackling least square and linear 

system problems than the QR technique. Again, 

Abdillah et al. (2021) conducted some analysis on 

image compressing through SVD, Haar-wavelet and 

coiflets techniques and observed that SVD technique 

gives higher compression ratio compared to the 

remaining techniques used. Afrose et al. (2015) 

employ an hybridization by combination of different 

image processing techniques to compress images and 

Munshi et al. (2021) utilized a supervised learning 

procedure known as the K-means clustering 

techniques to process and compress images. 

The main focus of this research paper is geared 

towards improvement on the SVD and examining the 

effect of singular values in application of the proposed 

SVD technique to image processing. Specifically in 

the aspect of compression of large and complex 

images. Also, this technique takes a matrix X  and 

expresses it as a product of three special matrices P , 

  and 
TQ that results into 

TP Q  , where P  and 

TQ  are unitary matrices. The experiments are 

performed using different singular values of term r, 

with expansion of the outer product of matrix image (

X ) for compression of digital images. The 

programming of Python was employed to calculate 

the improved SVD of the desired image matrix and 

equally obtain the compressed images using the 

desired low rank approximation. 

2.0 Theory Related to SVD  

In linear algebra, an eigenvalue decomposition of any 

matrix is usually represented as   

 

1

m x mM U U     (1) 

which can only be used for diagonizable square 

matrices, therefore it is only a kind of small class of 

matrices but the SVD  basically generalizes the idea of 

eigenvalue decomposition of complex matrices. Hence 

this generalized decomposition allows researchers to 

use a lot of matrices with different dimensions (Lay et 

al., 2016). The SVD of any given 
mxnX  matrix is 

decomposed or factored into smaller matrices given by 

the expression 

T

m xn m xm m xn n xnX P Q             (2) 

and illustrated as 
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Figure 1: Schematic diagram of SVD 

 

where m  is the number of rows and n  is the number of columns associated with the matrix X , matrix P is an m  

x  m   orthogonal matrix 

  1 2 1, , , , , ,r r mP p p p p p  (3) 

with column vectors , for 1,2,jp j   that forms unitary sets such as 
T T

m xmP P PP I   

Also matrix 
TQ is an n  x  n  orthogonal matrix 

 1 2 1,q , ,q ,q , ,qr r nQ q                                                      (4) 

with column vectors , for 1,2,jq j   that forms unitary sets such as 
T T

n xnQ Q QQ I   

It is to note that P and 
TQ are orthonormal matrices 

which means that they contain vectors which are 

linearly independent to each other. They also contains 

singular vectors both left and right of the original 

matrix X . The sigma matrix    is a diagonal 

matrix containing the singular values  
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for  , for 1,2,3, ,mj j  and 'j s are known as the singular values of the main matrix . It can be proved that  

 
1 2 3

1 2 3

0r

r r r m

and   

     

  

   
  

An interesting part of the SVD technique is finding a 

good approximation of a given matrix through one of 

low rank. The SVD can be utilized to obtain low rank 

approximation of any particular matrix. Based on this 

fact, it has so many applications in areas like image 

compression, voting tendencies, facial recognition, 
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and so on. Matrix decomposition is very useful for 

reducing or compressing big data by extracting the 

most important feature in the data set, that is to say 

the dominant or most important feature that are 

strongly correlated to the given matrix. This 

decomposition approach can be expressed as; 

1

1

1

1 2 2

1 1

1 2

1 2

1 1 1 2 2 2 3 3 3

T

T

m

T

n

T

T

m

T

n n

T T T T

r r r
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q
X p p p
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


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       
      

 

 
  
     
    

 

    

                                                      (5) 

(Li and Wu, 2021) where r  is the rank of A , the   

after this are zeros and thus SVD breaks down any 

given matrix  into sum of r   rank-1 matrices. Since 

's  are in decreasing size and 'p s  and 'q s  are 

unit vectors, then the rank-1 matrices can be written in 

decreasing size too. Now, suppose a low-rank 

approximation of a given matrix is needed, then one 

can just stop at the sum after few terms. The initial 

term informs us about the single direction that 

becomes most magnified by the matrix A , the second 

term tells the direction that becomes magnified second 

most and so on (Kumar et al., 2019). This is clearly 

illustrated as  

1 1 1

Tp q  +  
2 2 2

Tp q  + 
3 3 3

Tp q  
T

r r rp q   

Most important  less important  important and so on 

2.1 Computation of SVD for Matrices 

Before applying the SVD technique to digital image compression, first we shall demonstrate how SVD is computed 

using a 2 3x  small matrix X ; 

1 1 0

1 0 1
X

 
  
 

                                                 (6)  

and gradually follow a series of steps to factor matrix X  into the different components of 
TP Q  

