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Abstract 

We develop a class of continuous modified multistep methods (CMMMs) which were use as boundary 

value methods for the numerical integration of special third order boundary value problems in ordinary 

differential equations. We investigate the basic properties of the methods and numerical experiments 

are given to show the performance of the approach. 

Keywords: boundary value methods, continuous modified multistep methods 

1. INTRODUCTION 

Differential equations are important tools in solving real-world problems. These equations arise in 

several branches of sciences, engineering and technology, ranging from models that describe acoustic 

wave propagation in relaxing media, draining and coating flow problems to the deflection of a curved 

beam that has a constant or varying cross section. Boundary value problems also arise in these areas 

and as such numerical methods that are faster and accurate in solving them are of importance 

Boundary value problems of third order have been discussed in many papers in recent years. Examples 

of such papers are (Abdullah et al2013; 2013) had developed a fifth order block method using constant 

step size with shooting technique to solve third order non-linear boundary value problems 

anddeveloped a fourth order two-point block method for solving non-linear third order boundary value 

problems.Khan and Aziz (2003) presented a forth order method that was based on quantic splines 

which was used to solve third order linear and non-linear boundary value problems. Collocation 

approximation was applied in deriving schemes that were applied as a block method to solve special 

third order initial value problems in Olabode (2009). Srivastava and Kumar (2011) andSahiet al (2013) 

had all worked in solving third order ordinary differential equations.Jator (2008) used a continuous 

linear multistep method to generate multiple finite difference methods that were assembled into a 
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single block matrix that was used to generate third order BVPs. A family of three step hybrid methods 

independent of first and second derivative components using Taylor approach were proposed to solve 

special third order ODEs in Jikantoroet al (2018), These were all done without reducing the ODEs to 

equivalent systems of first order ODEs. 

Ahmed (2017) used the variational iteration method to get numerical solutions to third order ordinary 

boundary value problems after reducing them to a system of first order ODEs 

In this paper, the considered special third order ordinary differential equation is of the form: 

𝑦′′′ = 𝑓(𝑥, 𝑦),          𝑦(𝑎) = 𝑦0, 𝑦′(𝑎) = 𝛿0, 𝑦′′(𝑎) = 𝛽0, 𝑦(𝑏) = 𝑦𝑀   (1) 

𝑦′′′ = 𝑓(𝑥, 𝑦),          𝑦(𝑎) = 𝑦0, 𝑦′(𝑎) = 𝛿0, 𝑦′(𝑏) = 𝑦𝑀 , 𝑦′′(𝑏) =  𝑦𝑁   (2) 

2. METHODOLOGY 

In this section, the construction of the continuous linear multistep methods via the interpolation and 

collocation approach is discussed, which will be used to produce several discreteschemes for solving 

(1) and (2) 

Algorithm 

Step 1: Construct the continuous LMM (CLMM) with continuous coefficients as: 


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Step 2: Obtain the main and additional methods by evaluating (3) in step 1 at jnx  where  

vvjvj ,1,2)1(1   
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Step 3: Obtain the first and second derivative formulae which are used to obtain the additional methods 

by evaluating )(xU  and )(xU  at jnxx  , kj )1(0  as 
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by imposing that NybUyaU  )(,)( 0 and NybUyaU  )(,)( 0  

Step 4: Combine the schemes obtained in steps 2 and 3 above to form a system of equations with form 

equivalent to BAx   where 

T

NMMMMx ),,,,( 1210   and 

TyyyyM ),,,( 32100  , TyyyyM ),,,( 32101
 , ),,,( 32102 yyyyM   

Step 5: Adopt matrix inversion algorithm to the system of equations in step 4 to obtain the values of 

the unknowns in the expected block method. 

Theorem 2.1:Let )3)(1(0),()(2)( 1   knxTxxTxP nnj  be the Chebyshev Polynomial used as basis 

function and W a vector given by 
T

knnvnvnn fffyyyW ),...,,,,,( 11  where T is the transpose. 

Consider the matrix V defined as 
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and jV obtained by replacing the jth column of V by the vector W and let (3) satisfy the following 

conditions 

jnjn yxU  )( vvj ,1,0   

jnjn fxU   )(  kj )1(0         (4) 

then the continuous representation (3) is equivalent to 
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Assuming the basis functions as 
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where 
ji ,1 , 

ji .1 ,  .1i
, are coefficients to be determined. 

Substituting (6) into (3) yields 
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which is simplified as 
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where ,,0,1 nii y   

imposing conditions (4) on (7), we obtain a system of (k+5) equations which can be expressed as 

WVH  where 
T

kH ),,,,( 4210   is a vector of (k+5) undetermined coefficients. 

