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ABSTRACT 

Techniques and analyses of multigrid method for solving elliptic partial differential equations (PDEs) in two dimensions are 
presented. The focal point of this paper is the applicability of the parametric reaccelerated overrelaxation (PROR) iterative 
method as a smoother in multigrid solution of elliptic PDEs. The two-dimensional Poisson equation on a unit square domain 
with Dirichlet boundary conditions is adopted as the model PDE. We present some practical formulae and techniques for 
building the various multigrid components using Kronecker tensor product of matrices. In addition, we carryout smoothing 
analysis of the PROR method using Local Fourier Analysis (LFA) and show how optimal relaxation parameters and 
smoothing factors can be obtained from analytic formulae derived to ensure better convergence. This analysis combines full 
standard coarsening strategy (doubling) and second order finite difference scheme. The result of PROR smoothing factors in 
comparison with those of other widely used smoothers is also presented. Results obtained from numerical experiment are 
displayed and compared with theoretical results. 

Keywords: Multigrid, elliptic PDEs, Poisson equation, coarsening strategy, point-smoothing, smoothing 
factor, local Fourier analysis. 
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I Introduction 

Many real world applications are modeled as partial differential equations (PDEs) on rectangular domains. For instance, the 
set of Maxwell’s electromagnetic equations combined with Ohm’s law is used as the basic model for describing the 
propagation of electromagnetic waves in earth’s crust, the Schrodinger equation for scattering applications in quantum 
mechanics can be transformed in some cases to the Helmholtz equation, a prototype of elliptic PDEs [1]. According to [2], 
multi-dimensional PDEs have diverse applications in many applied science fields such as financial engineering [3], molecular 
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biology [4], and quantum dynamics [5, 6]. In addition, the Poisson equation in particular, occurs frequently in 
electromagnetism, fluid dynamics among others. 

It is common and often easier to express PDEs as systems of linear equations, a procedure known as discretization. Although, 
it may be possible to use direct methods such as matrix inversion, Gaussian elimination, and the likes, to exactly solve these 
systems of equations, they tend to take far too long to be practicable for very large and sparse linear systems. In general, it is 
a difficult if not impossible task to solve many PDEs exactly via direct methods. Except in simple cases, numerical method is 
best, if not the only, way of obtaining a solution satisfying certain boundary conditions [7]. 

The ubiquity of elliptic PDEs in the field of applied sciences, coupled with the difficulty in the use of direct methods for 
solving large systems obtained from discretizing PDEs, has led to the development of many suitable indirect (iterative) 
techniques for a wide range of specific applications and problems. [8] suggested that iterative methods are preferred and such 
techniques remain the leading approach for solving very large linear systems. 

Classical iterative methods such as the Jacobi [9], Gauss Seidel [10], Successive overrelaxation (SOR) [11], accelerated 
overrelaxation (AOR) [12] methods have all been deployed in the solution of PDEs. Other recent variants of SOR and AOR 
include preconditioned SOR [13], reaccelerated overrelaxation (ROR) [14], and parametric reaccelerated overrelaxation 
(PROR) [15] methods. The classical iterative methods are however seldom used as stand-alone methods for solving very 
large linear systems today due to their slow convergence properties. However, when used as smoothers in a multigrid 
method, the convergence rate of the whole solution process is sped up rapidly. 

Multigrid methods are a class of iterative techniques called multi-resolution methods which are very efficient for problems 
exhibiting multiple scales of behavior. Multigrid methods typically solve the system of equations on a “coarse” grid, and 
“refine” the solution to the desired accuracy instead of trying to solve the discrete system at full resolution as obtained in 
classical iterative methods [16]. Many multigrid methods and applications where multigrid have been applied abound in 
literature; these include multigrid methods for solution of two dimensional (2-D ) Poisson problem [17, 18], multigrid 
smoothing factors for red-black Gauss–Seidel relaxation applied to a class of elliptic operators [19], red-black SOR 
smoothing in multigrid [20], multigrid solution of three dimensional (3-D) Poisson equation [21], a book on various multigrid 
treatments and applications [22], multigrid method for higher dimensional PDEs[2], multigrid method based on -shaped 

coarsening for PDEs on stretched grids [23], multigrid solution of Poisson equation on irregular voxelized domains with 
mixed boundary conditions [24], high order compact difference scheme (HOC) and a multigrid solution of 2-D elliptic 
problems with variable coefficients [25], multigrid method in distributed control problems modeled by Stokes equations [26], 
fourth-order compact difference scheme in multigrid solution of 2-D elliptic boundary value problems [27], multigrid method 
with eighth-order compact finite difference scheme for Helmholtz equation [28], multigrid method for solving optimal 
control problems governed by stochastic PDEs [29], application of tweed and wireframe relaxation methods as smoothers in 
multigrid solution of elliptic PDEs on stretched, structured grids [30], multigrid strategies for the solution of elliptic PDEs 
discretized by the Hybrid High-Order method (HHO) [31], and many others. 

