FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA SCHOOL OF SCIENCE AND SCIENCE EDUCATION DEPARTMENT OF GEOGRAPHY

SECOND SEMESTER 2009/2010 SESSION UNDERGRADUATE EXAMINATION

COURSE CODE: MET 320

COURSE TITTLE: General Circulation of the Atmosphere 11

INSTRUCTION: ANSWER ANY FOUR QUESTIONS.

TIME ALLOWED: 21/2 Hours

- 1a Define Kinematic in relation to atmosphere
- B. Briefly explain the relationship between kinematic and atmospheric processes
- C. Outline and explain the parameters required in describing motion in a straight line.
- 2a. State the four equations of motion
- B. Use the equations stated in (1) above to solve the following problems
- i. A car moves from rest with an acceleration of 0.2m/s². Find its velocity when it is moved a distance of 50m.
- ii. A train slows from 108km/hr with a uniform retardation of 5m/s². How long will it take to reach 18km/hr, and what is the distance covered?
- 3. Access the contribution of internal friction which exist between layers of a liquid or gas in motion to the general circulation of the atmosphere.
- 4. Discuss the two possible ways by which the atmosphere can transport heaf and momentum.
- 5. (a) Discuss the relevance of the equation of state in the study of atmospheric thermodynamics.
- (b) Using the basic laws of thermodynamics, derive an expression for the potential temperature of air in terms of its pressure P, temperature T and standard pressure P0. What is the name given to the equation.
- 6. (a) When is the atmosphere said to be in a hydrostatic equilibrium?
 - (b) Derive the hydrostatic equation
 - (C) Suppose at the surface a 1000m thick layer of air (under standard conditions) has an average density of 1.1kgm-3 and an acceleration of gravity 9.8ms-2. Use the hydrostatic equation to compute the difference in pressure.