We proceed to find the elements of H using Cramer’s rule, thus; 
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replacing the jth column of V by W gives the value of jV  
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3. SPECIFICATION OF THE METHODS 

Evaluating the CMMM (3) at kvvix in ,,1,2,,1,   and using it to obtain the first derivative 

formulae given by 
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effectively applied by imposing 

NybUyaU  )(,)( 0          (9) 

to produce derivative formula of the form (8). The second derivative formula is also obtained from (3), 

this is given by 
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effectively imposed by applying 

NybUyaU  )(,)( 0          (11) 

to generate the formulae in (10) 

4. CONVERGENCE OF THE METHOD 

Here the convergence of the method is established. The equation (3) is evaluated at 1nx , 2nx ,…, 
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)(xU  is evaluated at 
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All the equations in (12) to (14) are of order )( khO and can be compactly written in matrix form by 

introducing the following notations. Let P be a NN 33  matrix defined by 
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P  where ijP are NN  matrices given as 
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12P , 13P , 23P , 32P , are NN  null matrices and 22P , 33P  are NN   identity matrices. Similarly, 

another matrix Q which is a NN 33   matrix defined as 
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Where 
ijQ  are NN   matrices given as 
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12Q , 13Q , 22Q , 23Q , 32Q , 33Q  are NN  null matrices 

And then the following vectors are defined 

T
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With )(hL representing the local truncation error vector at the point nx of the methods (12) to (14). 

Theorem 4.1: Let ),,( iii yyy  be an approximation to the solution vector ))(),(),(( iii xyxyxy  for the 

systems (1) and (2). If iii yxye  )( , iii yxye  )( , iii yxye  )( , where the exact solution 

given by the vector ))(),(),(( xyxyxy  is several times differentiable and if YYE  , then the 

BVMs are said to be convergent of order 1k which implies that  

)( 1 khOE , where k is the step number. 

Proof: Consider the exact form of the system formed from (12) to (14) and given by 

0)()(3  hLCYQFhPY         (15) 

where )(hL  is the truncation error vector obtained from the formulas (12) to (14). The approximate 

form of the system is given by 

0)(3  CYQFhYP          (16) 

where Y  is the approximate solution of vector Y . 

Subtracting (15) from (16) and letting T

NNN eeeeeeYYE ),,,,,( 111
  and using the mean 

value theorem, we have the error system 

)()( 3 hLEQBhP            (17) 

where B  is the Jacobian matrix and its entries ,3,2,1,, srBrs  are defined as 
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From (16) and )(hL  

)()( 13 hLQBhPE   

)(hSLE   

)(hSLE   

 )()( 43  khOhO  

 )( 1 khO  

Which show that the methods are convergent and the global errors are of order )( 1khO  

Numerical Examples 

Here, two numerical examples are considered. 

Problem 1: Consider the third order boundary value problem (Jatoret al, 2018) 

10,)352()()( 23  xexxxxxyxy x  

1)0(,0)1()0(  yyy  

Exact:
xexxxy )()( 2  

The problem above was solved using the proposed method and the behaviour of the method was 

observed. The results gotten are compared with the results in Jator (2018) and the results gotten from 

the Extended Trapezoidal Methods (ETRs). Maximum of absolute error was obtained within the 

interval of integration. It is observed from Table 1 that the proposed methods did better than the 

methods of Jator (2018) and the ETRs in terms of accuracy. 

Table 1: Comparison of the Proposed Methods, Jator (2018) and ETRs 

N Proposed Method Jator (2018) ETRs 

6 8.33E-07 1.525E-05 1.089E-02 

12 2.06E-08 9.257E-07 7.666E-05 
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24 7.0E-10 5.873E-08 5.108E-06 

48 6.52E-11 3.683E-09 3.300E-07 

96 4.31E-12 2.305E-10 2.098E-08 

192 2.13E-13 1.428E-11 1.323E-09 

Problem 2: 10,1)0(,2ln)1(,0)0(,
)1(

4
2

3

3 


  xyyy
x

ey y  

Exact: )1ln()( xxy   

The proposed method was applied to the problem above and the results were compared to the results 

in Mohammed (2016). The maximum error was also obtained within the interval of integration. Table 

2 suggests that the proposed methods generate results that are at least of approximate accuracy with 

Mohammed (2016). 

Table 2: Comparison of the Proposed Methods and Mohammed (2016). 

N Proposed Method Mohammed (2016) 

6 1.24E-06 1.079E-06 

9      - 1.290E-07 

12 3.93E-08 2.770E-08 

15      - 8.990E-09 

24 2.45E-10       - 

48 9.32E-12       - 

96 4.69E-14       - 

192 8.38E-16       - 

Note tha:t Mohammed proposed a three step method with one off grid point for the solution of third 

order ODEs 

5. CONCLUSION 

In this paper, CMMMs have been proposed using the boundary value technique to integrate special 

third order boundary value problems in ordinary differential equations. This has been done without 

reducing the differential equations to systems of first order ODEs. The convergence of this class of 

methods was carried out and numerical examples were given. The efficiency of the methods was given 

in the tables 1 and 2. A future research will be carried out based on applying this approach to higher 

order ODEs while increasing the number of off grid points. 
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