Although numerous multigrid methods have been developed and/or applied to solving a wide range of problems, most of the 
existing multigrid methods for solving elliptic partial differential equations often employed Jacobi, Gauss-Seidel, SOR 
iterative methods and some of their variants as the relaxation schemes (smoothers). The AOR method and its variants have 
hardly been explored as smoothers in multigrid methods. Thus, the focus of this paper is the use of a recent version of the 
AOR iterative method as a smoother in multigrid solution of the 2-D Poisson equation chosen as the model problem for 
elliptic PDEs. 
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In section 2, we present the discretization of the continuous problem (model PDE) and show how this can be done with 
Kronecker tensor products. Section 3 gives smoothing and coarsening strategies and grid transfer strategies. Next, we provide 
the LFA for the PROR method and present some results of smoothing factors and optimal relaxation parameters in section 4. 
In section 5, we present and discuss the results of numerical experiments and reveal the multigrid convergence result that we 
get. Lastly, a summary of the work is presented in the form of conclusion in the last section. 

 

II  The Continuous Problem and Its Discretization 

2.1 The Model PDE 

Consider the standard 2-D Poisson PDE: 

 

with Dirichlet boundary conditions: 

 

According to [23], the 2-D Poisson equation in (1) provides a consistent model upon which new numerical solvers can be 
tested without digging too deeply into the complications of many application problems. Therefore, it serves well as a model 
problem in the study of convergence behaviour of elliptic partial differential equation, hence its adoption as the model PDE 
in the design of the multigrid method in this thesis. 

In order to simulate Dirichlet boundary conditions (2), let  be a test function (whose boundary values are defined as ) 

given as follows: 

 

To simulate the right hand side, the negative Laplacian in (1) is computed from the prescribed test function to give  as 

follows:  

Differentiating (3) partially with respect to , we obtain: 

 

Also, the second derivative of (3) with respect to with further simplification yields:  

 

Similarly,  is obtained by differentiating (3) twice with respect   leading to: 
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Then, the source function,  becomes: 

 

 to complete the prescription of the model problem,[see 23]. 

The continuous problem prescribed above is represented in operator notation as: 

 

where is the Laplacian. 

Thus, we obtain the discrete equivalent of (8) as: 

 

The discretization of the Laplacian,  is taken to be ) accurate, leading to a 5-point stencil in two dimensions. The 

number of cells in the discretization grid along the th dimension (given by ) may not necessarily be equal to the number of 

cells along th dimension. Thus, the grid size along th dimension is given by: 

 

and the one-dimensional (1-D) variant of this stencil is: 

 

The discrete equation given by (9) can be represented in matrix notation as: 

 

2.2 The Discretization Matrix,  

The coefficient matrix, is an  matrix with unknowns where  is the order of  given by: 

 

Let the discretization grid be G, that is: 

 

Then, applying the dimensional tensor product formula proposed in [2], matrix is constructed using the tensor product 

formula:  
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where  is the Kronecker tensor product of matrices and  is the cumulative Kronecker tensor product. For instance, 

Also, in (15),  is the identity matrix of order  and  is the one dimensional discrete Laplacian operator 

in the th dimension. is obtained using the 1-D stencil in (11).The stencil is applied to each point, including the boundaries, 

to obtain . The left and right boundary vectors are however sorted and integrated into the right hand side,  of the linear 

system (12) as earlier stated (eliminated boundary). The following matrix is obtained for  in (15) for to illustrate 

how matrix is is constructed: 

 

Similarly, the 1-D Laplacian operator is used to construct the Laplacian for the th dimension and replaced back in to (15) to 

obtain the full 2-D discretization matrix, . 

2.3 Right Hand Side,  

The column vector, is built in a similar manner using Kronecker tensor products following [2]. It consists of the source 

function and the boundary function . 