Step One: Construct the matrix 
TX X  

We commenced the procedure by constructing 
TX X  for the desired matrix and then carry out some matrix 

multiplication as thus; 

2 1 11 1
1 1 0

1 1 01 0
1 0 1

1 0 10 1

TX X

  
    

     
    

   

                                     (7) 

This process results into a square matrix with 3 3x  dimension  

Step Two: Obtain the Eigenvalues of matrix 
TX X  
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 

     

3 2

2 1 1 1 0 0 2 1 1

det 1 1 0 0 1 0 1 1 0

1 0 1 0 0 1 1 0 1

4 3

0 , 1 , 3

TX X I



  



  

  

   
   

       
       

  

   

                    (8) 

Setting the determinant to equals zero, the characteristic equation is solved for   to obtain the values of   to be 

0  , 1  and 3  . Hence, reordering the eigenvalues in decreasing order, we have 1 3  , 2 1   and 

3 0  . 

Step Three: Form the matrix 
TQ  

After obtaining the eigenvalues in step two, we compute the eigenvectors that corresponds to the eigenvalues and then 

normalize them to form the 
TQ  matrix. Generally, eigenvectors are computed through the use of  

TX X I matrix 

and further simplification of it for every eigenvalues. For instance, taking the eigenvalue  1 3  , we get;  

 

 1

2 3 1 1 1 1 1

3 1 1 3 0 1 2 0

1 0 1 3 1 0 2

T TX X I X X I

    
   

         
       

                         (9) 

So, solving the equation   13 0TX X I z  to get the first eigenvector 1z , results into the column vector as; 

1

2

1

1

z

 
 

  
 
 

                                                       (10) 

Next the eigenvector is normalized through the process of dividing  1z by its magnitude to form a new vector as; 

1
1

1

2

6
2

1 1
1

6 6
1

1

6

z
q

z

 
 
  
  

     
   
 

 
 
 

                                                            (11) 

Similarly, we apply the above procedure to each eigenvalues to give a complete set of the eigenvectors that is required 

to form the 
TQ matrix 

1 2 3

2 1
0

6 3

1 1 1
[ , , ]

6 2 3

1 1 1

6 2 3

Q q q q

 
 
 
 

   
 
 
 
 

                                                       (12)
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Consequently, we can easily obtain the transpose of Q

, by interchanging the columns of (12) with their 

corresponding rows. As a result of that, we obtain the 

matrix 

2 1 1

6 6 6

1 1
0

2 2

1 1 1

3 3 3

TQ

 
 
 

 
  
 
 

 
 

                                          (13) 

Step Four: Form the    matrix  

To form the sigma    matrix, the singular values 

which are nonzero are listed ks where 
k ks   in a 

decreasing order along the main diagonal of sigma. 

Then additional columns and rows are added to make 

up the same number of dimension as the original 

dimension of matrix A  in sigma   . That is to say, 

it is only required to keep the non-zero eigenvalues and 

thus the sigma   matrix is formed as; 

0 0 0 03 3

0 1 00 1 0

   
        

   
               (14) 

Comparing equations (2) and (14), it is observed that 

sigma has same dimension as the original matrix. 

Step Five: Form the P  matrix 

The left singular vector P  can be obtained from the 

formula  XQ P  or the main formula in (2), Since 

X is given and we have obtained matrices Q  and 

, then P matrix can be obtained as thus 

1 1

TX P Q

XQ P

P XQ XQ

 

 

  


                                       (15) 

with respect to the singular values and matrix Q and 

taking the two singular values computed in this 

example to form the singular vectors of  P results 

into 

1 1 2 2

1 1

2

01 16

1 1 0 1 1 01 1 1 1 1 12 2
(16)

1 0 1 1 1 0 1 13 6 1 2

11 2 2

26

  p X q and p X q
s s

   
          

         
              
            

      
  
  

and combining the above column vectors results into matrix  P as 

1 2

1 1

2 2

1 1

2 2

P p p

 
 

    
   

 
 

                                                             (17) 

Step Six: Rewrite the X  matrix into  
TX P Q   

Finally, using equation (2), we rewrite matrix X in terms of ,P  and 
TQ to obtain 

2 1 1

1 1 6 6 6

0 0 1 1 01 132 2
0

1 1 1 0 1 0 12 20

1 1 12 2

3 3 3

X

 
 

   
     
             

  
 
 

                        (18) 
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3.0 Methodology of SVD for Compressing Images 

3.1 SVD Technique for Compressing Images 

Digital image compression is mainly focused on 

problems of data reduction needed in representing 

images. This compression can be done by getting rid 

of some basic data redundancies, such as inter-pixel 

redundancy, which is caused by the correlations 

between pixels, psych visual redundancy, which is 

caused by data that is ignored because of how people 

see it, and coding redundancy, which is caused by data 

that is ignored because of how it is coded. Considering 

the property of SVD that the rank of any matrix is 

equal to the number of singular values (nonzero), it 

follows that we can compress any given data (matrix) 

through the elimination of small singular values or that 

of higher low ranks (Cao, 2006). 

