DEPARTMENT OF CHEMISTRY FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA SECOND SEMESTER EXAMINATION 2011/2012 SESSION

COURSE CODE: CHM322

UNITS: 2

COURSE TITLE: CHEMICAL KINETICS

TIME ALLOWED: I Hour 30 Minutes

INSTRUCTIONS:

Answer any three questions

- 1 (a). Define the term rate of chemical reaction.
- b (i). Write short notes on the factors affecting rate of chemical reaction.
- (ii). Reaction rate is expressed in terms of changes in concentration of reactants and products. Write a balanced equation for

Rate =
$$-1/2 \Delta [N_2O_5] = 1/4 \Delta [NO_2] = \Delta [O_2]$$

Δt

 Δt Δt

(c) (i). The Inversion of sucrose in the presence of HCl gave the following values for the optical rotations:

Time (minutes)

15

Rotation (degrees) +32.4 +28.8

+25.5

30

+19.6

Show that the inversion of sucrose is a first order reaction.

- (ii). Give a brief account of the method use in determining the order of reaction.
- (2) (a). Explain the term activation energy.
- (b) The decomposition of hydrogen lodide,

$$2HI_{(g)} \rightarrow H_{2(g)} + I_{2(g)}$$

has rate constants of 9.51 × 10 -9 L/mol/s

at 500K and 1.10×10^{-5} L/mol/s at 600K. Determine the activation energy, E_a .

(R = 8.314 J/mol/K.).

- (c) (i). Explain Collision and transition state theories of reaction rates.
- (ii). With the aid of diagram explain the effect of temperature on the fraction of collision.

- 3a). What is a complex reaction?

$$Br_2 \xrightarrow{k_1} 2Br$$

Br + H₂
$$\frac{k_2}{k_{-2}}$$
 H + HBr

$$H + Br_2$$
 k_3 $Br + HBr$

$$Br + Br \xrightarrow{k_4} Br_2$$

Derive the kinetic equation for the formation of HBr

- 4a) Define the term fast reaction
- b). Discuss any two of the following methods of monitoring fast reactions
- i). Stopped flow method. ii). Continues flow method and iii). Flash photolysis.

2013, 300 LEVEC CHEMISTRY