Importantly, we define a consistent listing of grid points. Let be an index matrix which denotes the set of indices in the 

computational grid, where each row (a 2-tuple) represents the index of a grid point and counts in descending order, from right 
to left, for the ascending order of the dimensions. Then, we have grid coordinates as a pair . That is: 

 

where each  is a column vector of length . 

Also, we consider the following definitions required for building the index set for the interior and the boundary points: 

 

Now, the column of  are formed using the Kronecker tensor product: 

 

to complete the construction of the index set. The vector of the source function for each row of  denoted by , can then be 

computed. This is represented as: 

 

In addition, to complete the specification of , contribution of boundaries to  needs to be computed. We recall that two 

column vectors; the left and the right boundary-coefficient vectors were isolated from the 1-D Laplacian operators in each 
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dimension, Now, considering the th dimension, let the left and the right boundary-coefficient vectors be  and , 

respectively, then the th 2-D left and right boundary-coefficient vectors respectively denoted by  and  are given by the 

Kronecker tensor formulae: 

 

Also, let the contribution from the left boundary and the right boundary in be represented as  and , respectively, 

where is the cumulative sum of the two left boundaries while  is the sum of the two right boundaries. Worthy of note is 

that if any  in (3.17) is replaced by a vector of left boundary value, a left boundary index set is obtained, and if it is replaced 

by a vector of right boundary value, we get a right boundary index set.  That is, if: 

 

then: 

 

where is the  component-by-component multiplication of the operand column vectors. Thus we obtain the right side of 

discrete problem as: 

 

to obtain the complete discretization of the model PDE 

III Design of the Method 

3.1 Multigrid Based on Point Relaxation 

Multigrid methods consists of essential components such as grid coarsening and smoothing strategies, grid transfer schemes, 
the smoothing method and the coarse grid correction. The famous algorithm of multigrid is presented in [22] and has been 
used by many other authors in literature. 

The technique of relaxation (smoothing) in multigrid is mainly classified into point relaxation and block relaxation methods. 
Although block relaxation methods (line and plane smoothing) are mostly used for anisotropic PDEs, they are quite 
expensive in terms of CPU-time because each relaxation step consists of solving a small linear system exactly (or to a 
satisfactory level of accuracy). Fortunately, point smoothing works well in most cases, particularly for standard coarsening. 
More so, in most situations, block smoothing can be substituted with point-relaxation methods with some modifications. 
Thus point relaxation approach is adopted as the smoothing strategy in the multigrid method discussed in this research. 

3.2 The Relaxation Scheme 
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The core of the multigrid method proposed in this research is the relaxation scheme deployed as a smoother. Other 
components are essentially some simple and basic choices existing in literature. As will be shown in section 4, the smoothing 
analysis of the PROR method in [15], which we now denote by PROR, proves its admirable smoothing effect for 

problems of the Poisson type and is thus chosen as the smoother for our proposed multigrid method. Also, although we do 
not provide the smoothing analysis of the PROR method in the red-black setting (abbreviated as RBPROR), it will 

be considered in the implementation. The RBPROR method consists of two partial steps, each step being an 

PROR sweep. The first step applies to and updates only the red (odd) points while the second one applies to and 

updates only the black (even) points in the grid. From an implementation angle, this red-black smoothing procedure depends 
upon a partitioning process by which the grid  can be separated into the red part ( ) and the black part ( ). The grid-point 

listing employed in the implementation scheme is such that the points are arranged in a column vector and listed out in 
lexicographic order. We also make use of optimal relaxation parameters ( and  in the relaxation (smoothing) 

process. The error-smoothing effect of the relaxation method can be enhanced by the use of optimal relaxation and 
acceleration parameters [see, 20]. 

The PROR method is given as follows: 

 

with iteration matrix: 

 

where is a fixed parameter and are acceleration and relaxation parameters respectively. 