A digitized image can be thought of as an array of 

numbers in a large matrix, it could either be in a gray 

level scale for images that are black and white or in a 

color level for colored images. Suppose we have an 

image with a dimension of 3000 x 4000 pixels. This 

means that we need twelve million (4000 x 3000) 

numbers to represent this matrix for its storage. The 

image can be reduced by a ten- term SVD, which 

allows us to store ten thousand numbers (10 P’s), 10 

Sigma ( )’s and two thousand numbers (10 Q’s). The 

cost of storage reduces to over thirty thousand 

(30,000) by a reduction ratio of over 550:1. Therefore, 

this means that we can represent any given matrix with 

a fewer numbers using the idea of SVD (Singh and 

Lairenjam, 2020). 

Given an image that is transformed into a matrix X , 

which can be decomposed by SVD technique into 

some factored matrices like 
TX P Q  . Then by 

low rank approximation, we might approximate the 

matrix X  by some low rank product such as 

T

r r rX P Q                                                         (19) 

where rP is the first r  column of the P matrix, r is 

the first r x r   matrix of   and 
T

rQ  is the first r 

columns of the Q  matrix. Equivalently, the original 

matrix can be characterized by the expansion of the 

outer product (Yu et al., 2018) 

 

1 1 1 2 2 2 3 3 3

T T T T

r r rX p q p q p q p q         (20) 

 

 

 

3.2 Proposed SVD Algorithm 

Higher resolution sensors and big data in greater 

dimension measurement are increasing high-

dimensional data. SVD is a great tool for reducing data 

dimensions. Although it has been observed that 

computing the SVD on larger datasets can be 

expensive and time-consuming. The existing SVD is 

improved to develop a computationally efficient 

approach for extracting the dominating key features 

and rank of the SVD from a big dataset. This 

enhancement is accomplished by constructing a 

projection data matrix that randomly samples the 

column space and spans the original data matrix's 

subspace. The projection matrix was then subjected to 

techniques such as oversampling and power iterations 

in order to get the appropriate low rank approximation 

that may be utilized to compress images. The proposed 

improved SVD process is described in the flowchart 

below. 

 

Figure 2:  Improved SVD Flowchart 

In this paper, we shall apply the above flowchart to 

compress digital images, test for different r   and 

present the outcome in section four. 

 

3.3 Measures of Image Compression 

The SVD performance on image processing can be 

measured through the computations of quality of the 

processed image and compression ratio of the desired 
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image. The compressed factor is obtained through the 

use of the compression ratio, designated as 

*

( 1)
R

n m
C

r n m


 
                                             (13)  

While the mean square error [MSE], employed to 

determine the quality comparison of the uncompressed 

image (X)  and compressed image (X )r . The MSE 

is computed by using the equation (Swathi et al., 

2017).  

 

2

1 1

1
( , ) ( , )

X Xr

n m

y x

MSE f x y f x y
nm  

  
    (14) 

 

4.0 Experiment and Discussion of Results 

Suppose X   is a matrix of 3D image of a lion in 

Figure 1, then it is possible to approximate the image 

as the product of a few columns of r and a few term 

of rows. This would result in a compression because 

instead of storing all the n x m  rows and columns, 

one would just need to store r x r  columns and rows, 

thereby reducing the dimension storage and obtaining 

the desired result. Figure 3 displays the original photo 

of a Lion with dimension 4928 x 3264 pixels, utilized 

in performing the image compression experiment. 

 

Figure 3: A sample image utilized for testing 

image compression 

The sample image in Figure 3 is compressed via SVD, 

proposed improved SVD and K-means clustering 

techniques and produces the following compressed 

images in Figures 4, 7 and 8: 

     

 

 

 

Figure 4: Samples of the proposed SVD compressed images with different R 

 

Figure 4 illustrates some of the images utilized in the 

system tests for various R terms, where Figure (a) 

displays the outcomes of the image reconstruction 

utilizing five singular values, (b) presents the 

compressed image with twenty singular values, (c) 

demonstrates that of thirty-five singular values, and so 

forth. In such examples, the observation is as follows: 

It was discovered that when the rank is less than 35, 
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the pictures turn out to be blurred and as the number 

of singular values rises, we have a more thorough 

understanding of the original image. At rank 75, the 

image quality noticeably improves, and at rank 100 of 

dimension 342 x 231 pixels, the image quality is 

essentially the same as the reference image, that is, it 

appears almost identical to the original. A summary of 

the findings is shown in Table 1, with the storage space 

measurement for the images that were tested. 

