

FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY DEPARTMENT OF INFORMATION AND MEDIA TECHNOLOGY

FIRST SEMESTER 2019/2020 EXAMINATION

COURSE CODE:

CIT413

COURSE TITLE:

DATA COMPRESSION

CREDIT UNITS:

2

TIME ALLOWED:2HRS

COURSE LECTURER(S):

MRS. F.J. BABAKANO

NUMBER OF QUESTIONS:

5

NUMBER OF PAGES:

2 (INCLUDING THIS PAGE)

INSTRUCTIONS

i. Answer Question ONE and ANY OTHER TWO questions, ii. Do **not** use red pen, iii. Please use a clear handwriting, iv. This exam is closed book, closed notes, closed laptop and closed cell phone v. Please use non-programmable calculators only

1. a. What is data compression and why do we compress data?

(3mrks)

- b. Explain briefly the meanings of *lossless* compression and *lossy* compression. For each typeof compression, give an example of an application, explaining why it is appropriate.(5mrks)
- c. Differentiate between Static dictionary and Dynamic dictionary(2mrks)
- d. Outline the main compression approaches and which class does Huffman coding belongs to? (8mrks)
- e. How do you measure the efficiency(performance) of a data compression algorithm?

(6 mrks)

f. Draw the Huffman tree and table for symbols shown in table below. Use the table to

encode the word "nigerian".

(6mrks)

Symbol	e	a	g	n	r	i
frequency	1	1	1	2	1	2

- 2. a. Compare and contrast between arithmetic encoding and Huffman encoding. (6mrks)
 - b. Determine whether the following codes for {A, B, C, D} are *uniquely decodable*. Give your reasons for each case.
 - (i) {0, 10, 101, 0101}(ii) {000, 001, 010, 011}(iii) {00, 010, 011, 1}
 - (iv) {0, 001, 10, and 010}

(4 mrks each)

- c. Explain why modelling and coding are usually considered separately for compression algorithm design. (5 mrks)
- a. Explain Run-length algorithm and explain under what conditions a Run-length algorithm may work effectively? (5mrks)
 - b. Encode and decode "abbcaac" using arithmetic encoding given the distribution table below: (10 mrks)

Probability Distribution

Symbol	Probability	Symbol Interval		
a	2	[0.0, 0.5)		
ь	1	[0.5, 0.75)		
С	1	[0.75, 1.0)		

4. a. Draw adaptive Huffman binary tree for "constitutions".

(10 mrks)

- b. Differentiate between dictionary based compression and statistical based compressions (5mrks)
- 5. a. Given seven symbols with probabilities .02, .03, .04, .04, .12, .26, and .49, construct binary Huffman code-trees for them. (5mrks)
 - b. Describe briefly how each of the two classes of lossless compression algorithms, namely the *adaptive* and the *non-adaptive*, works in its model. (5m/rks)
 - c.Differentiate between Symmetric and Asymmetric compression algorithms. (5mrks)