3.3 Coarsening Strategy 

For the coarse grid , standard full coarsening strategy is applied to the 2-D model problem. It involves doubling the grid 

size of the fine grid,  in both direction, i.e.  In two dimensions and standard coarsening, the relation between the 

coarse and fine grid is given by: 

 

3.4 Discretization of the Coarse Grid 

A very vital component in the coarse-grid correction process is the choice of the coarse-grid operator, .According to [1], 

re-discretizing the differential operator (i.e. the Laplacian, in the case of the model PDE in this work) on the coarse grid is 
sufficient as the approximation to the discrete operator on the coarse grid in many situations. This means that the direct 
equivalent of the fine grid operator on the coarse grid, is used. As soon as the next coarser grid is decided, the Laplacian is 

discretized using the same discrete stencils as presented in section 2. This is traditionally known as the discretization coarse 
grid operator (DCG). Thus, in this work, the DCG operator, which is the coarse-grid analog of the discrete operator on the 
fine grid is employed. Another coarse grid operator in vogue is the Galerkin coarse grid operator (GCG). However, using the 
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GCG is disadvantageous in that it is usually denser than the DCG operator except special transfer operators are employed to 
generate the coarse-grid operators which is not the case in this paper. 
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3.5 Grid Transfer Operators 

The full weighting (FW) restriction and the bilinear interpolation operators in two dimensions are used for the inter-grid 
transfers (restriction and prolongation respectively) of the grid functions. The 2-D FW restriction operator is given by: 

 

while the bilinear prolongation is given by the 9-point stencil: 

 

 

The generation of the FW restriction and bilinear prolongation operator matrices via Kronecker tensors is presented next. We 
note that the 2-D FW restriction (28) is the Kronecker tensor product of the 1-D FW operators in  and  directions given 

below: 

 

We construct the 2-D FW restriction operator matrix,  via the Kronecker tensor products formulae: 

 

The quantities in (31) are given as follows: 

 is the identity matrix of order . 

 is the 1-D FW restriction matrix of order  

 is the coarsening request;  is the count of  transfers along the th dimension where  is any dummy 

subscript. 

Next, given the prescription of the 2-D FW restriction operator matrix, the prolongation (bi-linear interpolation) operator 
matrix can then be obtained with the following relation: 

 

to complete the specification of the grid transfer operators. 
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Worthy of note is that the restriction operator in (31) is a generalized one which gives us the leverage to experiment with 
different types of coarsening strategies depending on the grid. Also, it offers the required matrix for any number of 
coarsening along any number of dimensions for an abstract d-dimensional problem [see 2]. 
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IV Local Fourier Analysis of the PROR Method 

Local Fourier Analysis (LFA) is a tool for investigating the convergence behavior of multigrid methods introduced by Brandt 
[32] with contributions from other notable authors such as Stuben [33], [34], [35], [36], and [22]. Much details, including the 
validity of LFA alongside related theorems and proofs, are presented in [35]. In what follows in this section, we focus on the 
design of a Fourier representation for PROR Method applied to the discrete operator of the model PDE ( Laplacian) 

given in section 2.1, the definition of the smoothing factor and the estimation of relaxation and acceleration parameters. It is 
assumed that the reader is familiar with the basics of the LFA tool as can be found in [22, 33, 34, 35, 36]. Also, we adopt the 
definitions and notations as obtainable in [19, 20, 22, 36] to carry out our analysis in this section. 

Consider the Laplacian operator given in (1) as follows: 

 

The continuous partial derivatives in (32) are discretized by second-order finite difference in (11), to give their discrete 
equivalents, denoted by  Although we stated in section 2.1 that the grid spacing may not necessarily be equal, for the 

purpose of this analysis, we assume equal grid spacing in both directions, i.e.  LFA considers only the ‘local 

nature’ of the discrete operator, i.e. any general discrete operator, nonlinear, with non-constant coefficients, can be linearized 
locally and can be replaced locally (by freezing the coefficients) by an operator with constant coefficients. Thus for an 
effective analysis through LFA tool, we must have constant coefficients, and also neglect the effects of the boundaries. More 
specifically, all arising operators are extended to an infinite grid given by: 

 

where is the grid size. 

The fundamental quantities in LFA are the discrete eigen-functions (also known as Fourier components or Fourier modes) of 
the resulting infinite grid operators. These grid functions are given by: 

       for   

where  varies continuously in . We note that: 

  for    iff   mod  

That is, (3.5) holds if the difference of multiples of 2π is between all the components of the 2-tuple, . Thus it is 

sufficient to consider these grid functions only for which can be written as , where  refers to 

both components  and . For , these functions, are linearly independent on . Also,  are 

sometimes written as for clarity purpose since they are defined on and in that way, depend on  

