

## SECOND SEMESTER EXAMINATION, 2018/2019 ACADEMIC SESSION

COURSE TITLE:

LASER SYETEMS & RADIO SCIENCE

COURSE CODE:

**SVG526** 

TIME ALLOWED:

2 hours

Instruction:

This examination is in 3 sections, you are expected to answer question from all sections

You are to answer question 1 and any other 1 in section "A"

You are to answer any question from section "B"

Finally you are to answer all the questions in section "C" by stating either "True" or "False"

## Section "A" (Laser Systems)

| Section A (Laser Systems)                                                                            |             |
|------------------------------------------------------------------------------------------------------|-------------|
| 1(a) Write short notes on the following (use of requisite diagrams where applicable is advantageous  | us):        |
| (i) Doppler Effect                                                                                   | (3 Mks)     |
| (ii) Interferometry                                                                                  | (3 Mks)     |
| (iii) LASER                                                                                          | (3 Mks)     |
| 1(b) Make a comparison between the VLBI, SLR and DORIS systems                                       | (11 Mks)    |
| 2(a) Discuss extensively on the components, operating principle and applications of VLBI             | (10 Mks)    |
| 2(b) State (at least one) processing software and itemize the procedure for processing VLBI data     | (5 Mks)     |
| 3(a) Discuss extensively on the characteristics of Laser Beam                                        | (6 Mks)     |
| 3(b) (i) calculate the full angle divergence of an Argon (blue) Laser beam whose beam waist          |             |
| diameter is 1mm and its wavelength is $0.488\mu m$ .                                                 | (3 Mks)     |
| (ii) If the diameter is reduced to 0.5mm, what would be the full angle divergence?                   | (3 Mks)     |
| (iii) Based on your results, what can you deduce?                                                    | (2 Mks)     |
| Section "B" (Radio Science)                                                                          |             |
| 4a) Discuss in details the operational theory of a LIDAR system with emphasis on Airborne LIDA       | R flight    |
| planning.                                                                                            | (8 Mks)     |
| 4b) Discuss the components of a LIDAR system                                                         | (5 Mks)     |
| 4c) Specify the typical accuracy obtainable from LIDAR mapping                                       | (2 Mks)     |
| 5(a) Discuss briefly on the types of RADAR systems                                                   | (6 Mks)     |
| 5(b) Identify any 5 RADAR band and specify their usage                                               | (5 Mks)     |
| 5(c) Using an hierarchical diagram, classify RADAR according to their wave forms (4 M                | ſks)        |
| Section "C"                                                                                          |             |
| 1. Lasers are classified according to safety purposes based on their potential to harm the human eye | e and skin. |
| 2. Radar systems are not used for signature analysis and inverse scattering.                         |             |
| 3. The DORIS system operates based on the Doppler effect.                                            |             |

- 4. The Ruby Laser was discovered in 1961 by Theodore Maiman.
- 5. Laser technology is often applied in video games.
- 6. Jamming of DORIS signals do not occur because the signals are properly synchronized.
- 7. The LAGEOS-1 and LAGEOS-2 are SLR satellites.
- 8. The LAGEOS-1 and LAGEOS-2 satellites are part of the DORIS space segment.
- 9. The DORIS system makes both Doppler and Synchronization measurements.
- 10. The DORIS makes only Doppler measurements.