 

Table 1: Results of Image Compression for the 

Proposed SVD 

Singular 

values (r) 

Storag

e space  

(kb) 

Compressio

n Ratio (%) 

Mean 

Squar

e 

Error 

5 100 0.25468 734.93 

20 126 1.01871 280.97 

35 138 1.78275 181.64 

50 145 2.54679 134.37 

75 151 3.82078 92.30 

100 154 5.09357 68.18 

3000(original

) 

2.26M

B 

1  

The compression result displayed in Table 1, reveals 

that a higher compression ratio can be achieved by 

using a smaller singular value (r). For improved image 

quality, a smaller MSE measurement is used, and the 

recreated images are more comparable to the originals, 

despite requiring a larger amount of storage 

space.  Also, Figures 3 and 4 show how the singular 

values from the computed proposed enhanced SVD of 

the image matrix have a big effect on the compression 

output. 

 

 

 

 

 

 

Figure 5 reveals that the first few modes contain a 

significant amount of the total energy in the system, 

that captures a large fraction of the compression 

energy, The lower singular values are much more 

effective in compressing the reference image than the 

remaining ones, and what this means is that one can 

keep only the first few singular values and neglect all 

of the remaining single values while truncating. Since 

some information is neglected during image decoding, 

the decoded image will not be identical to the original 

one. However, the compressed image should look 

nearly as good as the sample (original) image when a 

reasonable compression rate is used. Similarly, the 

cumulative plot depicted in Figure 6 reveals that 

retaining only the first few singular values captures 

approximately 30% of the energy, which then 

increases rapidly to 70% or 80% with the first 70 or 

100 modes (r). So, even though the sample image is of 

a high resolution, it is not necessary to retain all the 

information. It can be compressed using improved 

SVD. 

 

 

 

 

 

Figure 5: The effect of Singular values for the Image 

Compression 

Figure 6: Cumulative Sum of the Singular Values 
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Figure 7: Samples of the SVD compressed images with different R 

 

 

 

 

 

Figure 8: Samples of K-means Clustering compressed images 

 

Table 2: Comparison Results for Compressed Images 

 

 

 

 

 

 

 

 

 

 

Singular/K 

values 

Storage 

space (kb) 

Compression Ratio 

(%) 

Mean Square 

Error 

CPU Time 

                  

SVD Technique 

  

5 424 0.25468 741.20 3min 11sec 

20 513 1.01871 297.23 4min 5sec 

50 602 2.54679 139.12 4min 27sec 

 

K-Means Clustering 

Technique 

 

5 334 0.7640 451.19 3min 2sec 

20 484 1.5468 139.76 21min 33sec 

50 528 2.8564 66.57 1h 7min 10sec 

  

Proposed Technique 

 

5 100 0.1654 734.93 6.12sec 

20 126 1.01871 280.97 7.82sec 

50 145 2.54679 734.93 13.2sec 

3000 

(original) 

2.26MB 1   
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Table 2 shows the comparison between the proposed 

SVD and some existing techniques (SVD and K-

means clustering). In terms of the compression ratio, it 

can be observed that at k =5, 20, and 50, the ratios of 

SVD and K-means are higher than that of the proposed 

technique. For the mean square error, the proposed 

technique has a lower error compared to SVD. 

However, the K-mean has the lowest error among the 

techniques. With the computational time, the proposed 

technique compresses faster than both K-means and 

SVD techniques and has the lowest size of the 

compressed images. 

 

5.0 Conclusion 

This research has been able to achieve better 

compression of images in terms of size, computational 

time and less error as shown in Table 2. We presents 

an analysis of digital image compression through the 

use of a SVD technique with the aid of Python 

programming. By utilizing the improved SVD 

technique on such images, a greater rate with respect 

to the compression was obtained while maintaining the 

quality of the reference image. During the process of 

compression, some of the initial image's information is 

basically neglected by the role of the singular values 

which was introduced in this study. The image quality 

degrades in direct proportion to the amount of 

information that is neglected. When it comes to file 

size, there is a trade-off between file size and the image 

quality. However, compressing images through the use 

of SVD is a profitable trade because it reduces the size 

of the original file while maintaining the quality of the 

image as it is perceived. The primary reason for this is 

that the components that are discarded are intended to 

be the components that are less obvious. Results from 

the experiment tell us that compression design 

becomes more easily visible as the compression rate 

increases and it is hard to distinguish an uncompressed 

image compared to a compressed one. Therefore, 

some of the compressed images are not distinguishable 

from the reference (original) image because they 

utilize a reduced percentage of space storage. The role 

of the singular vectors (unitary matrices) in 

compressing images as well as the relationship 

between the SVD and correlation in the image matrix 

will be explored in future work.  
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