4.1 High and Low Fourier Frequencies 

In LFA, two distinct kinds of Fourier components; the high frequency components and the low frequency components are 
distinguishable with respect to the grids and  In a 2-grid setting, the classification of the frequencies  as 

either high or low is dependent upon the coarsening strategy that is employed. However, for the purpose of this paper, it is 
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sufficient to discuss only the case of standard (full) coarsening. Furthermore, the classification into this two categories of 
frequency components is based on the fundamental observation that only those frequency components  on with 

 are distinguishable on  For each , three other frequency components  on with 

 coincide on with  and not visible on . Evidently, the following identity holds: 

for  iff mod  

leading to the definition below 

DEFINITION 1 (high and low frequencies for full coarsening): An element  ( ) of a Fourier frequency  is termed 

low if  for . Otherwise it is called high. We say we have a low Fourier frequency , if all of its 

elements are low. Otherwise it is called a high frequency. Therefore,  is called a low frequency mode if: 

 

and is called a high frequency mode  

 

The distinction described above clearly depends on the coarsening strategy, as, for different coarsening strategies, different 
sets of Fourier frequencies are visible on the coarse grid. 

 

Figure. 1:   high and low frequencies in 2-D  

4.2 Fourier Representation of PROR  

Lemmas 

Lemma  (see [22]) 
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For , all grid functions  are (formal) eigenfunctions of any discrete operator which can be described by 

a difference stencil . Then, the following relation holds: 

 

where is the corresponding eigenvalue (formal) or the symbol of given by: 

 

Lemma  (see [22]) 

Suppose a relaxation method can be written locally as: 

 

 
   

where corresponds to the old approximation of   and  is the new approximation, then the  

relaxation is characterized by the splitting: 

 

Under the assumption in (41) and (42), all grid functions, with are eigenfunctions of  such that: 

 

where  is the amplification factor given by: 

 

Now, the PROR method (25) can be rewritten in a notation consistent with [22]as follows: 

 

where  denotes the diagonal part,  and  are the lower and upper parts of the iteration matrix (26) respectively. Equation 

(45) further simplifies to: 
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Also, the discrete equivalent of the model problem is of the form: 

 

where represent the discrete Laplacian operator given by: 

 

and the stencil representation of (49) is as follows: 

 

If  the PROR relaxation method conforms with (41) and (42), then we obtain: 

 

and in view of (50), in stencil form is given as: 

  

Also, from (47): 

 

 

Again, using (50), we obtain the stencil form of  as: 

 

Applying Lemma , we have: 



  
IJSAR Journal of Mathematics and Applied Statistics (IJSAR-JMAS)  

ISSN: 2408-7637 
Volume 9, Issues 1, 2, 3&4 (December 2022), 172-190 

 http://www.mdcjournals.org/ijsar-jmas...html 

 
 

186 | P a g e  
IJSAR Journal of Mathematics and applied Statistics 

ISSN: 2408-7637 
http://www.mdcjournals.org/ijsar-jaec...html 

 

  

where: 

 

Thus, we obtain: 

 

 Also, similar manipulation in favour of  leads to: 

 

Then by Lemma : 

 

 

4.3 Smoothing Factor 

The smoothing factor of an iterative method’s operator (iteration matrix) is the worst factor by which the high frequency 
errors are reduced per iteration step. In order to measure the smoothing properties of PROR point relaxation method, we 
adopt the definition of the smoothing factor from [22] as obtained in Lemma . Thus, the smoothing factor,  associated with 

the PROR iterative method is given by: 

 sup  

 

The smoothing factor can easily be calculated by a computer program which allows for a numerical determination of optimal 
relaxation and acceleration parameters. Thus, the optimal values of the parameters and for a fixed value of as well as 

the smoothing factor,  in (63)  are obtained over the high frequency Fourier domain, for different values of  with the aid 
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of a programme written in MATLAB software and presented alongside those of some other well-known smoothers in the 
table that follows. We note however that explicit analytical formulae that can be used for determining the optimal relaxation 
parameters in the case of full coarsening applied to the second-order discretization may be possible [see 20, 37]. 

 
Table 1: Smoothing Factors of Scheme on Various Equidistant Grids. 

 

    

 4.00  0.4487 

 4.00  0.4489 

 4.00  0.4489 

In Table 1, the smoothing factors of  smoother obtained using optimal relaxation and acceleration parameters, 

standard full coarsening (doubling) and second order discretization on various equidistant grids are displayed. The table 
revealed the effect of using  and optimal parameters in  relaxation scheme to enhance smoothness.  

