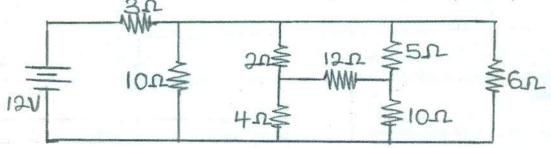
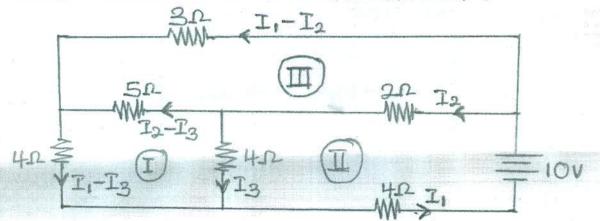
Federal University of Technology Minna School of Technology Education Industrial and Technology Education Department

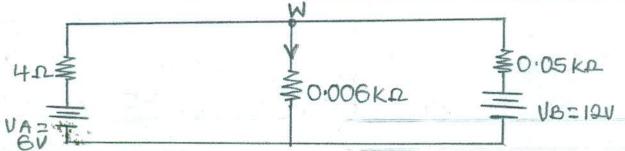
First Semester Examination, 2012/2013 Session

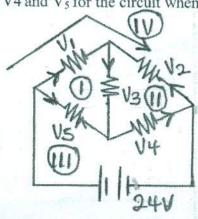

Course: - Circuit Theory (IET 313)

Duration: - 2 hours.

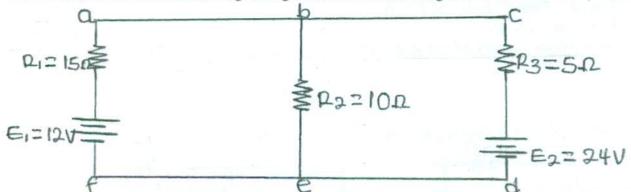

Instruction: - Answer all Questions in Section A and any two Questions from Section B

Section A

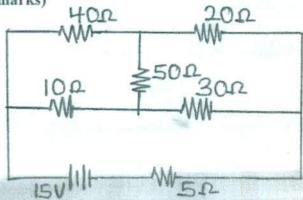

1a. Using Norton's theorem, find the current through the 6Ω resistor. (9 marks)


1b. Using Kirchhoff's laws calculate the currents I_1 , I_2 and I_3 (11 marks)

2a. Determine the value of I_1 , I_2 and I_3 using Superposition theorem and Nodal analysis. (14 marks)


2b. Find the value of V_1 , V4 and V_5 for the circuit when V_2 = 8V and V_3 = 6V (6 marks)

Section B


3a. With the aid of diagram shows the classification of electrical network and explain each term. (10 marks)

4a. Determine the current I flowing through the 10Ω resistor using Thevenin's theorem. (7 marks)

4b. A battery consists of sixteen cells connected in series, each having an e.m.f of 1.5V and the internal resistance of 0.15 Ω. Calculate the maximum power transferred to an external load. (3 marks)

5a. In the network shown below, find the current supplied by the battery using star/delta transformation. (7 marks)

5b. Define Thevenin's voltage and Thevenin's resistance. (3 marks)