Table 2: Comparison of Smoothing Factors of Some Existing Smoothers 

 SOR  Gauss-Seidel 

          

 4.00  0.4487 1.0 0.4998 0.80 0.6000 - 0.4998 

 4.00  0.4489 1.0 0.5000 0.80 0.6000 - 0.5000 

 4.00  0.4489 1.0 0.5000 0.80 0.6000 - 0.5000 

Table 2 shows a comparison of the smoothing factors obtained for  relaxation scheme with those of SOR, 

Jacobi and Gauss-Seidel relaxation schemes. The table showed that the  demonstrates better smoothing ability 

than the other iterative methods. 

V. Results and Discussion 

We now show the multigrid convergence of the smoother in this work through numerical example. The model PDE (1) is 
discretized on various equidistant grids using the second order finite difference scheme, and the spectral radius,  of the 

multigrid iteration operator,  (also the asymptotic convergence factor) is obtained. The only quantity accessible to estimate 

this factor in a multigrid experiment is the residual (or defect) after the th multigrid cycle denoted by . Thus, the empirical 

estimate of the multigrid convergence factor  denoted by  and called the contraction number is given as follows: 

 

where  is the number of iterations or multigrid cycles required for the discrete problem to converge to the numerical 

solution. 
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In our experiments, we make two different smoothing choices; one pre- and one post-smoothing, and then two pre- and two 
post-smoothing steps of the relaxation schemes. Multigrid V-cycle is also deployed as the multigrid control cycle, so that the 
two different smoothing choices are denoted by V(1, 1) and V(2, 2) respectively. For a correspondence with ,the 

smoothing factor is presented as a square and compared with the smoothing factor obtained from the LFA analysis presented 
in Table 1. The contraction number,  is presented against the number of multigrid cycles (iterations) that the experiments 

took to converge to a tolerance value of  representing the termination criterion for all of the experiments, That is: 

 

This termination criterion is similar to the one based on relative residual reduction since our starting solution (initial guess) in 
these experiments is an all-zero vector every time. We approximate the test function in (3) for  via the 

numerical solution of the model problem (1). As prescribed in (2), the values of this test function at the boundary are taken as 
Dirichlet boundary conditions, and its Laplacian obtained analytically in (7) gives the source function for our numerical 
experiments. The results are displayed in the succeeding tables. 

Table 3: Results of Numerical Experiment for V(1, 1) and V(2, 2) on Equidistant Grids 

 
  

  
 No of Iter  No of Iter 

 0.2013 0.1219 8 0.0433 6 

 0.2015 0.1185 8 0.0416 6 

 0.2015 0.1153 8 0.0293 5 

Table 3 presents results of solving model problem using methods on various equidistant grids. A close look 
at the convergence factors clearly shows that the PROR gave appreciable convergence results. In addition, it is observed that 
the reduction in the multigrid convergence factors as well as in the number of multigrid cycles obtained for V(2, 2) compared 
to V(1 1) was quite significant, indicating that V(2,2) is a better choice for this problem. 

Table 4: Comparison of Results Between and  

  

 
 

 

  

 No of Iter   No of Iter  No of Iter  No of Iter 

 0.1219 8 0.0433 6 0.0539 6 0.0162 5 

 0.1185 8 0.0416 6 0.0517 6 0.0156 5 

 0.1153 8 0.0293 5 0.047 6 0.0087 4 

In Table 4, we display experimental results of using method in comparison with those of PROR in red-black 

ordering ( ). It is observed that using the PROR method in red-black setting gave considerably better 

convergence results than the lexicographic  method. 



  
IJSAR Journal of Mathematics and Applied Statistics (IJSAR-JMAS)  

ISSN: 2408-7637 
Volume 9, Issues 1, 2, 3&4 (December 2022), 172-190 

 http://www.mdcjournals.org/ijsar-jmas...html 

 
 

189 | P a g e  
IJSAR Journal of Mathematics and applied Statistics 

ISSN: 2408-7637 
http://www.mdcjournals.org/ijsar-jaec...html 

VI Conclusion 

In this paper, we established how acceptable multigrid convergence can be achieved with the use of a newly introduced 
smoother when used with optimum parameter values in the smoothing process. Through numerical experiments supported by 
theoretical analysis by means of LFA, we have demonstrated that the PROR method is a viable choice as the relaxation 
method in multigrid solution of elliptic PDEs discretized on rectangular grids as results revealed the appreciable multigrid 
convergence that can be achieved with the PROR smoother presented in this work. 
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